本发明的技术领域和工业实用性
本发明涉及通过降低泡孔各向异性比和通过增加泡孔取向比来提 高硬质发泡聚合物板的绝热值(或降低导热率),以及它的生产方法。更 特别地,本发明涉及硬质挤塑聚苯乙烯泡沫板,其中达到低的泡孔各向 异性比或高的泡孔取向比来增加硬质发泡板的绝热值。
发明背景
硬质发泡聚合物板在各种各样的场合中的应用是公知的。硬质发泡 塑料板广泛用作许多应用的绝热材料。例如,聚合物泡沫板在建筑结构 中广泛用作绝缘元件。过去,红外衰减剂已在聚合物泡沫板中用作填料, 使材料的导热率k最小,这反过来将使给定厚度的绝缘能力最大(增加R 值)(美国专利Nos.5373026和5604265;EP863175)。经绝缘材料传递 的热量k可通过固体导热率、气体导热率、辐射和对流发生。传热k或 K-因子,定义为每单位截面上的热流与每单位厚度的温降之比。在U.S. 单位中,它定义为:
(Btu.in)/(Hr.Ft2.0F)
和公制单位:
W/mk
在常规泡孔尺寸,即,0.1-1.5mm的大多数聚合物泡沫体中,随着 平均泡孔尺寸下降,已观察到导热率k的下降。在The Dow Chemical Co., 的Richard E.Skochdopol为作者的“The Thermal Conductivity of Foamed Plastics”,Chemical Engineering Progress,Vol.57,No.10, pp.55-59,和Universidad de Valladolid的O.A.Almanza等的 “Prediction of the Radiation Term in the Thermal Conductivity of Crosslinked Closed Cell Polyolefin Foams”,J.of Polymer Science:Part B:Polymer Physics,V 38,pp.993-1004(2000)中证明了这 一现象,在此通过参考将其引入。
高度希望在没有添加添加剂或增加泡沫产品密度和/或厚度的情况 下改进导热率k。特别地,对于空墙结构来说,为了保持至少1英寸 (25.4mm)的空腔间隙清空,建筑学界希望热阻值R等于10且厚度小于 1.75英寸(44.45mm)的泡沫板。总热阻R,也称为R-值,是板的厚度t 与导热率k之比。
同样高度希望生产具有保留或改进的压缩强度、热尺寸稳定性、阻 燃和吸水性能的上述硬质聚合物泡沫体。
同样高度希望提供含红外衰减剂和其它加工添加剂,如成核剂、阻 燃剂、气体阻挡剂的上述硬质聚合物泡沫体,其中对于给定的厚度和密 度来说,所述其它加工添加剂对泡沫体性能具有综合的配混效果,其中 包括改进的导热率(降低的k-因子)和改进的绝缘值(增加的R-值))。
同样高度希望提供含各种发泡剂以提高绝热值R的上述硬质聚合物 泡沫体。这些发泡剂包括部分或完全氢化的氟氯烃(HCFC)、氟化烃 (HFC)、烃(HC)、水、二氧化碳和其它惰性气体。
同样高度希望提供在硬质聚合物泡沫体的生产中使用的工艺方法 和发泡设备的改进,以便在发泡工艺过程中控制泡孔形态:降低泡孔各 向异性和增加泡孔取向。
同样高度希望以简单和经济的方式降低聚合物泡沫体产品的成本。
发明概述
在一个优选实施方案中,本发明涉及在x/z方向上具有低的泡孔各 向异性比或较高泡孔取向的发泡绝缘产品,如挤塑聚苯乙烯泡沫体,以 提高绝热和保持其它性能。可通过工艺和模头/定型模的改性,容易地 实现较高的泡孔取向。与基本上圆的泡孔相比,各向异性比低或泡孔取 向比较高的本发明聚苯乙烯泡沫体降低起始和陈化这两种导热率,或者 相反,增加热阻(“R值”)。
在本发明另一优选实施方案中,可通过工艺和模头/定型模的改性, 容易地实现在x/z方向上具有较低泡孔取向比和较高各向异性比的聚合 物泡沫体。与圆泡孔相比,按照这一方式制造的泡孔具有改进的压缩性 能且导热率和绝缘值R仅仅略微下降。
根据下述披露内容,本发明的前述和其它优点将变得显而易见,其 中以下详细地描述和在附图中说明了本发明的一个或多个优选实施方 案。认为步骤、结构特征和部件排列的各种变化对熟练本领域的技术人 员来说可能是显然的,且没有脱离本发明的范围或牺牲本发明的任何优 点。
附图的简要说明
图1说明了根据现有技术制造的硬质、低密度泡沫体;
图2说明了根据本发明一个优选实施方案制造的硬质、低密度泡沫 体;
图3说明了根据本发明另一优选实施方案制造的硬质、低密度泡沫 体;
图4是来自52次试验的图表说明,它显示出在180天的时间段内, 具有数种密度水平的硬质泡沫板的绝热值R作为泡孔取向比(x/z)的函 数,其中使用总固体重量10.5-11.5%的HCFC 142b发泡剂;
图5是显示来自39次试验的测试结果的图表,它涉及在180天的 时间段内,具有数种密度水平的聚苯乙烯泡沫板的R-值作为泡孔取向的 函数,其中5.5wt%的HFC134a和3wt%的乙醇用作使这些板发泡的发泡 剂;和
图6是显示来自32次试验的测试结果的图表,它涉及在40天的时 间段内,在气体扩散的平衡下,具有数种密度水平的聚苯乙烯泡沫板的 R值作为泡孔取向的函数,其中3.68wt%的二氧化碳和1.4wt%的乙醇用 作发泡剂。
本发明的详细说明和优选实施方案
本发明涉及发泡绝缘产品,如挤塑或膨胀聚苯乙烯泡沫体,它广泛 用作许多应用中的绝热材料。例如,聚合物泡沫板在建筑结构中广泛用 作绝缘元件。图1说明了根据现有技术制造的硬质泡沫材料20的截面 视图,而图2说明了根据本发明优选实施方案制造的具有提高绝热值的 硬质泡沫泡孔。图3说明了根据本发明优选实施方案制造的具有改进压 缩强度的另一硬质泡沫材料20。
参考图1,根据现有技术制造的硬质泡沫塑料材料20,典型地泡沫 板,显示出具有多个内开孔22和外开孔24的形式。每一内开孔22与 下一个相应的内开孔22和/或外开孔24通过泡孔支架26相分开,也就 是说,每一开孔22与下一个对应的开孔22共享泡孔支架26。类似地, 每一外开孔24与下一个相应的外开孔24通过泡孔支架26相分开。此 外,每一外开孔24通过泡孔壁28与围绕该硬质泡沫塑料材料20的外 部环境相分开。泡孔壁28的厚度小于泡孔支架26的厚度。泡孔22、24 的形状基本上为圆形和具有直径约0.1-1.5mm的平均泡孔尺寸。由于 泡孔22、24基本上为圆形,x/z泡孔取向比为约1.0。泡孔取向比简单 地为在所需方向上泡孔的尺寸比。例如,在轴向(或挤塑方向)上的泡孔 取向定义为x/z泡孔取向比和在横向上定义为y/z泡孔取向比。
此外,图1中基本上为圆形泡孔的泡孔各向异性比也为约1.0。此 处,根据下式确定泡孔各向异性比a:
a=z/(x y z)1/3
或简单计算为:a=101gz-1/3(1gx.y.z)
其中x是在挤塑方向上发泡塑料材料20的泡孔22、24的尺寸;y 是在材料20横向上的泡孔22、24的尺寸;z是材料20垂直厚度方向上 的泡孔22、24的尺寸。通过光学显微镜或扫描电镜(SEM)测量泡孔尺寸; 其中在至少两个切片面上-在x/z平面和y/z平面内观察所述泡孔尺 寸,且通过图像分析程序来表征。泡孔22、24的平均尺寸根据 c=(x+y+z)/3来计算。
图2和3说明了根据本发明制造的硬质发泡塑料材料20,其中在 x/z方向上的泡孔取向比变为1.0。正如所示的,在x/z方向上泡孔取 向比的变化导致该硬质泡沫塑料材料20新且独特的性能。
图2示出了根据本发明一个优选实施方案制造的具有硬质泡沫泡孔 22、24的硬质泡沫塑料材料20。此处,在x/z方向上的泡孔取向比增 加到高于1.0,达到约1.03至2.0之间,同时仍维持在0.97至0.6之 间的低泡孔各向异性比。根据图2制造的材料20显示出增加的绝热值R, 降低的导热率k,和降低的陈化导热率,且没有增加每单位尺寸上的聚 合物材料用量,也没有显著降低压缩强度。
在图3中,在x/z方向上的泡孔取向降低到约0.5至0.97之间, 同时维持1.6至1.03之间的各向异性比。根据图3制造的材料20显示 出降低的绝热值R,增加的导热率k,和增加的陈化导热率,且没有增 加每单位尺寸上的聚合物材料用量。然而,这些材料20实现了压缩强 度的增加。
图2和3的泡孔支架26和泡孔壁28的组成可以是适合于制造聚合 物泡沫体的任何这种聚合物材料。这些包括聚烯烃、聚氯乙烯、聚碳酸 酯、聚醚酰亚胺、聚酰胺、聚酯、聚偏氯乙烯、聚甲基丙烯酸甲酯、聚 氨酯、聚脲、酚醛树脂、聚异氰脲酸酯、酚醛塑料、前述的共聚物和三 元共聚物、热塑性聚合物的共混物、橡胶改性的聚合物,和类似物。还 包括合适的聚烯烃,其中包括聚乙烯和聚丙烯,以及乙烯共聚物。优选 这些热塑性聚合物的重均分子量为约30000-约500000。
优选的热塑性聚合物包括链烯基芳族聚合物材料。合适的链烯基芳 族聚合物材料包括链烯基芳族均聚物和链烯基芳族化合物与可共聚的 烯键式不饱和化合物的共聚物。链烯基芳族聚合物材料可进一步包括小 量比例的非链烯基芳族聚合物。链烯基芳族聚合物材料可仅仅由一种或 多种链烯基芳族均聚物、一种或多种链烯基芳族共聚物、一种或多种各 种链烯基芳族均聚物与共聚物的共混物,或任何前述聚合物与非链烯基 芳族聚合物的共混物。
合适的链烯基芳族聚合物包括衍生于链烯基芳族化合物如苯乙烯、 α-甲基苯乙烯、对甲基苯乙烯、乙基苯乙烯、乙烯基苯、乙烯基甲苯、 氯苯乙烯和溴苯乙烯的那些。优选的链烯基芳族聚合物是聚苯乙烯。微 量单烯键式不饱和化合物如C2-6烷基酸和酯、离聚物衍生物,和C4-6二 烯烃可与链烯基芳族化合物共聚。可共聚的化合物的实例包括丙烯酸、 甲基丙烯酸、乙基丙烯酸、马来酸、衣康酸、丙烯腈、马来酸酐、丙烯 酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸正丁酯、甲基丙烯酸甲酯、 醋酸乙酯和丁二烯。
可在本发明的实践中使用任何合适的发泡剂。本发明实践中可用的 发泡剂包括无机试剂、有机发泡剂和化学发泡剂。合适的无机发泡剂包 括二氧化碳、氮气、氩气、水、空气、氮气和氦气。有机发泡剂包括具 有1-9个碳原子的脂族烃、具有1-3个碳原子的脂族醇,和具有1-4 个碳原子的完全以及部分卤化的脂族烃。脂族烃包括甲烷、乙烷、丙烷、 正丁烷、异丁烷、正戊烷、异戊烷和新戊烷。脂族醇包括甲醇、乙醇、 正丙醇和异丙醇。完全和部分卤化的脂族烃包括氟烃、氯烃和氟氯烃。 氟烃的实例包括氟代甲烷、全氟甲烷、氟代乙烷、1,1-二氟乙烷 (HFC-152a)、1,1,1-三氟乙烷(HFC-143a)、1,1,2,2-四氟乙烷 (HFC-134a)、五氟乙烷、二氟甲烷、全氟乙烷、2,2-二氟丙烷、1,1,1- 三氟丙烷、全氟丙烷、二氯丙烷、二氟丙烷、全氟丁烷和全氟环丁烷。 本发明使用的部分卤化的氯烃和氟氯烃包括氯代甲烷、二氯甲烷、氯代 乙烷、1,1,1-三氯乙烷、1,1-二氯-1-氟乙烷(HCFC-141b)、1-氯-1,1- 二氟乙烷(HCFC-142b)、单氯二氟甲烷(HCFC-22)、1,1-二氟-2,2,2-三 氟乙烷(HCFC-123)和1-氯-1,2,2,2-四氟乙烷(HCFC-124)和类似物。完 全卤化的氟氯烃包括三氯单氟甲烷(CFC-11)、二氯二氟甲烷(CFC-12)、 三氯三氟乙烷(CFC-113)、1,1,1-三氟乙烷、五氟乙烷、二氯四氟乙烷 (CFC-114)、单氯五氟丙烷和二氯六氟丙烷。化学发泡剂包括偶氮二碳 酰胺、偶氮二异丁腈、苯磺酰肼、4,4-氧基苯磺酰基半肼、对甲苯磺酰 基半卡巴肼、偶氮二羧酸钡和N,N′-二甲基-N,N′-二硝基对甲苯磺酰胺 和三肼基三嗪。在本发明中,基于聚合物的重量,优选使用8-14wt% 的HCFC-142b或4-12%的HFC-134a和0-3%的乙醇,或者3-8%的 二氧化碳与0-4%的低级醇,其中所述低级醇包括乙醇、甲醇、丙醇、 异丙醇和丁醇。
可掺入到挤塑泡沫产品内的任选添加剂另外包括红外衰减剂、增塑 剂、阻燃化学品、颜料、弹性体、挤塑助剂、抗氧剂、填料、抗静电剂、 UV吸收剂等。可以以获得可发泡凝胶或所得挤塑泡沫产品的所需特征的 任何用量包括这些任选的添加剂。优选将任选的添加剂加入到树脂混合 物中,,但可以以可供替代的方式加入到挤塑泡沫制造工艺中。
因此,例如在具有图2和3所示的结构的优选实施方案中,由重均 分子量为约250000的聚苯乙烯、红外衰减剂如特种沥青、发泡剂和其 它加工添加剂如成核剂、阻燃化学品和纳米气体阻挡添加剂的增塑树脂 混合物形成硬质泡沫塑料材料20。
可通过本领域已知的任何设备,如挤塑机、混合机、掺混机或类似 设备制备图2和3的硬质泡沫塑料材料20。加热含有热塑性聚合物和优 选其它添加剂的增塑树脂混合物到熔融混合温度并彻底混合。熔融混合 温度必须足以塑化或熔化热塑性聚合物。因此,熔融混合温度为聚合物 的玻璃化转变温度或熔点,或高于聚合物的玻璃化转变温度或熔点。熔 融混合温度为200℃(392℉)-280℃(536℉),最优选约220℃(428℉)- 240℃(464℉),这取决于添加剂的用量和所使用的发泡剂的类型。
然后掺入发泡剂,形成可发泡凝胶。然后冷却可发泡凝胶到模头熔 融温度。模头熔融温度典型地低于熔融混合温度,在优选实施方案中, 低100℃(212℉)-约150℃(302℉),和最优选约110℃(230℉)-约120 ℃(248℉)。模头压力必须足以防止含有发泡剂的可发泡凝胶的预发泡。 预发泡包括在挤塑到减压区域内之前可发泡凝胶非所需的过早发泡。因 此,模头压力随可发泡凝胶内发泡剂的同一性和用量而变化。优选地, 在图2和3所示的优选实施方案中,压力为40-70bar,最优选约50bar。 发泡比,即,每一模口间隙的泡沫厚度,在20-70范围内,典型地为 约60。
为了制造在x/z方向上泡孔取向比为1.03至2的图2的材料20, 模唇的间隙和/或模头的定型模板比图1所示的现有技术生产的那些更 宽地开放。这产生具有大于所需厚度的材料20。然后利用传送机的线速 度或引出速度,将材料20拉开到所需厚度。如上所述,根据图2制造 的材料20显示出提高的绝热值R、降低的导热率k和降低的纯化导热率, 且没有增加每单位尺寸上聚合物材料的用量,也没有显著降低压缩强 度,与图1基本上圆的泡孔材料20相比。
相反,对于在x/z方向上泡孔取向比为0.97至0.6的材料20来说, 闭合模唇的间隙和/或模头的定型模板,且与图1所示的现有技术相比, 降低传送机的线速度,引起泡孔22、24在z方向上生长。如上所述, 根据图3制造的材料具有提高的压缩强度,且没有显著降低绝热值R, 与图1基本上圆的泡孔材料20相比。
当然,熟练本领域的技术人员会意识到,所使用的其它因素可影响 x/z方向上的泡孔取向比。例如,影响较小泡孔22,24比影响较大泡孔 22,24更加困难。因此,与产生较大泡孔尺寸的发泡剂,如HCFC-142b 相比,产生较小泡孔尺寸的发泡剂,如二氧化碳,可能更加难以受到影 响。
在另一优选实施方案中,通过具有扁平模头和压板定型模的双螺杆 挤塑机(低剪切),制备类似于图2和3的泡沫材料20的挤塑聚苯乙烯 聚合物泡沫体。将聚苯乙烯粒料或球粒与成核剂、阻燃剂和/或加工试 剂通过多个喂料器一起加入到挤塑机内。或者,可使用具有径向模头和 径向定型模的单螺杆挤塑机(高剪切)。
下述是与图2所示优选实施方案相适应的本发明实施例,和不解释 为限制。
实施例
通过下述实施例进一步阐述本发明,其中所有泡沫板的厚度为1.5 英寸(38.1mm),和所有R值为180天陈化的R值,除非另有说明。在下 述实施例和对照例中,通过具有扁平模头和定型模板的双螺杆共旋转挤 塑机制备硬质聚苯乙烯泡沫板。对于一些实施例,在挤塑工艺中施加真 空。
表1示出了双螺杆挤塑机的工艺条件总结。所使用的聚苯乙烯树脂 是70%熔体指数为3的聚苯乙烯和30%熔体指数为18.8的聚苯乙烯(均 获自Deltech,其分子量Mw为约250000)。在配混料中复合熔体指数为 约10.8。以固体泡沫聚合物重量1wt%的用量使用稳定化的六溴环十二 烷(Great Lakes Chemical,HBCD SP-75)作为阻燃剂。
表1
关键操作参数实施例加工添加剂的wt%0-6滑石的wt%0-2HC的wt%0-3HFC 134a的wt%0-6HCFC-142b的wt%0-12CO2的wt%0-5挤塑机压力,Kpa(psi)13000-17000(1950-2400)模头熔融温度,℃117-123模头压力,Kpa(psi)5400-6600(790-950)线速度,m/hr(ft/min)110-170(6-9.5)产量,kg/hr100-200模头间隙,mm0.4-1.8真空KPa(英寸Hg)0-4.25(0-20)
表2示出了上述实施例和具有圆形泡孔结构的常规方法的对比例的 结果。
表2
试验编号 180天的陈化R值 K.M2/W (F.FT2.HR/BTU)a密度 KG/M3(PCF)泡孔各向 异性比 平均泡 孔微米泡孔取 向X/Z 真空Hg 英寸 发泡剂b 428-21.023(5.81)32.48(2.03)0.8562721.3661431-30.997(5.66)32(2)0.9112571.226.61443-20.97(5.51)27.52(1.72)0.8882731.3121445-20.912(5.18)27.36(1.71)0.9892501.0813.51448-50.965(5.48)24.32(1.52)0.9012601.2616.41459-20.912(5.13)23.36(1.46)0.9772561.02141509-80.895(5.08)28.8(1.8)0.8882521.2112.62498-20.852(4.83)28.18(1.76)0.9821771.06132191-20.743(4.22)50.56(3.16)1.0952790.79No3183-40.696(3.95)49.76(3.11)1.2152240.6No3
备注:所有样品厚度为38-42mm(约1.5英寸)
a其中对于二氧化碳样品,陈化R值为40天;
b发泡剂组合物
1:HCFC 142b 11wt%
2:HFC 143a 5.5wt%和乙醇3wt%;
3:二氧化碳3.68wt%和乙醇1.4wt%
图4所示的这些试验的更完整的数据处理是来自52次试验的图表 说明,它显示出在180天的时间段内,具有数种密度水平的硬质泡沫板 的绝热值R作为泡孔取向的函数,其中使用总固体重量10.5-11.5%的 HCFC 142b发泡剂,它显示出对于密度为1.6pcf(25.63kg/m3)的泡沫板 来说,通过将泡孔取向从0.9改变为1.3导致的R值增加6-12%。
图5是显示来自39次试验的测试结果的图表,它涉及在180天的 时间段内,具有数种密度水平的聚苯乙烯泡沫板的R值作为泡孔取向的 函数,其中5.5wt%的HFC134a和3wt%的乙醇用作使这些板发泡的发泡 剂,它显示出对于密度为1.6pcf(25.63kg/m3)的泡沫板来说,通过将泡 孔取向从0.9改变为1.3导致的R值增加5-10%。
图6是显示来自32次试验的测试结果的图表,它涉及在40天的时 间段内,在气体扩散的平衡下,具有数种密度水平的聚苯乙烯泡沫板的 R值作为泡孔取向的函数,其中3.68wt%的二氧化碳和1.4wt%的乙醇用 作发泡剂,它显示出对于密度为3pcf(48.06kg/m3)的泡沫板来说,通过 将泡孔取向从0.7改变为0.9导致的R值增加4-8%。
根据多变量回归计算,基于来自所有这些试验的测试结果得到图4、 5和6所示的R值对泡孔取向(或泡孔各向异性比),它显示出与相同泡 孔结构的预定R值相比,通过泡孔取向增加0.1-0.3导致R值增加3 -12%,且具有不同泡沫体密度的聚合物泡沫体的泡孔形态没有变化。
尽管根据优选实施方案描述了本发明,但要理解本发明当然不限于 此,因为熟练本领域的技术人员可作出改性,尤其鉴于前述教导。