车辆控制装置和控制方法.pdf

上传人:e1 文档编号:572835 上传时间:2018-02-23 格式:PDF 页数:49 大小:1.89MB
返回 下载 相关 举报
摘要
申请专利号:

CN200880013598.0

申请日:

2008.04.25

公开号:

CN101675234A

公开日:

2010.03.17

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):F02D 41/14申请日:20080425|||公开

IPC分类号:

F02D41/14; B60W40/12

主分类号:

F02D41/14

申请人:

丰田自动车株式会社

发明人:

坂柳佳宏

地址:

日本爱知县

优先权:

2007.4.27 JP 119820/2007; 2008.1.25 JP 015250/2008

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

李 洋

PDF下载: PDF下载
内容摘要

一种车辆控制装置,通过应用模型表达式(图9C),计算出期望的节气门开度(θref),需要所述期望的节气门开度来按照期望值控制缸内空气量,其中所述表达式的输入包括作为系统的控制目标的缸内空气量的期望值以及诸如发动机转速(ne)的预定参数。在所述模型表达式中,从微分对象中排除掉以相对较高频率振荡的诸如发动机转速(ne)等参数,并且在微分对象中仅包括所述期望的缸内空气量值。

权利要求书

1、  一种车辆控制装置,其使用模型表达式计算安装在车辆中的致动器的控制变量的期望值,所述模型表达式包括微分项,在所述微分项的每一个中,将被输入的预定参数的其中一个相对于时间求微分,所述装置的特征在于:
所述预定参数被分成第一参数组和第二参数组,所述预定参数中以高于第一频率的频率振荡的部分属于所述第一参数组,所述预定参数中以低于第二频率的频率振荡的其余部分属于所述第二参数组,所述第二频率低于所述第一频率;以及
只有属于所述第二参数组的所述预定参数中的其余部分被包括在所述模型表达式的微分对象中。

2、
  根据权利要求1所述的车辆控制装置,其中:在所述模型表达式中,所述第一参数组的所述预定参数的每个微分项被近似为零。

3、
  根据权利要求1或2所述的车辆控制装置,其中:在所述模型表达式中,每个微分项被变换为第一微分项与第二微分项的乘积,在所述每个微分项中,将属于所述第一参数组的所述预定参数中以高于第一频率的频率振荡的部分的其中一个相对于时间求微分,在所述第一微分项中,将属于所述第一参数组的所述预定参数中以高于第一频率的频率振荡的部分的其中一个相对于属于第二参数组的所述预定参数的其余部分的其中一个求微分,在所述第二微分项中,将属于所述第二参数组的所述预定参数的其余部分的其中一个相对于时间求微分。

4、
  根据权利要求1至3中任一项所述的车辆控制装置,其中属于所述第一参数组的所述预定参数的其中一个是发动机转速。

5、
  一种车辆控制装置,其使用模型表达式以计算出安装在车辆中的致动器的控制变量的期望值,所述模型表达式的输入包括预定参数以及车辆中的控制目标的期望控制目标值,为了将所述控制目标控制成所述期望控制目标值需要所述控制变量的期望值,所述装置的特征在于:
在所述模型表达式中,所述期望控制目标值包括在微分对象中,并且从所述微分对象中排除掉所述预定参数中以比预定频率高的频率振荡的每个参数。

6、
  根据权利要求5所述的车辆控制装置,其中:
在所述模型表达式中,每个微分项被近似为零,在所述每个微分项中,将以比预定频率更高的频率振荡的所述预定参数的其中一个相对于时间求微分。

7、
  根据权利要求5或6所述的车辆控制装置,其中:
所述模型表达式作为一个表达式的反函数而获得,借助该表达式通过将安装在所述车辆中的致动器的期望控制变量值输入到一次滞后元件中而计算出所述期望控制目标值,所述一次滞后元件具有包含所述预定参数的至少一部分的时间常数。

8、
  根据权利要求7所述的车辆控制装置,其中:
在所述模型表达式中,与所述时间常数相乘并且因此被包含在所述微分对象中的项被限制为所述期望控制目标值。

9、
  根据权利要求5至8中任一项所述的车辆控制装置,其中:
所述期望控制目标值是内燃机的期望扭矩值或者期望缸内空气量值。

10、
  根据权利要求9所述的车辆控制装置,其中:
所述期望控制目标值包含第一期望扭矩值和第二期望扭矩值,所述第一期望扭矩值需要在第一响应时间内的致动器的响应,所述第二期望扭矩值需要在比所述第一响应时间更长的第二响应时间内的致动器的响应,以及
通过只求所述期望控制目标值的第一期望扭矩值的微分,然后将第一期望扭矩值的如此获得的微分与第二期望扭矩值求和,所述车辆控制装置产生最终的期望控制目标值。

11、
  根据权利要求5至10中任一项所述的车辆控制装置,其中:
所述预定参数中的以比所述预定频率更高的频率振荡的其中一个预定参数是发动机转速。

12、
  根据权利要求1至11中任一项所述的车辆控制装置,其中:
安装在所述车辆中的致动器是节气门,所述节气门被设置在内燃机的进气道中并且由马达驱动。

13、
  一种控制安装在车辆中的致动器的控制变量的期望值的方法,包括:
接收预定参数;
将所述预定参数分成第一参数组和第二参数组,以高于第一频率的频率振荡的参数属于所述第一参数组,以低于第二频率的频率振荡的参数属于所述第二参数组,所述第二频率低于所述第一频率;以及
将属于所述第二参数组的参数相对于时间求微分。

14、
  一种控制安装在车辆中的致动器的控制变量的期望值的方法,包括:
接收预定参数以及车辆中的控制目标的期望控制目标值;
将所述期望控制目标值包括在微分对象中;以及
从所述微分对象中排除掉所述预定参数中以高于预定频率的频率振荡的每个参数。

说明书

车辆控制装置和控制方法
技术领域
[0001]本发明涉及车辆控制装置和控制方法。特别地,本发明涉及用于控制车辆的装置和用于控制安装在车辆中的致动器的方法,其中应用模型表达式计算安装在车辆中的致动器的控制变量的期望值。
背景技术
[0002]在日本专利申请公开号No.2006-200466(JP-A-2006-200466)中,描述了用于内燃机的输出控制装置。在该装置中,应用进气系统模型的反模型和节气门模型的反模型计算期望的节气门开度,以便获得具有良好响应的内燃机的期望扭矩。在上述装置中,利用滤波器对作为将要被输入到反模型中的参数的发动机转速和气门正时进行处理,以便稳定对内燃机输出的控制。
[0003]如同在JP-A-2006-200466中所描述的相关技术的情况,当在导出模型表达式的过程中包括微分时,系统变得对发动机转速以及进气管中连续少量改变的压力过度地响应。更特别地,当模型表达式中的参数包括具有高频振荡分量的参数(诸如发动机转速)时,在对参数求微分时预料不到的噪音被放大。
[0004]可以设想如同在JP-A-2006-200466中所描述的相关技术的情况那样使用滤波过程以便解决以上问题。但是,虽然这种滤波过程有利于改善控制稳定性,但是在系统的响应方面仍然有改进空间。
发明内容
[0005]本发明提供了一种用于控制车辆的装置以及一种控制安装在车辆中的致动器的方法,其有利地减少了在安装在车辆中的致动器的控制变量期望值上叠加大的噪音,而不会损害系统的响应。
[0006]本发明的第一方面涉及车辆控制装置。所述车辆控制装置使用模型表达式计算安装在车辆中的致动器的控制变量的期望值,所述模型表达式包括微分项,在所述微分项的每一个中,将被输入的预定参数的其中一个相对于时间求微分。所述预定参数被分成第一参数组和第二参数组,所述预定参数中以高于第一频率的频率振荡的部分属于所述第一参数组,所述预定参数中以低于第二频率的频率振荡的其余部分属于所述第二参数组,所述第二频率低于所述第一频率。只有属于所述第二参数组的所述预定参数中的其余部分被包括在所述模型表达式的微分对象中。
[0007]根据本发明第一方面的车辆控制装置,从相对于时间的微分对象中排除掉参数以高于第一频率的频率振荡的第一参数组,因此可以在计算模型表达式的输出(即,安装在车辆中的致动器的期望控制变量值)的过程中防止高频噪音被放大。另外,因为在相对于时间的微分对象中包括参数以低于第二频率(所述第二频率低于所述第一频率)的频率振荡的第二参数组,所以可以确保使用所述模型表达式的计算精确性。因此,通过根据第一方面的车辆控制装置,可以有利地减少在安装在车辆中的致动器的期望控制变量值上叠加大的噪音,而不会损害系统的响应。
[0008]在所述模型表达式中,第一参数组的预定参数的每个微分项可以近似为零。
[0009]通过所述车辆控制装置,可以将相对于时间求微分的参数限制为那些在模型表达式中属于第二参数组的参数。
[0010]在所述模型表达式中,每个微分项被变换为第一微分项与第二微分项的乘积,在所述每个微分项中,将属于所述第一参数组的所述预定参数中以高于第一频率的频率振荡的部分的其中一个相对于时间求微分,在所述第一微分项中,将属于所述第一参数组的所述预定参数中以高于第一频率的频率振荡的部分的其中一个相对于属于第二参数组的所述预定参数的其余部分的其中一个求微分,在所述第二微分项中,将属于所述第二参数组的所述预定参数的其余部分的其中一个相对于时间求微分
[0011]通过所述车辆控制装置,可以避免以高频率振荡并因此属于第一参数组的参数相对于时间求微分,因此可以有利地减少在安装在车辆中的致动器的期望控制变量值上叠加大的噪音。另外,将以低频率振荡并且因此属于第二参数组的参数相对于时间求微分,因此可以确保应用所述模型表达式计算的精确性。
[0012]属于所述第一参数组的所述预定参数的其中一个可以是发动机转速。
[0013]本发明的第二方面涉及车辆控制装置。所述车辆控制装置使用模型表达式以计算出安装在车辆中的致动器的控制变量的期望值,所述模型表达式的输入包括预定参数以及车辆中的控制目标的期望控制目标值,为了将所述控制目标控制成所述期望控制目标值需要所述控制变量的期望值。在所述模型表达式中,所述期望控制目标值包括在微分对象中,并且从所述微分对象中排除掉所述预定参数中以比预定频率高的频率振荡的每个参数。
[0014]根据本发明第二方面的车辆控制装置,在微分对象中包括车辆中的控制目标的期望控制目标值,因此可以有利地确保使用所述模型表达式的计算精确性。另外,除了被输入到模型表达式中的期望控制目标值之外,从微分对象中排除掉所述预定参数中以高于预定频率的频率振荡的每个参数,因此可以在计算模型表达式的输出(即,安装在车辆中的致动器的期望控制变量值)的过程中防止高频噪音被放大。因此,通过根据本发明第二方面的车辆控制装置,可以有利地减少在安装在车辆中的致动器的期望控制变量值上叠加大的噪音,而不会损害系统的响应。
[0015]在所述模型表达式中,每个微分项可以近似为零,在所述每个微分项分中,将以比预定频率高的频率振荡的预定参数的其中一个相对于时间求微分。
[0016]通过所述车辆控制装置,从模型表达式的微分对象中排除掉所述预定参数中以相对较高频率振荡的每个参数。
[0017]所述模型表达式作为一表达式的反函数而获得,借助所述表达式通过将安装在所述车辆中的致动器的期望控制变量值输入到一次滞后元件中而计算出所述期望控制目标值,所述一次滞后元件具有一时间常数,所述时间常数包含所述预定参数的至少一部分。
[0018]通过所述车辆控制装置,因为应用所述表达式(借助所述表达式通过将安装在所述车辆中的致动器的期望控制变量值输入到一次滞后元件中而计算出所述期望控制目标值,所述一次滞后元件具有包含所述预定参数的至少一部分的时间常数),所以即使当包含在时间常数中的诸如进气压力Pm等预定参数根据诸如内燃机的操作条件等车辆条件而变化,如果在车辆处于特定情形时的每个时刻通过获得包含在时间常数中的参数值而确定时间常数,那么也可以容易地确定控制目标对于安装在车辆中的致动器的调节的响应特征。另外,所述模型表达式被限定为这种表达式的反函数,由此可以获得安装在车辆中的致动器的期望控制变量值,需要所述期望控制变量值以便通过将它输入到具有上述时间常数的一次超前元件中而获得控制目标的良好响应。
[0019]在所述模型表达式中,被所述时间常数相乘并且因此被包含在所述微分对象中的项被限制为所述期望控制目标值。
[0020]通过所述车辆控制装置,在一次超前元件中,可以从微分对象中排除掉以相对高的频率振荡的参数,同时保持应用所述模型表达式计算的良好精确性。因此,可以有利地减少在安装在车辆中的致动器的期望控制变量值上叠加大的噪音,而不会损害系统的响应。
[0021]所述期望控制目标值可以是期望扭矩值或者内燃机的期望缸内空气量值。
[0022]通过所述车辆控制装置,可以构造一个系统,在所述系统中,有利地减少了在安装在车辆中的致动器的期望控制变量值上叠加大的噪音,而不会损害扭矩或者内燃机的缸内空气量的响应。
[0023]所述期望的控制目标值可以包含第一期望扭矩值和第二期望扭矩值,所述第一期望扭矩值需要在第一响应时间的内致动器的响应,所述第二期望扭矩值需要在比所述第一响应时间更长的第二响应时间内的致动器的响应。通过只求所述期望控制目标值的第一期望扭矩值的微分,然后将第一期望扭矩值的如此获得的微分与第二期望扭矩值求和,所述车辆控制装置可以产生最终的期望控制目标值。
[0024]通过这种车辆控制装置,可以处理同时输入需要不同响应的两种期望扭矩值的情况,同时有利地减少车辆控制装置的计算负载。
[0025]以比所述预定频率高的频率振荡的所述预定参数的其中一个可以是发动机转速。
[0026]安装在车辆中的致动器可以是节气门,所述节气门被设置在内燃机的进气道中并且由马达驱动。
[0027]通过所述车辆控制装置,有利地减少了在由马达驱动的节气门的期望控制变量值上叠加大的噪音,并且可以确保马达的良好耐用性。
[0028]本发明的第三方面涉及一种控制安装在车辆中的致动器的控制变量的期望值的方法。所述控制方法包括:接收预定参数;将所述预定参数分成第一参数组和第二参数组,以高于第一频率的频率振荡的参数属于所述第一参数组,以低于第二频率的频率振荡的参数属于所述第二参数组,所述第二频率低于所述第一频率;以及将属于所述第二参数组的参数相对于时间求微分。
[0029]本发明的第四方面涉及一种控制安装在车辆中的致动器的控制变量的期望值的方法,包括:接收预定参数以及车辆中的控制目标的期望控制目标值;将所述期望控制目标值包括在微分对象中;以及从所述微分对象中排除掉所述预定参数中以高于预定频率的频率振荡的每个参数。
附图说明
[0030]通过参照附图对示例性实施例的以下描述,本发明的前面所述和进一步所述的特征和优点将变得显而易见,其中类似的附图标记被用来表示类似的元件,其中:
图1是一图,用来描述包括在本发明第一实施例的车辆控制装置中的内燃机系统的构造;
图2是一图,用于描述在图1所示的ECU中构造的进气系统模型的轮廓;
图3A和3B分别显示了储存在ECU中以获得fmt(θ)和gmt(Pm)的图表的特征;
图4显示了储存在ECU中以获得gmc(Pm,ne,vvt)的图表的特征;
图5是一图表,用于描述为了与根据第一实施例的方法进行比较而被引用的方法中的一个过程,在所述过程中,通过内燃机的期望扭矩值trqref获得期望的节气门开度θref
图6A和6B是图表,显示了一个例子,在所述例子中,执行FF控制,在所述控制中不考虑进气系统的动力学;
图7A和7B是图表,显示了一个例子,在所述例子中,根据图5所示的方法执行FF控制,在所述控制中考虑进气系统的动力学;
图8A和8B是图表,用于描述图5所示方法中所存在的问题;
图9A-9C是图表,用于描述一种方法,在第一实施例中应用所述方法计算期望的节气门开度θref,需要所述节气门开度θref来获得期望的缸内空气量值;
图10A和10B是图表,用来描述通过图9A-9C所示的方法获得的有益效果;
图11是图表,用于描述包括扭矩值的转换的控制方案,其被引用以便与第二实施例比较;
图12A和12B是图表,用于描述图11所示方法中所存在的问题;
图13是图表,用于描述一种方法,其在第二实施例中被使用以便计算期望的节气门开度θref,需要所述节气门开度θref来获得期望的扭矩值trqref
图14A和14B是图表,用于描述通过图13所示的方法所获得的有益效果;
图15是图表,显示了根据第二实施例的扭矩控制方案;
图16是图表,显示了车辆控制系统,在所述系统中,在图15所示的内燃机系统的下游侧具有一次滞后元件;
图17A和17B是图表,显示了适于需要快响应的第一期望扭矩值Tif的扭矩控制器以及适于需要慢响应的第二期望扭矩值Tis的扭矩控制器;
图18是图表,用于为了与图20所示的第三实施例的方法进行比较而描述一种方法,所述方法被采纳以避免在第三实施例中所描述的问题;
图19是一图表,用于描述当应用第二实施例中所述的扭矩控制器时所获得的优点;
图20是一图表,用于描述根据第三实施例的扭矩控制器;
图21A和21B是时间流程图,用于描述当实际应用图20所示的扭矩控制器来控制内燃机时所获得的有益效果;
图22A和22B是时间流程图,用于描述当实际应用图20所示的扭矩控制器来控制内燃机时所获得的有益效果。
具体实施方式
[0031]图1是一图,其用于描述包含在根据本发明第一实施例的车辆控制装置中的内燃机系统的构造。根据该实施例的系统包括多缸内燃机10。在内燃机10的每个缸中设有活塞12。另外,在内燃机10的每个缸中,在活塞12的头侧形成燃烧室14。进气道16和排气道18与燃烧室14相连。
[0032]在进气道16的进口附近设置空气流量计20,其输出与进入进气道16中的空气流量相应的信号。在空气流量计20的下游设置节气门22。所述节气门22是电控气门,其根据油门踏板操作量由节气门马达24驱动。在节气门22附近设置节气门位置传感器26,用于检测节气门开度θ。
[0033]在节气门22的下游设置燃油喷射阀28,用于朝着内燃机10的进气口喷射燃油。内燃机包括汽缸盖,对于每个气缸在汽缸盖中设置火花塞30以便从燃烧室14的顶部突出到燃烧室14中。进气口和排气口分别设有进气门32和排气门34,它们使得燃烧室14分别与进气道16和排气道18连通以及相对进气道16和排气道18关闭。
[0034]进气门32和排气门34分别由可变进气门(可变气门正时系统(VVT))系统36和可变排气门(VVT)系统38驱动。可变气门正时系统36和38与曲轴的旋转同步地开启和关闭进气门32和排气门34,并且分别改变进气门32和排气门34的开启/关闭正时。
[0035]内燃机10在曲轴附近设有曲柄角传感器40。所述曲柄角传感器40是这样一种传感器,每次曲轴旋转一预定旋转角度,它在高输出与低输出之间切换。通过利用来自曲柄角传感器40的输出,可以检测到曲轴的旋转位置及其旋转速度(发动机转速)。内燃机10在进气凸轮轴附近设有凸轮角传感器42。所述凸轮角传感器42是这样一种传感器,其具有类似于曲柄角传感器40的结构的构造。通过利用来自凸轮角传感器42的输出,可以检测例如进气凸轮轴(气门正时系统VVT)的旋转位置。
[0036]图1中所示的系统包括ECU(电子控制单元)50。除了上述各种传感器之外,与ECU连接的还有用于检测排气道18中废气的空燃比的空燃比传感器52、用于感测内燃机10中冷却水的温度的水温传感器54以及用于检测油门踏板操作量PA的油门踏板操作量传感器56。上述各种传感器也与ECU50相连。基于来自传感器的输出以及应用在ECU50中虚拟构造的数学模型(进气系统模型及其反模型,这将在下面描述)的计算结果,ECU50控制内燃机10的操作。
[0037]图2是一图,用于描述在图1所示的ECU50中构造的进气系统模型的轮廓。所述进气系统模型是一数学模型,用于估计进入气缸中的空气量(气缸内充气量,或者通过进气门的空气量)mc。更特别地,进气系统模型包括:节气门模型,用于估计通过节气门22的空气的量mt(节气门通过空气量);进气管模型,用于估计位于节气门22下游的进气道16(进气歧管)中的进气压力Pm(和进气温度Tm);进气门模型,用于估计通过进气门32的空气量(进气门通过空气量,或者缸内充气量)mc。可以应用以下表达式计算节气门通过空气量mt、进气压力Pm以及缸内充气量mc
[0038]如下面的表达式(1)所示,节气门通过空气量mt(g/sec)由系数fmt(θ)和系数gmt(Pm)的乘积表示。
mt=fmt(θ)gmt(Pm)…(1)
在以上表达式(1)中,fmt(θ)是基于下述图3A所示的关系所获得的系数,并且gmt(Pm)是基于下述图3B中所示的关系所获得的系数。
[0039]图3A和图3B显示了储存在ECU50中以获得fmt(θ)和gmt(Pm)的图的性质。如图3A所示,系数fmt(θ)的值基于节气门开度θ唯一地确定,并且具有一性质,即,原则上,节气门开度θ越大,系数fmt的值越高。通过利用这种性质,可以获得计算结果,即,节气门开度θ越大,节气门通过空气量mt越大。另一方面,如图3B所示,系数gmt(Pm)的值基于进气压力Pm被唯一地确定。系数gmt(Pm)具有一性质,即,进气压力Pm越低于节气门上游空气压力(大气压)Pa,系数gmt(Pm)的值越大,直到进气压力Pm下降低于一特定值。通过使用gmt(Pm)的这种性质,可以获得计算结果,即,节气门22的上游与下游之间的压力差越大,则节气门通过空气量mt越大。
[0040]通过解答以下表达式(2a)和(2b),可以计算进气压力Pm(Pa)和进气温度Tm(k)。
ddt(PmTm)=RVm(mt-mc)...(2a)]]>
dPmdt=κRVm(mtTa-mcTm)...(2b)]]>
在以上的表达式(2a)和(2b)中,R是气体常数,Vm是内燃机10中的进气歧管容积,并且k是比热比。
[0041]缸内充气量mc(g/sec)由下面表达式(3)表示。
mc=TaTmgmc(Pm,ne,vvt)...(3)]]>
在以上表达式(3)中,系数gmc是进气压力Pm、发动机转速ne和气门正时vvt的函数,Ta是节气门上游空气温度(大气温度)Ta
[0042]图4显示了储存在ECU50中以获得gmc(Pm,ne,vvt)的图的性质。更特别地,ECU50储存图表,对于发动机转速ne和气门正时vvt的每组值,如图4所示,所述图表相对于进气压力Pm限定系数gmc。图4所示图表具有一特征,即进气压力Pm越高,变量gmt的值越大。通过利用变量gmc的这个性质,可以获得计算结果,即进气压力Pm越高,缸内充气量mc越大。
[0043]通过以上表达式(1)-(3),当利用以上表达式(2)获得进气压力Pm时,在特定节气门开度θ下的节气门通过空气量mt基于以上表达式(1)而确定,并且缸内充气量mc基于以上表达式(3)而确定。当获得mt和mc的最后值时,变得可以获得随后的进气压力Pm。通过重复这个计算,可以成功地计算出缸内充气量mc
[0044]能够基于上述获得的缸内充气量mc应用下面表达式(4)计算将空气充入气缸中的效率klc
klc=mc1ne/601Vc·ρairmcKtne...(4)]]>
在以上表达式(4)中,Vc是气缸容积,ρair是空气密度,Kt是共同表示除mc和ne之外的参数的系数。
[0045]下面将描述应用进气系统模型的反模型计算期望节气门开度θref。在根据本实施例的系统中,进行扭矩需求控制,其中控制内燃机10的实际扭矩,使得基于例如由驾驶员操作的油门踏板的操作量而获得实际需要的扭矩(期望扭矩值trqref)。根据本实施例的系统的特征在于:应用通过转变上述进气系统模型表达式所获得的反模型表达式,通过下面参照图9A-9C所描述的方法来计算期望的节气门开度θref,所述节气门开度θref根据驾驶员的需要产生期望的扭矩值trqref
[0046]首先,为了与本实施例进行比较,将参照图5描述一种方法,该方法是本实施例的相关技术,并且在该方法中,通过相反地解答上述进气系统模型表达式而计算期望的节气门开度θref。图5是一图,用于描述一过程,在所述过程中,通过现有技术中的内燃机10的期望扭矩值trqref而获得期望的节气门开度θref
[0047]在图5所示的方法中,基于限定内燃机10的期望扭矩值trqref与期望的缸内空气量值(klcref或mcref)之间关系的扭矩图而获得需要用来实现期望扭矩值trqref的缸内空气量的期望值。更特别地,扭矩图是这样一个图,它对于每组预定的发动机参数(诸如发动机转速ne和点火正时SA)相对于期望扭矩值以期望充气效率klcref的形式限定期望的缸内空气量值。应当注意:可以使用期望充气效率klcref和期望缸内空气量mcref的任一个作为代表缸内空气量的期望值的指数,因此可以从以klcref和mcref的任一个的形式的扭矩图获得缸内空气量的期望值。
[0048]在图5所示的方法中,通过转变上述进气系统模型表达式(1)-(4)而导出以下反模型表达式(5)-(9)。然后,应用从扭矩图和预定发动机参数(诸如发动机转速ne)获得的期望充气效率klcref作为输入,利用反模型表达式,计算出需要用来实现期望的缸内空气量值的期望节气门开度θcref
[0049]更特别地,通过转变上述表达式(4)使得左手侧仅具有缸内充气量mc,以此获得下面表达式(5)。通过表达式(5),可以基于期望的充气效率klcref而获得期望的缸内空气量mcref
mcref=neKtklcref...(5)]]>
[0050]当转变以上公式(3)使得左手侧仅具有进气压力Pm时,获得以下表达式(6)。通过表达式(6),可以基于期望的缸内空气量mcref和下述表达式(9b)获得期望的进气压力Pmref
Pmref=gmc-1(TmrefTamcref.ne,vvt)...(6)]]>
[0051]当转变以上公式(2b)使得左手侧仅具有节气门通过空气量mt时,获得以下表达式(7)。通过表达式(7),可以基于期望的缸内空气量mcref和期望的进气压力Pmref获得期望的节气门通过空气量mtref
mtref=VmκRTadPmrefdt+mcrefTmTa...(7)]]>
[0052]当转变以上表达式(1)使得左手侧仅具有节气门开度θ时,获得以下表达式(8)。通过表达式(8),可以基于期望的进气压力Pmref和期望的节气门通过空气量mtref获得期望节气门开度θref
θref=fmt-1(mtrefgmt(Pmref))...(8)]]>
[0053]通过结合上述表达式(2a)的两侧而获得以下表达式(9a)。通过以下表达式(9b),可以通过期望的进气压力Pmref和Pm/Tm的期望值获得期望的进气温度Tmref,其中期望的进气压力Pmref应用上面表达式(6)而获得,Pm/Tm的期望值通过应用表达式(9a)获得。
(PmTm)ref=∫RVm(mtref-mcref)dt...(9a)]]>
Tmref=Pmref/(PmTm)ref...(9b)]]>
[0054]通过上述图5中所示的方法,可以构造前馈控制器(FF),在所述前馈控制器中,考虑诸如进气响应延迟等进气系统的动力学。接着,参照图6A和6B以及图7A和7B,将描述在基于期望的节气门开度θref控制缸内空气量时所获得的有益效果,应用结合相关技术所描述的反模型表达式计算出所述期望的节气门开度θref
[0055]图6A和图6B是图表,其显示了一例子,在该例子中执行FF控制,在该控制中没有考虑进气系统的动力学。换言之,图6A和6B是显示了本发明相关技术的图表。在这种情况下,当对扭矩存在要求时,如图6A所示,将节气门开度θ控制为值θ1,θ1使得能够获得期望的缸内空气量值。结果,如图6B所示,在进气响应有延迟的情况下,缸内空气量逐渐接近期望值,因此不会获得好的扭矩响应。
[0056]图7A和图7B是图表,其显示了一例子,在该例子中根据图5中所示的方法执行FF控制,在所述方法中考虑进气系统的动力学。换言之,图7A和7B是显示了本发明的相关技术的图表。在这种情况下,当对扭矩存在要求时,如图7A所示,为了立即实现期望的缸内空气量值(≈期望的扭矩值),确定期望的节气门开度θref,使得节气门开度变得等于节气门开度θ2,节气门开度θ2大于实现期望的缸内空气量值所需的节气门开度θ1。随后,成功地计算出立即实现期望的缸内空气量值所需的期望的节气门开度θref。结果,如图7B所示,获得相对于期望的缸内空气量值的缸内空气量的良好响应。
[0057]图8A和8B是图表,用于描述图5所示方法中所存在的问题。更特别地,图8A显示了定期改变的期望的缸内空气量值的波形。图8B显示了期望的节气门开度θref的波形,所述期望的节气门开度θref被成功地计算以便连续地获得这种期望的缸内空气量值。当节气门开度θ被控制为这种期望的节气门开度θref时,如图8A所示,获得精确地符合所述期望的缸内空气量值的缸内空气量。
[0058]然而,如图8B所示,大的噪音被叠加在期望的节气门开度θref上,所述期望的节气门开度θref是被传送给节气门马达24的最后命令值。原因如下。特别地,用于获得所述期望的节气门通过空气量mtref的以上表达式(7),包含通过相对于时间对期望的进气压力Pmref进行微分所获得的项。用于获得期望的进气压力Pmref的上述表达式(6),包含诸如发动机转速ne的测量值(发动机参数),所述测量值趋于振荡,并且表示所述测量值的信号趋于叠加高频噪音。因此,当相对于时间在表达式(7)中对期望的进气压力Pmref求微分时,放大叠加在发动机参数上的高频噪音,所述发动机参数被包含在期望的进气压力Pmref中。由于该原因以及以下事实,即:由于涉及以上表达式(9b)和(6)的递归计算的存在计算值趋于振荡,所以期望的节气门开度θref趋于叠加有大的噪音。
[0059]当大的噪音被叠加在期望的节气门开度θrefref是传送给节气门马达24的命令值)上时,节气门马达24利用细微的控制值被频繁地控制,这导致由节气门马达24所产生的热量的增加。发热量的增加可以导致节气门马达24上的载荷的增加。当节气门22用细微的控制值被频繁地操作时,也可以增加节气门22上的载荷。
[0060]图9A-9C是图表,用于描述在第一实施例中被用于计算期望的节气门开度θref的方法,需要期望的节气门开度θref来获得期望的缸内空气量值。在使用上述进气系统模型表达式(1)-(4)方面,图9A-9C所示的本实施例的方法与用于比较目的的图5所示的方法相同。然而,在图9A-9C所示的方法中,代替仅仅相反地解答进气系统模型表达式,在将进气系统模型表达式转变并近似为下述状态相关型线性模型(微分等式)之后,使用进气系统模型表达式。
[0061]更特别地,如图9A所示,通过进气系统模型,正如已经描述的,可以通过除节气门开度θ之外又输入诸如发动机转速ne和点火正时SA等其它发动机参数而获得缸内充气量mc。在图9A-9C所示的方法中,上述进气系统模型表达式被转换成包括图9B中所示的简单转换函数(K/(1+αs))的表达式,在所示函数中使用状态相关型系数α。
[0062]通过使用转换函数(K/(1+αs))的上述状态相关型线性模型,当节气门开度θ和预定发动机参数作为模型的输入而被给出时,可以获得缸内空气量。另外,在图9A-9C中所示的方法中,如图9C所示,以上简单的转换函数(K/(1+αs))的反函数被使用以获得节气门开度的期望值θref,需要该θref来获得期望的缸内空气量值。
[0063]下面,将描述将图9A所示的进气系统模型表达式转换成包括图9B所示的转换函数(K/(1+αs))的表达式。首先,通过使用大气温度Ta作为进气系统模型表达式(2b)中的进气温度Tm的近似值,利用以下表达式(10a)表示表达式(2b)。而且,通过类似地使用大气温度Ta作为表达式(3)中的进气温度Tm的近似值,利用以下表达式(10b)表示表达式(3)。
dPmdt=κRTaVm(mt-mc)...(10a)]]>
mc=gmc(Pm.ne,vvt)…(10b)
[0064]接着,借助以上表达式(1)-(4)和以上表达式(10a)和(10b),通过如下所述的过程获得由以下表达式(11d)表示的用于充气效率klc的微分等式。




在这种情况下,首先,将上述表达式(4)的两侧相对于时间求微分以获得表达式(11a)。在该操作中,dne/dt被当作0以求表达式(11a)的近似值(特别地,发动机转速ne被当作常数)。以这种方式,从表达式(11a)的微分对象中排除发动机转速ne,并且可以如表达式(11b)那样表示表达式(11a)。
[0065]然后,利用进气压力Pm作为中间变量,表达式(11b)被转换成表达式(11c),随后以上表达式(1)、(10a)和(10b)被代入表达式(11c)中以获得表达式(11d)。
[0066]随后,计算表达式(11d)的拉普拉斯变换,其中充气效率klc被表示为Y,并且变量fmt(θ)被表示为X,所述变量fmt(θ)与节气门开度θ为一对一的关系。当得出的拉普拉斯变换中的参数使用变量K和α排序时,最后由表达式(12a)和(12b)表示表达式(11d)。
Y=K1+αsX...(12a)]]>
其中K=Ktnegmt(Pm),α=VmκRTa(dgmc/dPm)...(12b)]]>
[0067]通过以上计算出的表达式(12a)和(12b),节气门开度θ与期望的缸内空气量值(期望的充气效率klcref)之间的关系可以表示为仿佛一次滞后元件。更特别地,因为以上表达式(12a)和(12b)中的系数K和α包含作为时间函数的进气压力Pm,所以当进气压力Pm随时间变化时系数K和α也变化。特别地,借助表达式(12a)和(12b),可以应用简单的转换函数(K/(1+αs))表示节气门开度θ与期望的缸内空气量值(期望的充气效率klcref)之间的关系,所述转换函数(K/(1+αs))使用与进气压力Pm的状态相关的系数K和α表示。
[0068]通过使用这种状态相关型线性模型,如果确定了目前的进气压力Pm,那么能够从以上表达式(12a)和(12b)中时间常数α的值简单地确定当节气门开度θ随后增加一特定角度时空气的响应。换言之,基于上述简单的关系表达式确定与目前的进气压力Pm相关的空气响应的延迟。因此,可以容易地确定关于节气门开度θ的调节的空气响应特征。
[0069]当计算表达式(12a)的反函数以获得表达式(13a),并且在保留变量K和α的情况下计算表达式(13a)的反拉普拉斯转换时,如下所述获得用于计算期望的节气门开度θref的表达式(13b)。
X=1+αsKY...(13a)]]>
θref=fmt-1(K-1(Klcref+α)dklcrefdt)...(13b)]]>
[0070]通过使用以这种方式计算出的表达式(13b),获得需要用来实现期望的缸内空气量值(期望的充气效率klcref)的节气门开度的期望值θref。另外,根据表达式(13a),被拉普拉斯算子s相乘并且因此被微分的仅有Y,也就是说,仅仅是期望的缸内空气量值(充气效率klc)。因此,可以从微分对象中排除包含在系数α中的参数,即除了期望的缸内空气量值之外的发动机参数,诸如发动机转速ne。
[0071]图10A和10B是图表,用来描述通过图9A-9C所示的方法获得的有益效果。当基于如上所述导出的表达式(13b)计算出需要用来实现期望的缸内空气量值的节气门开度的期望值θref时,从微分对象中排除诸如发动机转速ne等具有高频振荡分量的发动机参数,因此可以防止在计算模型的输出(期望的节气门开度θref)的过程中高频噪音被放大。而且,根据以上表达式(13b),期望的缸内空气量值(klcref)被包括在相对于时间的微分对象中,因此可以确保使用所述模型表达式的计算精确性。因此,即使在如图10A所示定期地改变期望的缸内空气量值时,如图10B所示,也可以有利地从期望的节气门开度θref消除噪音,而不会损害系统的响应(扭矩响应)。
[0072]而且,通过图9A-9C所示的方法,在使用扭矩按需控制的系统中,可以最小化节气门马达24的发热的影响并且因此获得节气门马达24的足够的耐用性,而不会损害扭矩(空气)的响应,所述扭矩按需控制需要按照驾驶员的要求频繁地调节节气门开度θ以便获得期望的扭矩值trqref
[0073]接着,参照图11、12A、12B、13、14A和14B,将描述本发明的第二实施例。还将描述包括扭矩值转换的控制方案。根据上述第一实施例的方法,可以计算出要用来获得期望的缸内空气量值的节气门开度的期望值θref,同时有利地减少噪音。利用第一实施例的方法,图11所示的以下控制方案被理解为获得节气门开度的期望值θref的方法,需要θref来获得期望的扭矩值。
[0074]图11是图表,用来描述包括扭矩值的转换的控制方案,它为了比较的目的而被引用。更特别地,关于图11所示的控制方案,由诸如扭矩trq和发动机转速ne等的发动机参数的函数fe(trq、ne等)来表示充气效率klc。在基于这种关系表达式获得产生期望的扭矩值trqref的期望的缸内空气量值(klcref或mcref)之后,根据上述图9A-9C所示的方法,从期望的缸内空气量值获得节气门开度的期望值θref
[0075]图12A和12B是图表,用来描述图11所示的方法中所存在的问题。图11所示的关系表达式涉及具有高频振荡分量的发动机参数,诸如发动机转速ne。因此,如图12B所示,在期望的节气门开度θref上叠加大的噪音,所述节气门开度θref被计算以获得如图12A所示的期望的扭矩值trqref。这是因为当在图9A-9C所示的状态相关型模型中对应用所述关系表达式所获得的期望缸内空气量值求微分时,发动机参数变化的影响被扩大,并且预料不到的噪音被扩大。
[0076]图13是图表,用来描述在第二实施例中被用来计算期望的节气门开度θref的方法,需要所述θref来获得期望的扭矩值trqref。在该实施例中,如图13所示,为了解决以上问题,构造一个状态相关型模型,该模型包括期望扭矩值trqref与期望缸内空气量值klcref之间的关系。而且,在该实施例中,借助使用该模型,通过将期望扭矩值trqref输入一次超前元件中,获得需要用来实现期望扭矩值trqref的期望节气门开度θref
[0077]同样在该模型中,如同上述第一实施例的情况一样,从微分对象中排除掉除期望扭矩值trqref之外的模型输入,即具有高频振荡分量的诸如发动机转速ne的发动机参数。更特别地,在该实施例中,期望缸内空气量值(期望充气效率klcref)的微分被近似为以下表达式(14b)。


[0078]因为通过扭矩trq、发动机转速ne和点火正时SA的函数fc(trq、ne等)来表示充气效率klc,所以由表达式(14a)表示充气效率klc相对于时间的微商。在该实施例中,在表达式(14a)所包含的所有参数中,除扭矩trq之外的参数的微商,即具有高频振荡分量的发动机转速ne(dne/dt)等的微商例如被近似为零以获得表达式(14b)。
[0079]根据以这种方式获得的以上表达式(14b),期望的缸内空气量值(dklc/dt)的微商可以表示为微商(dfe/dtrq)和扭矩微商(dtrq/dt)的乘积。通过关于扭矩trq定义的图表能够获得微商(dfe/dtrq)。因此,通过以上表达式(14b),作为来自图表的值与扭矩微商(dtrq/dt)的乘积,可以获得期望的缸内空气量值的微商(dklc/dt),其中可能是噪音源的诸如发动机转速ne的微商(dne/dt)等项被消除。
[0080]基于下述关系获得图13所示的状态相关型模型。首先,由Y、Z和X表示扭矩trq、充气效率klc=Fe(Y)以及函数fmt(θ)。然后,X和Z被代到以上表达式(13a)中以获得以下表达式(15a)。在表达式(15a)中用Fe(Y)代替Z得出表达式(15b)。
X=1+αsKZ...(15a)]]>
=1KFe(Y)YY+αKsFe(Y)...(15b)]]>
[0081]然后,通过计算以上表达式(15b)的反拉普拉斯变换获得下面的表达式(16)。
X=1Kfetrqtrq+αKdfedtrqdtrqdt...(16)]]>
然后,通过再次计算以上表达式(16)的拉普拉斯变换并去除Y(扭矩trq)而获得以下表达式(17a)。应用下面的系数α’和K’整理表达式(17a),得出以下表达式(17b)。以这种方式,获得图13所示的状态相关型模型的转换函数((1+α’s)/K’)。
X=(1Kfetrq+αKdfedtrqs)TRQ...(17a)]]>
=1+α,sK,Y...(17b)]]>
其中
fe’(trq)≡fe(trq)/trq
K’=K/fe
α,=αdfedtrq/fe,]]>
[0082]通过计算表达式(17b)的反拉普拉斯转换而获得用于计算期望的节气门开度θref的以下表达式(18)。
θref=fmt-1(K,-1(trqref+α,dtrqrefdt))...(18)]]>
[0083]通过应用以这种方式算出的表达式(18),获得需要用来实现期望的扭矩值trqref的节气门开度的期望值θref。而且,根据表达式(17b),被拉普拉斯算子s相乘并且因此被微分的变量仅仅是Y,也就是,仅仅是期望的扭矩值trqref,因此可以从微分对象中排除掉包含在系数α’中的参数,即除期望的扭矩值trqref之外的诸如发动机转速ne等的发动机参数。
[0084]图14A和14B是图表,用于描述通过图13所示的方法所获得的有益效果。当基于如上推导出的表达式(18)计算出需要用来实现期望扭矩值trqref的节气门开度的期望值θref时,从微分对象中排除掉诸如发动机转速ne等具有高频振荡分量的发动机参数,并且因此可以防止在计算模型输出(期望的节气门开度θref)的过程中高频噪音被放大。而且,根据表达式(18),期望扭矩值(trqref)是相对于时间求微分的变量,因此可以确保应用所述模型表达式计算的精确性。因此,即使当如图14A所示那样周期性地改变期望扭矩值trqref时,如图14B所示,也可以有利地从期望节气门开度θref的波形中消除噪音,而不会损害系统的响应(扭矩的响应)。
[0085]而且,通过图13所示的方法,在使用扭矩按需控制的系统中,可以最小化节气门马达24的发热的影响并且获得节气门马达24的足够的耐用性,而不会损害系统中的扭矩响应,所述扭矩按需控制需要按照驾驶员的要求频繁地调节节气门开度θ以便获得扭矩。
[0086]而且,借助图13所示的上述方法,通过考虑根据内燃机10的操作条件而变化的进气系统的动力学,可以获得具有抗噪音特征的扭矩控制器(状态相关型模型),同时保持良好的扭矩响应。图15是图表,其显示了根据第二实施例的扭矩控制方案。因为该实施例的状态相关型模型具有上述特征,所以可以消除包括图15中所示的本模型的内燃机系统的非线性。而且,这使得可以实现以下的优异的有利效果。
[0087]图16是图表,其显示了车辆控制系统,在所述车辆控制系统中,在图15中所示的内燃机系统的下游侧上具有一次滞后元件。关于安装有内燃机10的车辆,具有这种一次滞后元件(1/(1+α”s))的可设想的系统是用于例如控制车轮速度的系统。
[0088]根据第二实施例的状态相关型模型,整个内燃机系统具有如上所述的线性。因此,如图16所示,通过在内燃机系统的上游侧提供一线性补偿器,可以有利地补偿内燃机系统的下游侧系统的响应。而且,如上所述,根据第二实施例的系统是抗噪音的(不放大噪音),因此可以使用如图16所示的具有一次超前元件的补偿器作为设置在内燃机系统上游侧的线性补偿器。因此,可以进一步改善整个车辆控制系统的响应。
[0089]在上述第一和第二实施例中,发动机参数(诸如发动机转速ne、气门正时vvt和点火正时SA)可以被看作本发明的“预定参数”。发动机转速ne可以被看作本发明的“属于第一参数组的参数”。第一实施例的上述期望缸内空气量值klcref和第二实施例的上述期望扭矩值trqref可以被看作本发明的“属于第二参数组的参数”。
[0090]接着,将参照图17A、17B、22A和22B描述本发明的第三实施例。当需要不同响应的两个期望扭矩值Tif和Tis一起存在时产生一问题。如下所述,内燃机10的扭矩控制涉及需要不同响应的两个期望的扭矩值Tif和Tis。车辆行为的控制(诸如变速器的速度变化控制)需要一响应,该响应比驾驶员作出扭矩需求时所需的响应更快。在前面例子中的期望扭矩值在此被称作“第一期望扭矩值Tif”。另一方面,在驾驶员作出扭矩需求的后一种情况下的期望扭矩值被称作“第二期望扭矩值Tis”。尽管有两个期望扭矩值Tif和Tis存在这一事实,当不考虑该事实而使用第二实施例的上述扭矩控制器时,对于两个期望扭矩值Tif和Tis同样地进行响应的改进,并且因此不可能实现这样的响应,即能够充分地实现两个期望的扭矩值Tif和Tis。在第一期望扭矩值Tif的情况下所需的响应被称作“快响应”,在第二期望扭矩值Tis的情况下所需的响应被称作“慢响应”。
[0091]图17A和17B是图表,显示了适于需要快响应的第一期望扭矩值Tif的扭矩控制器,以及适于需要慢响应的第二期望扭矩值Tis的扭矩控制器。更特别地,图17A所示的扭矩控制器是使用关于图13所示的第二实施例描述的状态相关型模型的控制器。根据这种扭矩控制器,变得可以根据在控制内燃机10的扭矩时所给出的输入而输出扭矩,并且因此变得可以有利地改进响应。图17A所示的扭矩控制器是适于需要快响应的第一期望扭矩值Tif的扭矩控制器。
[0092]另一方面,图17B所示的扭矩控制器是通常用在内燃机中的控制器。通过这种扭矩控制器,可以在控制内燃机10的扭矩时在保留内燃机10对于给定输入的响应延迟的同时输出扭矩。因此,可以在例如为了确保驾驶舒适性而应当避免太快的响应时获得有利的扭矩响应。图17B所示的扭矩控制器是适于需要慢响应的第二期望扭矩值Tis的扭矩控制器。
[0093]当提供如上所述的两个扭矩控制器时,可以通过使用图17A所示的扭矩控制器而处理仅仅需要快响应的情况,并且可以通过使用图17B所示的扭矩控制器而处理仅仅需要慢响应的情况。
[0094]然而,根据情形,同时需要快响应和慢响应的情况可能发生(也就是,可能发生第一期望扭矩值Tif和第二期望扭矩值Tis共同存在的情况)。当第一期望扭矩值Tif和第二期望扭矩值Tis共同存在时,如果使用这样一种方法,即对于期望扭矩值Tif和Tis的每一个独立地计算期望节气门开度θref并且然后计算结果被求和,则难以获得一扭矩,该扭矩正确地反映两个期望扭矩值Tif和Tis,原因是变量K依赖期望扭矩值Tif和Tis而变化。
[0095]图18是一图表,用于描述一种方法,该方法能被用来避免上述问题并且为了与后面将描述的图20所示的第三实施例的方法进行比较而被描述。在为了比较而参照图18描述的构造中,设置一滤波器,响应于需要慢响应的第二期望扭矩值Tis的输入,所述滤波器给出与内燃机10的响应的延迟相应的延迟。在该方法中,当两个期望扭矩值Tif和Tis共同存在时,通过求出已经通过滤波器的第一期望扭矩值Tif和第二期望扭矩值Tis的和,计算出将要被输入到前馈(FF)控制器(反模型)中的最终期望扭矩值trqref。通过使用这种方法,即使当同时存在两个期望扭矩值Tif和Tis时,也可以应用单个扭矩控制器处理两个期望扭矩值Tif和Tis。然而,当使用这种方法时,如上所述使第二期望扭矩值Tis通过滤波器的过程是必须的,并且存在计算变得耗时这一问题。
[0096]图19是一图表,用于描述当使用上述本发明的第二实施例的扭矩控制器时所获得的优点。当使用第二实施例的上述扭矩控制器时,可以使用状态相关型系数α以转换函数((1+αs)/K)的形式表达FF控制器。因为FF控制器由转换函数((1+αs)/K)表示,所以变得可以将期望扭矩值通过分离的通道输入到FF控制器中,在其中一个通道中微分算子项αs被应用于输入,在另一个通道中微分算子项αs没有被应用于输入。在该实施例中,利用了这个优势,并且仅有需要快响应的第一期望扭矩值Tif通过以下通道,在该通道中微分算子项αs如下面参照图20所述被应用于输入。换言之,在第一期望扭矩值Tif和第二期望扭矩值Tis中,仅仅第一期望扭矩值Tif是微分对象。
[0097]图20是图表,用于描述根据本发明第三实施例的扭矩控制器。更特别地,如图20所示,在该实施例中,仅有需要快响应的第一期望扭矩值Tif通过以下通道,在该通道中微分算子项αs被应用于输入,并且第一期望扭矩值Tif(第一期望扭矩值Tif没有通过将微分算子项αs应用到输入上的通道)和第二期望扭矩值Tis的和被加到被微分的第一期望扭矩值Tif中以获得最后的期望扭矩值trqref。因为系数α是与期望扭矩值Tif和Tis以及发动机转速ne相关的函数,所以在输入期望扭矩值Tif和Tis之前不能计算系数α。在该实施例中,在计算系数α时,代替只使用第一期望扭矩值Tif(第一期望扭矩值Tif通过将微分算子项αs应用到输入上的通道),使用期望扭矩值Tif和Tis的和。
[0098]根据上述在图20中所显示的扭矩控制器,可以以转换函数((1+αs)/K)的形式表达FF控制器,并且因此即使在同时输入需要不同响应的两个期望扭矩值Tif和Tis时,也可以在微分对象中仅仅包括需要快响应的第一期望扭矩值Tif。从而,具有简单构造的单个扭矩控制器对于需要快响应的要求能够执行与图17A所示的扭矩控制器相同的功能,并且同时对于需要慢响应的要求能够执行与图17B所示的扭矩控制器相同的功能。因此,在有利地减小ECU50的计算负载的同时,可以处理以下情况,即同时输入需要不同响应的两个期望扭矩值Tif和Tis
[0099]图21A和21B是时间流程图,用于描述在图20所示的扭矩控制器被实际用来控制内燃机10时所获得的有利效果。应当注意:在图21A和21B中表示为“没有响应补偿的控制(A)”的波形显示了当使用图17B所示的上述扭矩控制器时所执行的控制。在图21A和21B中表示为“使用发动机的反模型的控制(B)”的波形显示了当使用图17A所示的上述扭矩控制器时所执行的控制。在图21A和21B中表示为“适于两种情况的控制(C)”的波形显示了当使用图20所示的上述扭矩控制器时所执行的控制。
[0100]从图21A和21B可以看出:当使用没有响应补偿的控制(A)时,虽然系统遵循需要慢响应的要求,但是系统不能遵循需要快响应的要求。从相同的图中还可以看到当应用“使用发动机的反模型的控制(B)”时,扭矩响应太快,原因是系统直接满足需要快响应的要求。然而,从同样的图中可以看出当应用使用图20所示的扭矩控制器的“适于两种情况的控制(C)”时,有利地满足分别需要快响应和慢响应的两种要求。
[0101]图22A和22B是时间流程图,用于描述当图20所示的扭矩控制器被实际用来控制内燃机10时所获得的有益效果。上述第一至第三实施例的进气系统模型以一次滞后元件的形式被表示。然而,能够不仅在一次滞后系统的情况下而且在诸如二次滞后系统等另一种系统的情况下以相同的方式考虑而实现图20所示的该实施例的扭矩控制器。图22A和22B是图表,用于描述当本发明应用于控制内燃机时所获得的有益效果,在该内燃机中,进气系统模型以二次滞后的形式被表示。
[0102]从图22A和22B可以看出:即使在以二次滞后的形式表示进气系统模型时,也通过使用图20所示的该实施例的扭矩控制器而有利地满足分别需要快响应和慢响应的两种要求。
[0103]虽然已经参照示例性例子描述了本发明,但是应当理解本发明并不限制于所述实施例或构造。相反,本发明旨在覆盖各种变型和等效布置。另外,虽然以各种示例性组合和构造显示了所披露的发明的各种元件,但是包括更多、更少或仅仅单个元件的其它组合和构造也在附属权利要求书的范围内。

车辆控制装置和控制方法.pdf_第1页
第1页 / 共49页
车辆控制装置和控制方法.pdf_第2页
第2页 / 共49页
车辆控制装置和控制方法.pdf_第3页
第3页 / 共49页
点击查看更多>>
资源描述

《车辆控制装置和控制方法.pdf》由会员分享,可在线阅读,更多相关《车辆控制装置和控制方法.pdf(49页珍藏版)》请在专利查询网上搜索。

一种车辆控制装置,通过应用模型表达式(图9C),计算出期望的节气门开度(ref),需要所述期望的节气门开度来按照期望值控制缸内空气量,其中所述表达式的输入包括作为系统的控制目标的缸内空气量的期望值以及诸如发动机转速(ne)的预定参数。在所述模型表达式中,从微分对象中排除掉以相对较高频率振荡的诸如发动机转速(ne)等参数,并且在微分对象中仅包括所述期望的缸内空气量值。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 机械工程;照明;加热;武器;爆破 > 燃烧发动机;热气或燃烧生成物的发动机装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1