改进的清洗和干燥半导体晶片 的装置及方法 本发明涉及在加工成集成电路的过程中改进的清洗和干燥半导体晶片的装置及方法,以减少或抑制水印(或水渍)的出现,这种水印或水渍是高密度ICs中失效的一个主要原因。
当将半导体晶片制备为集成电路(ICs)时,需要彻底清洗晶片,以去除残留的化学物质、小颗粒、和在各处理步骤中出现的其他沾污。对晶片表面超净清洗以完全去除沾污的微小痕迹非常重要。
已经有很多商业化的半导体晶片清洗干燥系统。本发明可利用那些在如干氮气等气氛中利用去离子水(DIW)结合如异丙醇(IPA)等有机蒸汽的系统。这些设系统根据下面要说明的“马兰各尼效应”清洗和干燥晶片。
众所周知,当将半导体晶片制备成ICs时,晶片表面构形成微细结构,带有如沟槽、平台、线条、空洞等。随着ICs变得越来越密,表面结构变得越来越小。例如,在高密度DRAM(动态随机存取存储器)中,晶片硅表面中电容器堆叠体之间的沟槽小于半(one-half)微米。水清洗液如去离子水(DIW)在这些沟槽和其他表面结构中聚集,由于水清洗液地毛细现象,所以很难将它们完全去除。
去离子水(DIW)是侵蚀性溶剂,甚至能溶解少量的硅晶片。这样,用水清洗后,即使少量DIW留在晶片上IC的沟槽或其他表面结构中,少量的硅会溶解在DIW中。当这种留下的DIW通过蒸发而干燥时,留下硅化合物,即留下通常所说的水印(晶片表面的大多数水印来自DIW,部分来自混有IPA的DIW)。这些水印进而导致ICs中的缺陷。因此,非常希望在清洗和干燥半导体晶片时,在水印形成之前从IC表面结构中去除甚至少量的DIW。Jin-GooPark和MichaelF.Pas在1995年6月JournalElectrochemicalSociety第142卷第6期2028-2031页的文章“半导体加工中硅的干燥方法和浸润性对水印形成的影响”中深入讨论了水印问题。
当从清洗水(如DIW)箱中垂直缓慢提出半导体晶片时,晶片表面有弯液面水。弯液面在晶片表面垂直方向形成一个薄水区;该区稍微高于箱中水主体的表面水平。这是众所周知的。如果水的表面还暴露于有机气氛,如干燥氮气中的IPA,蒸汽分子连续扩散进水中。水表面处或靠近水表面处分子的浓度大大高于深处的浓度。这样,与箱中的水主体(DIW)相比,晶片表面弯液面薄水区有非常高的有机分子(IPA)浓度。
异丙醇(IPA)的表面张力(ST)比去离子水(DIW)低。例如,在20℃时IPA的ST约为21达因/cm,而DIW的ST约为72达因/cm。因此,在水表面弯液面区的液体(DIW加高浓度IPA)的降低的表面张力(ST)和清洗水主体(DIW)的较高表面张力(ST)之间有差别。由于该ST的差别,存在着弯液面区到水主体的内部液体流。这就是“马兰各尼效应”,这已是现有技术公知的(例如,见1996年10月29日的美国专利5569330,和1996年11月5日的美国专利5571337)。利用“马兰各尼效应”可更有效地从晶片表面去除水。利用“马兰各尼效应”的晶片清洗和干燥装置已经商业化。
本发明提供利用因增强“马兰各尼效应”造成的水的液流的改进清洗和干燥半导体晶片的装置和方法。结合本发明的其他特点,可以提供比以往的系统更好的防水印效果。
在一种装置方案中,本发明涉及清洗和干燥半导体晶片的装置。该装置包括外罩装置、可移动装置、给外罩装置提供有机蒸汽的装置、给外罩装置提供晶片清洗水的装置。外罩装置设计成在清洗干燥过程中至少容纳一个晶片,该装置有一个设计成容纳晶片清洗水的下部和一个设计成容纳有机蒸汽的上部。可移动装置在外罩装置中,在清洗晶片时用来支撑浸入晶片清洗水中的晶片,然后将晶片提出水面进入外罩装置的上部,在那里晶片暴露于有机蒸汽。晶片清洗水实际冷却到低于环境温度,以便晶片从清洗水中提出并进入外罩装置上部时快速干燥,并基本消除晶片上的水印。
在一种方法方案中,本发明涉及清洗和干燥其上形成有集成电路(IC)的半导体晶片的方法。该方法利用“马兰各尼效应”流,并包括以下步骤:第一步,在冷却的去离子水(DIW)中清洗晶片;第二步,从DIW主体提出晶片,以便干燥晶片;第三步,在将晶片提出DIW时,暴露DIW主体和晶片表面于控制压力下的有机蒸汽,液体形式的该有机蒸汽有比DIW更低的表面张力,这样,当晶片从DIW主体提出时,晶片表面带有其中吸收有有机蒸汽的弯液面DIW,由于“马兰各尼效应”流体流下晶片表面进入DIW主体,因而基本避免了在IC上形成水印。
根据结合下面附图的说明和权利要求可更好地理解本发明。
图1是根据本发明的清洗和干燥半导体晶片的装置示意图;
图2是表示半导体晶片从包含于图1的装置中的清洗水体中垂直提出时晶片剖面部分的放大示意图。
图1示意地表示本发明的装置10的剖面。装置10能容易地清洗和干燥一个或多个半导体晶片W,干燥后晶片W基本没有水印(水点)。装置10包括气密外罩12、清洗箱14、水支撑和升降架16、水冷却单元18、和泵20。装置10或外罩12内的其他元件没有示出,但可以与商业化设备类似。这种设备可以从日本的DaiNipponScreen(DAS)购得。
如图所示,清洗箱14有三维形状,具有四个垂直壁22、一个低部26、和上缘(toplip)28,没有顶部。通过穿过靠近箱14底部26的一个箱壁22的供应管30将去离子水(DIW)60连续充满箱14。围绕穿过气密外罩12的壁到箱14的管30有密封圈32。管30连接到水冷却单元18,水冷却单元通过管34由DIW源(未示出)供应。流进箱14底部的接近冰点温度(如约5℃)的冷的(冷却的)DIW60在箱中连续向上流,并从其上缘28流出处箱外。我们发现用冷水能增强“马兰各尼效应”,并且清洗干燥后晶片W上留下的水印大大减少。溢出箱14的水流到外罩12的底部,并通过排出管36和泵20排出。箱14足够深,当晶片架16在其低位时,如图1所示,晶片W完全浸没在朝上漫过和包围清洗晶片的DIW中。
当装置10工作时,外罩12是气密。在晶片清洗过程中,外罩12的内部保持大气压。干燥晶片过程中,外罩12的内部保持低压。该低压通常为几分之一乇,可以为一乇或更低。箱14以上外罩12的内部包括用管40在干燥氮气中连续提供IPA等有机蒸汽的空间38,如箭头41所示。管40连接到源(未示出)。
为了抑制IPA在装有冷却的DIW的容器中冷凝,将IPA/N2混合物引入处理室时,可以降低其温度。温度降低到等于或低于DIW的温度。在一个实施例中,通过冷却N2气和/或IPA蒸发器来降低IPA/N2混合物的温度。通过降低混合物的温度,IPA的浓度可以保持在低于饱和值。采用此方法,即使处理室的温度由于冷却的DIW的存在而降低,也可以抑制IPA在箱中冷凝。可以用与冷却DIW相同的冷却器来冷却N2和/或蒸发器。因此,不需要另外的设备提供冷却的N2/IPA。
晶片W在DIW60中充分清洗后(如10到20分钟后),架16及其支撑的晶片W从气密外罩12上升。一种机械(未示出)以控制的速率(如5到10分钟)将晶片和架从低位垂直提升,直到它们全部露出清洗箱14为止,如垂直箭头42所示。一旦晶片全部露出清洗箱14,外罩12中的压力降低到上述低值。
由于支架16将晶片W逐渐提升到箱14的上缘28(水位)之上,晶片W暴露于外罩12上部空间38中的IPA蒸汽分子(仍在大气压),根据本发明的一个特点,出现增强“马兰各尼效应”流体流。该流为吸收有IPA分子的DIW对流,从晶片W表面向下流进入清洗水中。正如下面要说明的,这种增强作用和本发明的其他特点一起基本避免了干燥后在晶片W上形成水印。
参见图2,该图示出了图1中装置10的部分放大示意图,其中的半导体晶片W被从箱14中提出,进入外罩12上部的空间38。晶片W按箭头42的方向以控制的速率从箱14中的清洗水主体(DIW)60垂直地逐步从清洗箱14(见图1)中提出。DIW60的上表面62与箱缘28齐平。如前面提到的,向外罩12上部空间38连续提供有机蒸汽(IPA/N2),用“点”64表示的蒸汽分子吸收进DIW60中。在DIW60表面62处和靠近DIW60表面62处,有机分子64的浓度大大高于深处的浓度。向上并溢出箱缘28的DIW60连续流帮助维持聚集在水表面62附近的有机分子64。
示出的晶片W的前表面70部分在箱14的DIW清洗水60中,而部分在外面。图中去掉了晶片W的背面和其他部分未示出。晶片表面70上构成IC(已有技术公知)。例如,示出了三个腐蚀晶片W表面70构成的“沟槽”,即上沟槽72、中沟槽74、和下沟槽76,表示IC的表面结构(未示出其他细节)。沟槽72、74、和76尺寸很小(小于1微米)。在清洗晶片W的过程中,由于毛细作用DIW清洗水60流进沟槽72、74、和76中(IC的其他表面结构未示出)。如前面说明的,为了避免形成水印,重要的是在将晶片从清洗箱14取出时,清洗后所有可能残留的水都应完全从晶片W表面70上的这些沟槽(及其他表面结构)中去除。
在向上提拉晶片W时,其垂直面70与用80表示的DIW60的弯液面接触。弯液面80的薄区82,即上部吸收了很多IPA分子64,用高密度“点”表示这些分子。另一方面,沿弯液面80向下,IPA分子64的浓度很低,如前面所说的,一个原因是DIW60的连续流朝上并溢出箱缘28。
液体IPA的表面张力(ST)小于DIW的表面张力。这样,在DIW60中IPA分子64浓度高的地方,如弯液面区82,混合液的表面张力(ST)低于纯DIW的ST。这种ST的差别产生一个从低ST区(区82)向高ST区(DIW60主体)的内部液流,用箭头84表示。这种内部液流称为“马兰各尼效应”。
如前面提到的,用冷却单元18将提供到箱14的DIW60冷却到接近冰点(如5℃)。这样,当晶片W从DIW60中提出时相对较凉。这促进了IPA蒸汽在晶片W的暴露表面70的冷凝。这种冷凝的IPA沿晶片表面连续向下流,弯液面区82中IPA分子64进一步聚集。而且,由于DIW冷却至接近冰点,当冷却时其ST增加得比IPA的ST更快。因此,与20℃的环境温度相比,较冷的温度增加了混有IPA的DIW与纯DIW的ST的差别。本发明的这一特点增强了“马兰各尼效应”。而且,由于在比环境温度低的温度(5℃)或较高温度下,DIW作为溶剂有更低的活性,所以,只有较少量晶片W中的硅被DIW溶解。这进一步防止了水印的形成。当晶片W浸于DIW60中时,朝上并漫过晶片的连续清洗水流冲走其中溶解有硅(或其他沾污)的DIW。
如图2所示,晶片W的表面70上的下沟槽76在水面以下,几乎充满纯DIW。但是中间沟槽74在薄弯液面区82,如前面所说的,那里的DIW中有很多IPA分子64。因此,沟槽74中充满其ST比纯DIW低的液体(有高浓度IPA的DIW)。因此,当晶片W进一步提升到弯液面80和区82之上时,沟槽74中的液体由于“马兰各尼效应”沿箭头84方向从沟槽74向下流出,使其中没有DIW。图2中示出了上沟槽72中无液体的情况,示出的上沟槽72已经在弯液面80上面。
晶片W完全从箱14中提出后,可能仍残留在沟槽72、74、和76或晶片其他表面结构中的微量DIW将很快蒸发,对此下面将作说明。一旦晶片W完全从箱14的清洗水中露出(即完全在DIW60的上表面62以上),关闭用管40提供到外罩12中的有机蒸汽(IPA/N2)。同时,泵20开始工作,以很快的速度将外罩12和上部空间38的压力降低到1乇以下。在该低压下,晶片W上残留的DIW(和IPA)快速蒸发。这大大缩短了残留DIW从晶片主体溶解硅并由此在干燥后留下水印的时间。而且由于残留DIW和晶片W很凉(如接近冰点),禁止了任何残留的DIW从晶片进一步溶解硅。低压、缩短的时间、和低的温度都对不形成水印有贡献。这样,装置10改进了半导体晶片W的清洗和干燥工艺,比以往的系统能更好地防止水印的形成。
本领域的技术人员知道,在不偏离权利要求的本发明精神实质和范围的情况下,可以有各种改型的装置和方法。例如,上述温度和压力值可以改变,具体晶片的清洗和干燥时间可以选择。而且,氮气中可以用除IPA外的有机蒸汽。