芳烃联合生产的方法.pdf

上传人:32 文档编号:866104 上传时间:2018-03-16 格式:PDF 页数:12 大小:657.45KB
返回 下载 相关 举报
摘要
申请专利号:

CN200910056895.X

申请日:

2009.02.19

公开号:

CN101811926A

公开日:

2010.08.25

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):C07C 15/08申请日:20090219|||公开

IPC分类号:

C07C15/08; C07C4/12; C07C5/52; C07C7/12; C07C7/14; C07C7/00

主分类号:

C07C15/08

申请人:

中国石油化工股份有限公司; 中国石油化工股份有限公司上海石油化工研究院

发明人:

肖剑; 郭宏利; 钟禄平; 杨卫胜; 郭艳姿

地址:

100728 北京市朝阳区朝阳门北大街22号

优先权:

专利代理机构:

上海东方易知识产权事务所 31121

代理人:

沈原

PDF下载: PDF下载
内容摘要

本发明涉及一种芳烃联合生产的方法,主要解决以往技术中存在的生产对二甲苯时混合二甲苯中对二甲苯浓度低、芳烃处理循环量大、反应原料要求苛刻和能耗高等问题。本发明通过采用将分离来自重整单元混合原料;碳九及其以上芳烃和甲苯进入甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元,进行脱烷基反应,生成第二股苯、第二股甲苯和第二股碳八芳烃;甲苯进入甲苯选择性歧化工艺单元,进行甲苯选择性歧化反应,反应后生成含对二甲苯的碳八芳烃和苯物流,得到第三股碳八芳烃、第三股甲苯和第三股苯;低浓度碳八芳烃混合后送入吸附分离单元,得到含高浓度对二甲苯的碳八芳烃;含高浓度对二甲苯的碳八芳烃送入结晶分离单元,得到对二甲苯产品,以及第四股碳八芳烃的技术方案,较好地解决了该问题,可用于对二甲苯工业生产。

权利要求书

1: 一种芳烃联合生产的方法,包括以下步骤: a.分离来自重整单元含苯、甲苯、碳八芳烃、碳九及其以上芳烃和非芳烃的混合原料,分离出第一股苯、第一股甲苯、第一股碳八芳烃、碳九及其以上芳烃和非芳烃; b.a)步骤分离出的碳九及其以上芳烃和部分的第一股甲苯进入甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元,在临氢条件下进行脱烷基反应,生成第二股苯、第二股甲苯和第二股碳八芳烃; c.剩余的第一股甲苯和第二股甲苯一起进入甲苯选择性歧化工艺单元,在临氢条件下进行甲苯选择性歧化反应,反应后生成含对二甲苯的碳八芳烃和苯物流,经分离后,得到第三股碳八芳烃、第三股甲苯和第三股苯,其中第三股甲苯返回到甲苯选择性歧化工艺单元; d.第一股碳八芳烃、第二股碳八芳烃和第三股碳八芳烃混合后送入吸附分离单元,得到含高浓度对二甲苯的碳八芳烃; e.含高浓度对二甲苯的碳八芳烃送入结晶分离单元,得到对二甲苯产品,以及第四股碳八芳烃,第四股碳八芳烃返回到吸附分离单元。
2: 根据权利要求1所述芳烃联合生产的方法,其特征在于甲苯选择性歧化单元所用的催化剂为ZSM-5型分子筛催化剂,ZSM-5型分子筛含有选自铂、钼或镁中的至少一种金属或其氧化物,其用量以重量百分比计为0.005~5%。
3: 根据权利要求1所述芳烃联合生产的方法,其特征在于甲苯选择性歧化工艺单元的操作条件如下:反应压力为1~4MPa,反应温度为300~480℃,氢烃摩尔比为0.5~10,液体重量空速为0.8~8小时-1。
4: 根据权利要求1所述芳烃联合生产的方法,其特征在于甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元所用的催化剂为选自β-沸石、丝光沸石或MCM-22中的至少一种分子筛,催化剂中含铋的金属或其氧化物,其用量以重量百分比计为0.005~5%。
5: 根据权利要求1所述芳烃联合生产的方法,其特征在于甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元的操作条件如下:反应压力为1~5MPa,反应温度为250~500℃,氢烃摩尔比为0.5~10,重量空速为0.8~10小时-1。
6: 根据权利要求1所述芳烃联合生产的方法,其特征在于对二甲苯分离单元采用吸附分离和结晶分离相结合分离对二甲苯,结晶分离可采用降膜结晶分离或者悬浮结晶分离。
7: 根据权利要求1所述芳烃联合生产的方法,其特征在于降膜结晶分离的结晶温度为-30~5℃;悬浮结晶分离的结晶温度为-15~5℃,洗涤液/晶体重量比为0.05~0.5。
8: 根据权利要求1所述芳烃联合生产的方法,其特征在于高浓度对二甲苯的碳八芳烃中对二甲苯的重量浓度为75~95%;对二甲苯产品中对二甲苯的重量浓度为≥9
9: 8%。

说明书


芳烃联合生产的方法

    【技术领域】

    本发明涉及一种芳烃联合生产的方法。

    背景技术

    对二甲苯是石化工业主要的基本有机原料之一,在化纤、合成树脂、农药、医药、塑料等众多化工生产领域有着广泛的用途。典型的对二甲苯生产方法是从石脑油催化重整生成的热力学平衡的含乙苯的二甲苯即碳八芳烃中通过多级深冷结晶分离或分子筛模拟移动床吸附分离(简称吸附分离)技术,将对二甲苯从沸点与之相近的异构体混合物中分离出来。而对于邻位和间位的二甲苯的处理,往往采取C8A异构化(简称异构化)技术,使之异构化为对二甲苯。为了增产对二甲苯,利用甲苯歧化或甲苯与碳九及其以上芳烃歧化与烷基转移(简称甲苯歧化与烷基转移)反应生成苯和C8A,从而增产C8A,是有效的增产对二甲苯的工艺路线。

    迄今为止,世界上比较典型的、也比较成熟的与甲苯歧化相关的工艺有六十年代末工业化的Tatoray传统甲苯歧化工艺、八十年代末推出的MTDP及近年来推出的S-TDT工艺和TransPlus工艺。甲苯选择性歧化是生产对二甲苯的一个新途径。由于甲苯在经改性的ZSM-5催化剂上可以进行选择性歧化生成苯和高对二甲苯浓度的C8A,因此只需经简单的一步冷冻分离就能分离出大部分的对二甲苯。近年来,随着催化剂性能的不断提高,该工艺取得了长足的进展。其典型工艺有八十年代后期己工业化的MSTDP甲苯选择性歧化工艺和近年来推出的pX-Plus工艺。

    己工业化的甲苯选择性歧化工艺-MSTDP,以经过处理的ZSM-5型中孔分子筛为催化剂处理甲苯原料,可得到高对二甲苯浓度(85~90%,重量百分比,除注明外以下相同)的C8A和硝化级的苯。尚未见工业应用报道的PX-plus工艺,其主要工艺指标为甲苯转化率30%条件下,二甲苯中pX的选择性达到90%,苯与pX的摩尔比为1.37。

    然而,在这类甲苯选择性歧化的工艺中,在具有高对位选择性的同时伴随着对原料选择的苛刻性。此类工艺只能以甲苯为原料,而C9+A在此工艺中是没有用途的,至少不能被直接利用,造成芳烃资源的浪费。除此以外,该工艺还副产大量的苯,造成对二甲苯收率偏低,这是选择性歧化工艺致命的缺点。

    典型的Tatoray工艺的反应器进料是以甲苯和碳九芳烃(C9A)为反应原料。由Tatoray工艺生成的二甲苯是处于热力学平衡组成的异构体混合物,最有工业应用价值的对二甲苯含量一般只有24%左右。相对于甲苯选择性歧化能得到90%左右的对二甲苯浓度的混合二甲苯这一点而言,无疑Tatoray工艺处于明显的劣势,但是,Tatoray工艺相对于甲苯选择性歧化工艺的一个很大的优势就是Tatoray工艺可以把C9A转化为苯和二甲苯。以Tatoray工艺为基础的文献有USP4341914、中国专利98110859.8、USP2795629、USP3551510、中国专利97106719.8等。具有代表性的USP4341914提出的工艺流程为将重整产物进行芳烃分馏,得到的甲苯和C9A进入Tatoray工艺单元进行歧化与炕基转移反应,反应生成物经分离后甲苯和C9A以及部分碳十(C10A)循环,苯作为产品采出,碳八芳烃以及从异构化单元来的碳八芳烃一起进入pX分离装置分离出高纯度的对二甲苯产品,其它的碳八芳烃异构体到异构化单元进行二甲苯异构化反应重新得到处于热力学平衡的混合二甲苯。

    重芳烃脱烷基生产C6~C8芳烃工艺近些年来随着甲苯选择性歧化工艺的兴起而逐渐引起人们的重视。USP5763721和USP5847256分别提出了用于重芳烃脱烷基反应的催化剂。其中,USP5847256公布了一种含铼的丝光沸石催化剂,该催化剂特别适用于转化含乙基多的原料,能得到甲苯、二甲苯以及苯等产品。

    C8芳烃各组分的沸点接近:乙苯136.2℃,对二甲苯138.4℃,间二甲苯139.1℃,邻二甲苯144.4℃,其中沸点最高的邻二甲苯可以通过精馏法分离出来,需上百个理论板和较大的回流比,沸点最低的乙苯也可以通过精馏法分离,但要困难得多。C8芳烃各组分的熔点有较大的差距:对二甲苯13.3℃,邻二甲苯-25.2℃,间二甲苯-47.9℃,乙苯-94.95℃。其中对二甲苯的熔点最高,可采用结晶法将其中的对二甲苯分离出来,如原料中对二甲苯浓度不高,为达到工业生产可接受的收率,一般采用两段结晶。USP3177255、USP3467724首先在-80~-60℃的低温下将大部分的对二甲苯结晶出来使产率达到理论最大值,此时晶体纯度在65~85%之间,熔化后在进行第二次结晶;第二次结晶温度一般在-20~0℃,可得到99%以上纯度的对二甲苯,母液中对二甲苯含量较高,可返回第一次结晶段循环利用。

    利用吸附剂对C8芳烃各组分选择性的差异,可通过吸附分离法将对二甲苯分离出来,该法在二十世纪七十年代实现工业化后即成为生产对二甲苯的主要方法。USP2985589描述了利用逆流模拟移动床分离对二甲苯的方法;USP3686342,USP3734974,CN98810104.1描述了吸附分离使用的吸附剂为钡型或钡钾型的X或Y沸石;USP3558732、USP3686342分别使用甲苯和对二乙苯作为吸附分离的脱附剂。

    【发明内容】

    本发明所要解决的技术问题是以往技术中在生产对二甲苯时,存在由于混合二甲苯中对二甲苯浓度低,造成二甲苯分离单元和异构化单元循环量大、能耗高等问题,提供一种新的对二甲苯生产方法。该方法以苯、甲苯、C8A和C9+A为原料来生产对二甲苯,提高混合二甲苯中对二甲苯的浓度,较大幅度地降低对二甲苯分离单元、异构化单元和芳烃分馏单元的规模,从而降低整个装置的能耗。

    为了解决上述技术问题,本发明采用的技术方案如下:一种芳烃联合生产的方法,包括以下步骤:

    a.分离来自重整单元含苯、甲苯、碳八芳烃、碳九及其以上芳烃和非芳烃的混合原料,分离出第一股苯、第一股甲苯、第一股碳八芳烃、碳九及其以上芳烃和非芳烃;

    b.a)步骤分离出的碳九及其以上芳烃和部分的第一股甲苯进入甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元,在临氢条件下进行脱烷基反应,生成第二股苯、第二股甲苯和第二股碳八芳烃;

    c.剩余的第一股甲苯和第二股甲苯一起进入甲苯选择性歧化工艺单元,在临氢条件下进行甲苯选择性歧化反应,反应后生成含对二甲苯的碳八芳烃和苯物流,经分离后,得到第三股碳八芳烃、第三股甲苯和第三股苯,其中第三股甲苯返回到甲苯选择性歧化工艺单元;

    d.第一股碳八芳烃、第二股碳八芳烃和第三股碳八芳烃混合后送入吸附分离单元,得到含高浓度对二甲苯的碳八芳烃;

    e.含高浓度对二甲苯的碳八芳烃送入结晶分离单元,得到对二甲苯产品,以及第四股碳八芳烃,第四股碳八芳烃返回到吸附分离单元。

    在上述技术方案中,甲苯选择性歧化单元所用的催化剂为ZSM-5型分子筛催化剂,ZSM-5型分子筛含有选自铂、钼或镁中的至少一种金属或其氧化物,其用量以重量百分比计为0.005~5%;甲苯选择性歧化工艺单元的操作条件如下:反应压力为1~4MPa,反应温度为300~480℃,氢烃摩尔比为0.5~10,液体重量空速为0.8~8小时-1。甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元所用的催化剂为选自β-沸石、丝光沸石或MCM-22中的至少一种分子筛,催化剂中含铋的金属或其氧化物,其用量以重量百分比计为0.005~5%。;甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元的操作条件如下:反应压力为1~5MPa,反应温度为250~500℃,氢烃摩尔比为0.5~10,重量空速为0.8~10小时-1。对二甲苯分离单元采用吸附分离和结晶分离相结合分离对二甲苯,结晶分离可采用降膜结晶分离或者悬浮结晶分离;降膜结晶分离的结晶温度为-30~5℃;悬浮结晶分离的结晶温度为-15~5℃,洗涤液/晶体重量比为0.05~0.5。高浓度对二甲苯的碳八芳烃中对二甲苯的重量浓度为75~95%;对二甲苯产品中对二甲苯的重量浓度为≥99.8%。

    本发明中,在甲苯与碳九及其以上芳烃歧化与烷基转移单元,由于使用含铋的沸石为催化剂,在临氢条件下,催化剂具有将甲苯和碳九及其以上芳烃通过歧化与烷基转移反应生成二甲苯和苯的功能。而甲苯选择性歧化单元,在含铂ZSM-5催化剂的作用下,发生甲苯选择性歧化反应,生成苯和含高浓度对二甲苯的混合二甲苯,对二甲苯浓度可达80~95%,该混合二甲苯和甲苯和碳九及其以上芳烃歧化与烷基转移工艺单元生成的碳八芳烃送入到吸附-结晶分离组合单元得到对二甲苯产品。可以看出,这样的工艺路线,既能让生产得到的混合二甲苯中对二甲苯的浓度大幅提高,又充分利用了C9+A资源,降低了异构化单元和吸附分离单元的处理规模,有效地降低了能耗和设备投资规模,并降低了生产成本,取得了较好的技术效果。

    【附图说明】

    图1为传统对二甲苯生产装置的工艺流程。

    图2为本发明芳烃联合生产的工艺流程。

    A物流,18为异构化单元脱庚烷塔塔顶拔出的含有苯和甲苯的物流,19为歧化与烷基转移单元采出的苯物流,20为选择性歧化的苯塔塔顶拔出的硝化苯,21为去甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元的甲苯,22为甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元苯塔抽出的苯,23为结晶分离单元分离出来的对二甲苯产品,24为结晶分离出PX后的碳八芳烃,25为吸附分离单元出来的高浓度对二甲苯。

    传统对二甲苯生产装置的工艺流程如图1所示。来自重整脱戊烷塔塔釜液1进入脱庚烷塔I,塔顶分出碳七及其以下芳烃非芳烃物流2进入芳烃抽提单元II进行芳烃与非芳烃的分离,分离出的非芳5排出,苯甲苯物流4去单元III,产品苯6从抽提后的苯塔塔顶送出,混合二甲苯8从抽提后的甲苯塔塔釜抽出进入二甲苯塔单元IV。另外,脱庚烷塔塔釜物流3也进入二甲苯塔单元IV,混合碳八物流11从塔顶馏出去对二甲苯分离单元IX,碳九芳烃10和从甲苯塔塔顶分离出的甲苯物流7作为甲苯歧化与烷基转移单元II的原料,C10+A物流12作为副产品送出;歧化与烷基转移单元产品物流9则直接进入单元III进行分离;吸附分离单元IX分离出目的产品对二甲苯15,以及少量的甲苯14返回甲苯歧化单元VI,其它混合二甲苯16进入二甲苯异构化单元VIII进行异构化反应,异构化单元脱庚烷塔塔釜排出的C8+A物流17送往二甲苯塔单元IV,脱庚烷塔塔顶拔出的含有苯和甲苯的物流18送往催化重整单元。

    本发明芳烃联合生产的工艺流程如图2所示。与传统工艺的改进之处在于本发明工艺把传统工艺中的甲苯歧化工艺单元改为甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元VII,另外,增加了一套甲苯选择性歧化单元VI和结晶分离单元X。图2与图1相同的地方不再叙述,下面仅就不同之处作详细说明。本发明工艺中把原来全部作为甲苯歧化与烷基转移单元原料的甲苯分为两股,一股物流7作为甲苯选择性歧化单元VI的原料,另一股物流21作为甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元的原料,另外把原来作为甲苯歧化与烷基转移单元原料的碳九及其以上芳烃10也作为甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元的原料,甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元VII苯塔塔顶采出产品苯22,甲苯选择性歧化单元得到硝化苯20和产品物流9,C7+A物流9和物流13到抽提后的苯甲苯塔单元中的甲苯塔进行分离,分离出苯和甲苯后的物流8送入二甲苯塔单元IX,二甲苯塔顶采出C8+A物流11,物流11送入吸附分离单元分离出高浓度对二甲苯23,高浓度对二甲苯23送入结晶分离单元X,分离出纯对二甲苯21,其它混合二甲苯22返回到吸附分离单元IX。

    下面通过具体实施例对本发明作进一步的说明,但是,本发明的范围并不只限于实施例所覆盖的范围。

    【具体实施方式】

    【实施例1】

    按图2所示流程,以典型的重整脱戊烷油中C6A~C10+烃各物质的组成为基础数据,考察本发明生产对二甲苯和苯的能力以及各单元的处理规模情况。典型的重整装置送出芳烃的组成分布及本实施例所采用的各组分的流率见表1。

    甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元采用固定床反应器,反应器内充填含铋为0.05%的β-沸石催化剂,反应条件为:反应温度385℃,压力为3.0MPa,重量空速为2.0小时-1,氢/烃摩尔比为3.0。芳烃原料与氢气混合后自上而下通过催化剂床层,进行C9+A的脱烷基反应。

    甲苯选择性歧化工艺单元采用固定床反应器,反应器内充填含0.05%铂ZSM-5分子筛催化剂,反应条件为:反应温度385℃,压力为3.0MPa,重量空速为2.0小时-1,氢/烃摩尔比为3.0。甲苯与氢气混合后自上而下通过催化剂床层,进行甲苯选择性歧化反应,生成苯和高对二甲苯浓度的C8A。

    吸附分离单元采用6级模拟移动床,移动床内充填吸附剂,吸附分离操作温度为130℃。

    结晶分离单元采用降膜结晶分离,结晶分离分结晶、发汗和熔融三个步骤,其中结晶温度为-20℃,发汗温度为15℃,熔融温度为30℃。

    表1重整脱戊烷油芳烃组成及流率

       组成  Ben  Tol  C8A  C9A  C10+  ∑  组成,重量%  14.41  26.79  33.53  24.02  1.25  100.00  流量,千克/小时  12673  23560  29482  21122  1095  87932


    其中:NA为非芳烃,Ben为苯,Tol为甲苯,C8A为碳八芳烃,C9A为碳九芳烃,C10+A为碳十及其以上芳烃,以下相同。

    按照附图2所述的本发明工艺流程和表中的芳烃流率(新鲜进料)以及实施例中的参数操作,甲苯选择性歧化单元、甲苯与碳九及其以上芳烃歧化与烷基转移单元和异构化单元的物料进料和出料数据列于表2。对二甲苯生产装置各个单元的处理规模见表3,产品对二甲苯和苯的产量见表4。

    表2  实施例1工艺物料表

    

    注:C8A*是指除PX外的其它碳八芳烃,以下同。

    表3实施例1各单元处理规模表

       单元名称  歧化与烷基  转移单元  异构化  单元  吸附分离  单元  结晶分离  单元  二甲苯分  馏单元  规模,千克/小时  47505  161209  210658  54731  235861


    表4  实施例1产品产量及纯度表

       产品  对二甲苯  苯  总和  产量,千克/小时  49258  28066  77328  纯度,%  99.80  99.94


    结果表明,运用本发明技术,以表1所列的芳烃原料,本发明的工艺可以生产对二甲苯和苯的总产量为78324千克/小时。二甲苯异构化单元、吸附分离单元以及二甲苯分馏单元的处理规模分别下降了26%、23%和27%,这明显降低了装置的设计规模。装置能耗为21263×106焦耳/吨(对二甲苯+苯),相对于对比例的26579×106焦耳/吨(对二甲苯+苯),能耗降低了20%。因此,本发明专利克服了以往技术中存在的生产对二甲苯时混合二甲苯浓度低、循环量大、能耗高等问题,提供一种全新的更经济的用于生产对二甲苯的方法。

    【实施例2】

    按图2所示流程,以典型的重整脱戊烷油中C6A~C10+烃各物质的组成为基础数据,考察本发明生产对二甲苯和苯的能力以及各单元的处理规模情况。典型的重整装置送出芳烃的组成分布及本实施例所采用的各组分的流率见表1。

    甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元采用固定床反应器,反应器内充填含铋0.30%的氢型MCM-22沸石催化剂,反应条件为:反应温度460℃,压力为41.0MPa,重量空速为3.0小时-1,氢/烃摩尔比为8.0。芳烃原料与氢气混合后自上而下通过催化剂床层,进行C9+A的脱烷基反应。

    甲苯选择性歧化工艺单元采用固定床反应器,反应器内充填含含铂0.2%和0.5%镁ZSM-5分子筛催化剂,反应条件为:反应温度450℃,压力为6.0MPa,重量空速为6.0小时-1,氢/烃摩尔比为8.0。甲苯与氢气混合后自上而下通过催化剂床层,进行甲苯选择性歧化反应,生成苯和高对二甲苯浓度的C8A。

    吸附分离单元采用3级模拟移动床,移动床内充填吸附剂,吸附分离操作温度为130℃。

    结晶分离单元采用悬浮结晶分离,结晶温度为-15℃。

    按照附图2所述的本发明工艺流程和实例中给出的参数进行操作,对二甲苯生产装置各个单元的处理规模见表5,产品对二甲苯和苯的产量见表6。

    表5  实施例2各单元处理规模表

       单元名称  重芳烃脱  烷基单元  异构化  单元  吸附分离  单元  结晶分离  单元  二甲苯分  馏单元  规模,千克/小时  47401  161209  210658  54752  235861


    表6  实施例2产品产量及纯度表

       产品  对二甲苯  苯  总和  产量,千克/小时  49294  29067  78361  纯度,重量%  99.80  99.94


    结果表明,运用本发明技术,以表1所列的芳烃原料,本发明的工艺可以生产对二甲苯和苯的总产量为78361千克/小时。二甲苯异构化单元、吸附分离单元以及二甲苯分馏单元的处理规模分别下降了26%、23%和27%,明显降低了装置的设计规模。装置能耗为21263×106焦耳/吨(对二甲苯+苯),相对于对比例的26579×106焦耳/吨(对二甲苯+苯),能耗降低了20%。

    【实施例3】

    按图2所示流程,以典型的重整脱戊烷油中C6A~C10+烃各物质的组成为基础数据,考察本发明生产对二甲苯和苯的能力以及各单元的处理规模情况。典型的重整装置送出芳烃的组成分布及本实施例所采用的各组分的流率见表1。

    甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元采用固定床反应器,反应器内充填含铋0.10%的氢型丝光沸石催化剂,反应条件为:反应温度320℃,压力为1.0MPa,重量空速为0.8小时-1,氢/烃摩尔比为2.0。芳烃原料与氢气混合后自上而下通过催化剂床层,进行C9+A的脱烷基反应。

    甲苯选择性歧化工艺单元采用固定床反应器,反应器内充填含0.3%钼和0.8%镁ZSM-5分子筛催化剂,反应条件为:反应温度320℃,压力为1.0MPa,重量空速为0.8小时-1,氢/烃摩尔比为1.0。甲苯与氢气混合后自上而下通过催化剂床层,进行甲苯选择性歧化反应,生成苯和高对二甲苯浓度的C8A。

    吸附分离单元采用10级模拟移动床,移动床内充填吸附剂,吸附分离操作温度为130℃。

    结晶分离单元采用悬浮结晶分离,结晶温度为5℃。

    按照附图2所述的本发明工艺流程和实例中给出的参数进行操作,对二甲苯生产装置各个单元的处理规模见表7,产品对二甲苯和苯的产量见表8。

    表7  实施例3各单元处理规模表

       单元名称  重芳烃脱  烷基单元  异构化  单元  吸附分离  单元  结晶分离  单元  二甲苯分  馏单元  规模,千克/小时  48209  161532  203754  54731  245876


    表8  实施例3产品产量及纯度表

       产品  对二甲苯  苯  总和  产量,千克/小时  49273  29067  78340  纯度,重量%  99.80  99.94


    结果表明,运用本发明技术,以表1所列的芳烃原料,本发明的工艺可以生产对二甲苯和苯的总产量为78340千克/小时。二甲苯异构化单元、吸附分离单元以及二甲苯分馏单元的处理规模分别下降了26%、26%和24%,明显降低了装置的设计规模。装置能耗为21530×106焦耳/吨(对二甲苯+苯),相对于对比例的26579×106焦耳/吨(对二甲苯+苯),能耗降低了19%。

    【比较例1】

    按图1所示流程,仍以表1中典型的重整脱戊烷油C6A~C10+A物流的流率为基础数据,考察如附图1所示的传统的含甲苯歧化和烷基转移工艺单元的芳烃联合装置生产对二甲苯和苯的能力。其歧化与烷基转移单元、异构化单元的物料进料和采出情况见表9,各单元的处理规模见表10,产品对二甲苯和苯的产量见表11。

    表9  比较例1工艺物料表

    

    表10  比较例1各单元处理规模表

       单元名称  歧化与烷基  转移单元  异构化  单元  吸附分离  单元  二甲苯分  馏单元  规模,千克/小时  111988  219438  274572  323269


    表11  比较例1产品产量及纯度表

       产品  对二甲苯  苯  总和  产量,千克/小时  54316  22751  77067  纯度,%  99.80  99.94


    结果表明,传统芳烃生产工艺反应如表1所列的芳烃原料,工生产了对二甲苯和苯的总量为77067千克/小时,装置能耗为26579×106千焦/吨(对二甲苯+苯)。

    

芳烃联合生产的方法.pdf_第1页
第1页 / 共12页
芳烃联合生产的方法.pdf_第2页
第2页 / 共12页
芳烃联合生产的方法.pdf_第3页
第3页 / 共12页
点击查看更多>>
资源描述

《芳烃联合生产的方法.pdf》由会员分享,可在线阅读,更多相关《芳烃联合生产的方法.pdf(12页珍藏版)》请在专利查询网上搜索。

本发明涉及一种芳烃联合生产的方法,主要解决以往技术中存在的生产对二甲苯时混合二甲苯中对二甲苯浓度低、芳烃处理循环量大、反应原料要求苛刻和能耗高等问题。本发明通过采用将分离来自重整单元混合原料;碳九及其以上芳烃和甲苯进入甲苯与碳九及其以上芳烃歧化与烷基转移工艺单元,进行脱烷基反应,生成第二股苯、第二股甲苯和第二股碳八芳烃;甲苯进入甲苯选择性歧化工艺单元,进行甲苯选择性歧化反应,反应后生成含对二甲苯的。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 有机化学〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1