一种大磁致伸缩合金丝的制备方法.pdf

上传人:1520****312 文档编号:391440 上传时间:2018-02-13 格式:PDF 页数:10 大小:506.12KB
返回 下载 相关 举报
摘要
申请专利号:

CN200910096354.X

申请日:

2009.02.23

公开号:

CN101503778A

公开日:

2009.08.12

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):C22C 38/04申请日:20090223授权公告日:20101201终止日期:20130223|||授权|||著录事项变更IPC(主分类):C22C 38/04变更事项:发明人变更前:严密 何爱娜 张晶晶 马天宇变更后:严密 贺爱娜 张晶晶 马天宇|||实质审查的生效|||公开

IPC分类号:

C22C38/04; C22C22/00; C22C30/00; C22C33/04; C22C1/02; C21D1/26

主分类号:

C22C38/04

申请人:

浙江大学

发明人:

严 密; 何爱娜; 张晶晶; 马天宇

地址:

310027浙江省杭州市浙大路38号

优先权:

专利代理机构:

杭州求是专利事务所有限公司

代理人:

张法高

PDF下载: PDF下载
内容摘要

本发明公开了一种大磁致伸缩合金丝的制备方法。包括如下步骤:(1)熔炼铸棒;(2)成分均匀化;(3)铣削;(4)冷轧;(5)线切割;(6)去应力退火;(7)冷拔;(8)再结晶退火。该方法采用冷轧和冷拔相结合的塑性加工工艺可制得具有室温大磁致伸缩的新型Fe-Mn磁致伸缩合金丝。合金成分及原子百分比为:Fe:30-60%;Mn:70-40%。在外加磁场1.2T环境下,能产生456~1660ppm的大磁致伸缩;该制备方法能耗低,降低了Fe-Mn合金丝的生产成本;并且合金丝的尺寸可在很大范围内调整,便于微型器件的设计,扩大了磁致伸缩材料的使用领域。

权利要求书

1.  一种大磁致伸缩合金丝的制备方法,其特征在于包括如下步骤:
(1)熔炼铸棒,将纯度为99.7%的Fe、Mn原料按比例称量后放入石英坩埚内,抽真空至5×10-2~2×10-3Pa,通入氩气作保护气体,中频加热感应熔炼,然后利用铜模浇注成直径为12~20mm的Fe-Mn合金铸棒,待用,Fe-Mn合金铸棒成分及原子百分比为Fe:30-60%;Mn:70-40%;
(2)成分均匀化,将熔炼后的Fe-Mn合金铸棒放入真空管式炉中进行成分均匀化热处理,在温度900~1100℃下,保温24~168h,炉冷;
(3)铣削,将成分均匀化后的Fe-Mn合金铸棒在铣床上进行铣削加工;制得截面为方形,厚度为8~16mm的Fe-Mn合金棒;
(4)冷轧,将铣削加工后的Fe-Mn合金棒在室温经过7~12个道次的轧制获得轧制率为37.5~72%,厚度为4~6mm的扁平状Fe-Mn合金冷轧板;
(5)线切割,将Fe-Mn合金冷轧板经电火花线切割加工获得截面为方形,厚度为4~6mm的Fe-Mn合金棒;
(6)去应力退火,将线切割后的Fe-Mn合金棒置于真空管式炉中进行去应力退火;在300~450℃下,保温5~8h,炉冷;
(7)冷拔,将去应力退火后的Fe-Mn合金棒在卧式拉拔机上进行拉拔,经5~7个道次后制得直径为0.5~2.5mm的Fe-Mn合金丝;
(8)再结晶退火,将冷拔获得的Fe-Mn合金丝置于真空管式炉中在500~600℃下,保温0.5~2h,炉冷。

2.
  根据权利要求1所述的一种大磁致伸缩合金丝的制备方法,其特征在于所述的Fe-Mn合金丝在室温为单一的面心立方奥氏体。

3.
  根据权利要求1所述的一种大磁致伸缩合金丝的制备方法,其特征在于所述的Fe-Mn合金丝具有<110>择优取向。

说明书

一种大磁致伸缩合金丝的制备方法
技术领域
本发明涉及合金的制备方法,尤其涉及一种大磁致伸缩合金丝的制备方法。
背景技术
磁致伸缩材料具有在外加磁场存在时可回复变形和在施加应力时会改变磁性能的特性;是一种重要的能量与信息转换功能材料;在超声波、机器人、计算机、汽车、制动器、控制器、换能器、传感器、微位移器、精密阀和防震装置等领域有广泛的应用前景。目前应用于工程的磁致伸缩材料的形状主要是棒材,其棒材的直径较大,一般在5mm左右。而磁致伸缩丝的直径较小,能广泛应用于各类传感器。
早期的磁致伸缩材料如镍基合金(Ni,Ni-Co,Ni-Co-Cr)、铁基合金(Fe-Ni,Fe-Al,Fe-Co-V)及铁氧体拥有良好的机械性能,但其磁致伸缩性能较差,只有10~100ppm,制成的丝材由于小的磁致伸缩量严重限制了传感器的精度和应用范围。目前研究的磁致伸缩材料中,超磁致伸缩材料Tb-Dy-Fe合金具有优异的磁致伸缩性能,其饱和值可高达2000ppm,但Tb-Dy-Fe合金的抗拉伸能力差,材料很脆,不易加工成型;而且Tb和Dy的价格昂贵。Fe-Ga合金虽然力学性能相对Tb-Dy-Fe较好,但磁致伸缩小,Ga的价格贵。因此一种价格低廉,兼具有大磁致伸缩和良好机械性能的磁致伸缩合金丝成为人们关注的焦点。
Fe-Mn合金具有室温大磁致伸缩(外加磁场1.9T下,磁致伸缩值可达873ppm),良好的塑韧性(实验证明在冷轧过程中,轧制率为90%时也不发生脆断),容易加工成型,非常适合成为一种磁致伸缩丝的材料,且Fe-Mn合金的原材料价格非常廉价,大大降低了磁致伸缩材料的生产成本。
发明内容
本发明的目的是克服现有技术的不足,提供一种大磁致伸缩合金丝的制备方法。
大磁致伸缩合金丝的制备方法包括如下步骤:
(1)熔炼铸棒,将纯度为99.7%的Fe、Mn原料按比例称量后放入石英坩埚内,抽真空至5×10-2~2×10-3Pa,通入氩气作保护气体,中频加热感应熔炼,然后利用铜模浇注成直径为12~20mm的Fe-Mn合金铸棒,待用,Fe-Mn合金铸棒成分及原子百分比为Fe:30-60%;Mn:70-40%;
(2)成分均匀化,将熔炼后的Fe-Mn合金铸棒放入真空管式炉中进行成分均匀化热处理,在温度900~1100℃下,保温24~168h,炉冷;
(3)铣削,将成分均匀化后的Fe-Mn合金铸棒在铣床上进行铣削加工;制得截面为方形,厚度为8~16mm的Fe-Mn合金棒;
(4)冷轧,将铣削加工后的Fe-Mn合金棒在室温经过7~12个道次的轧制获得轧制率为37.5~72%,厚度为4~6mm的扁平状Fe-Mn合金冷轧板;
(5)线切割,将Fe-Mn合金冷轧板经电火花线切割加工获得截面为方形,厚度为4~6mm的Fe-Mn合金棒;
(6)去应力退火,将线切割后的Fe-Mn合金棒置于真空管式炉中进行去应力退火;在300~450℃下,保温5~8h,炉冷;
(7)冷拔,将去应力退火后的Fe-Mn合金棒在卧式拉拔机上进行室温拉拔,经5~7个道次后制得直径为0.5~2.5mm的Fe-Mn合金丝;
(8)再结晶退火,将冷拔获得的Fe-Mn合金丝置于真空管式炉中在500~600℃下,保温0.5~2h,炉冷。
所述的Fe-Mn合金丝在室温为单一的面心立方奥氏体。Fe-Mn合金丝具有<110>择优取向。
本发明采用冷轧和冷拔相结合的工艺制备出一种室温大磁致伸缩的<110>取向的Fe-Mn磁致伸缩合金丝,其优点在于:(1)原材料的价格廉价(2)在外加磁场1.2T下能产生456~1660ppm的大磁致伸缩,性能优于其他合金制备的磁致伸缩丝。(3)利用Fe-Mn合金良好的塑韧性,采用冷轧和冷拔相结合的塑性加工工艺成功的制备出Fe-Mn磁致伸缩合金丝,大幅度的降低了生产成本。(4)Fe-Mn合金在室温以奥氏体存在,可以在塑性加工过程中产生<110>择优取向,有利于获得优异的磁致伸缩性能。
附图说明
图1是Fe60Mn40磁致伸缩合金丝在冷拔和再结晶退火态的磁致伸缩曲线图;
图2是Fe50Mn50磁致伸缩合金丝在冷拔和再结晶退火态的磁致伸缩曲线图;
图3是Fe45Mn55合金丝和Fe45Mn55合金铸棒的XRD图谱,合金丝的(220)峰由第三强峰变成第一强峰,表明冷拔后有明显的<110>丝织构形成。
具体实施方式
下面将结合附图和实施例对本发明的技术方案做进一步具体的说明。
本发明是一种采用冷轧和冷拔相结合工艺制备一种室温大磁致伸缩的<110>择优取向的Fe-Mn磁致伸缩合金丝,合金成分及原子百分比为Fe:30-60%;Mn:70-40%,室温为单一的面心立方奥氏体。
本发明制备上述合金丝的工艺为:
(1)熔炼铸棒,将纯度为99.7%的Fe、Mn原料按比例称量后放入石英坩埚内,抽真空至5×10-2~2×10-3Pa,通入氩气作保护气体,中频加热感应熔炼,然后利用铜模浇注成直径为12~20mm的Fe-Mn合金铸棒,待用。Fe-Mn合金铸棒成分及原子百分比为Fe:30-60%;Mn:70-40%。
(2)成分均匀化,将熔炼后的Fe-Mn合金铸棒放入真空管式炉中进行成分均匀化热处理,在温度900~1100℃下,保温24~168h,炉冷。
(3)铣削,将成分均匀化后的Fe-Mn合金铸棒在铣床上进行铣削加工;制得截面为方形,厚度为8~16mm的Fe-Mn合金棒。
(4)冷轧,将铣削加工后的Fe-Mn合金棒在室温经过7~12个道次的轧制获得轧制率为37.5~72%,厚度为4~6mm的扁平状Fe-Mn合金冷轧板。
对铣削加工后的Fe-Mn合金棒进行冷轧的目的是为了击碎铸态组织,控制尺寸,为后续的冷拔工艺做准备。
(5)线切割,将Fe-Mn合金冷轧板经电火花线切割加工获得截面为方形,厚度为4~6mm的Fe-Mn合金棒。
(6)去应力退火,将线切割后的Fe-Mn合金棒置于真空管式炉中进行去应力退火;在300~450℃下,保温5~8h,炉冷。去应力退火的目的是为了去除冷轧和线切割工艺在Fe-Mn合金棒中产生的内应力和形变缺陷。
(7)冷拔,将去应力退火后的Fe-Mn合金棒在卧式拉拔机上进行室温拉拔,经5~7个道次后制得直径为0.5~2.5mm的Fe-Mn合金丝。
(8)再结晶退火,将冷拔获得的Fe-Mn合金丝置于真空管式炉中在500~600℃下,短时间保温0.5~2h,炉冷。再结晶退火的目的是去除拉拔在Fe-Mn合金丝中造成的内应力并使合金丝晶粒细化,提高合金丝的力学性能;但再结晶时间不能太长,以避免在再结晶退火中形成新的再结晶织构,破坏原有的<110>择优取向拉拔丝织构。
采用涡流位移传感器法测量外加磁场1.2T下,Fe-Mn磁致伸缩合金丝分别在冷拔和再结晶退火态的磁致伸缩λ(ppm)如下表所示。

下面通过实施例,对本发明的技术方案做进一步具体的说明。
实施例1:制具有<110>择优取向的Fe60Mn40磁致伸缩合金丝
(1)熔炼铸棒,将纯度为99.7%的Fe、Mn原料按原子百分比60:40称量后放入石英坩埚内,抽真空至5×10-2~2×10-3Pa,通入氩气作保护气体,中频加热感应熔炼,然后利用铜模浇注成直径为12mm的Fe60Mn40合金铸棒,待用。
(2)成分均匀化,将熔炼后的Fe60Mn40合金铸棒放入真空管式炉中进行成分均匀化热处理,在温度900℃下,保温120h,炉冷。
(3)铣削,将成分均匀化后的Fe60Mn40合金铸棒在铣床上进行铣削加工;制得截面为方形,厚度为8mm的Fe60Mn40合金棒。
(4)冷轧,将铣削加工后的Fe60Mn40合金棒在室温经过7道次冷轧获得轧制率为37.5%,厚度为5mm的扁平状Fe60Mn40合金冷轧板。
(5)线切割,将轧制后的Fe60Mn40合金冷轧板经电火花线切割加工成截面为方形,厚度为4mm的Fe60Mn40合金棒。
(6)去应力退火,将线切割后的Fe60Mn40合金棒置于真空管式炉中进行去应力退火;在300℃下,保温5h,炉冷。
(7)冷拔,将去应力退火后的Fe60Mn40合金棒在卧式拉拔机上进行拉拔,经5个道次后制得直径为2.5mm的Fe-Mn合金丝。
(8)再结晶退火,将冷拔后的Fe60Mn40合金丝置于真空管式炉中在500℃下,短时间保温0.5h,炉冷。
图1为采用涡流位移传感器法测量直接为2.5mm的Fe60Mn40合金丝分别在冷拔和再结晶退火态的磁致伸缩取曲线。在1.2T磁场下,冷拔态Fe60Mn40合金丝的磁致伸缩为456ppm;再结晶退火态Fe60Mn40合金丝的磁致伸缩为1500ppm。XRD测试结果表明冷拔后的Fe60Mn40合金丝具有<110>择优取向。
实施例2:制具有<110>择优取向的Fe55Mn45磁致伸缩合金丝
(1)熔炼铸棒,将纯度为99.7%的Fe、Mn原料按原子百分比55:45称量后放入石英坩埚内,抽真空至5×10-2~2×10-3Pa,通入氩气作保护气体,中频加热感应熔炼,然后利用铜模浇注成直径为14mm的Fe55Mn45合金铸棒,待用。
(2)成分均匀化,将熔炼后的Fe55Mn45合金铸棒放入真空管式炉中进行成分均匀化热处理,在温度1000℃下,保温24h,炉冷,。
(3)铣削,将成分均匀化后的Fe55Mn45合金铸棒在铣床上进行铣削加工;制得截面为方形,厚度为10mm的Fe55Mn45合金棒。
(4)冷轧,将铣削加工后的Fe55Mn45合金棒在室温经过10道次冷轧获得轧制率为50%,厚度为5mm的Fe55Mn45合金冷轧板。
(5)线切割,将Fe55Mn45合金冷轧板经电火花线切割加工成截面为方形,厚度为5mm的Fe55Mn45合金棒。
(6)去应力退火,将线切割后的Fe55Mn45合金棒置于真空管式炉中进行去应力退火;在350℃下,保温6h,炉冷。
(7)冷拔,将去应力退火后的Fe55Mn45合金棒在卧式拉拔机上进行拉拔,经6个道次后制得直径为2mm的Fe55Mn45合金丝。
(8)再结晶退火,将冷拔后的Fe55Mn45合金丝置于真空管式炉中在550℃下,短时间保温1h,炉冷。
采用涡流位移传感器法测量直径为2mm的Fe55Mn45合金丝分别在冷拔和再结晶退火态的磁致伸缩取曲线。在1.2T磁场下,冷拔态Fe55Mn45合金丝的磁致伸缩为578ppm;再结晶退火态Fe55Mn45合金丝的磁致伸缩为1525ppm。XRD测试结果表明冷拔后的Fe55Mn45合金丝具有<110>择优取向。
实施例3:制具有<110>择优取向的Fe50Mn50磁致伸缩合金丝
(1)熔炼铸棒,将纯度为99.7%的Fe、Mn原料按原子百分比50:50称量后放入石英坩埚内,抽真空至5×10-2~2×10-3Pa,通入氩气作保护气体,中频加热感应熔炼,然后利用铜模浇注成直径为20mm的Fe50Mn50合金铸棒,待用。
(2)成分均匀化,将熔炼后的Fe50Mn50合金铸棒放入真空管式炉中进行成分均匀化热处理,在温度1100℃下,保温168h,炉冷。
(3)铣削,将成分均匀化热处理后的Fe50Mn50合金铸棒在铣床上进行铣削加工;制得截面为方形,厚度为12mm的Fe50Mn50合金棒。
(4)冷轧,将铣削加工后的Fe50Mn50合金棒在室温经过12道次冷轧获得轧制率为66.7%,厚度为4mm的Fe50Mn50合金冷轧板。
(5)线切割,将Fe50Mn50合金冷轧板经电火花线切割加工成截面为方形,厚度为4mm的Fe50Mn50合金棒。
(6)去应力退火,将线切割后的Fe50Mn50合金棒置于真空管式炉中进行去应力退火;在400℃下,保温7h,炉冷。
(7)冷拔,将去应力退火后的Fe50Mn50合金棒在卧式拉拔机上进行拉拔,经5个道次后制得直径为1mm的Fe50Mn50合金丝。
(8)再结晶退火,将冷拔后的Fe50Mn50合金丝置于真空管式炉中在550℃下,短时间保温1.5h,炉冷。
图2是采用涡流位移传感器法测量直径为1mm的Fe50Mn50合丝分别在冷拔和再结晶退火态的磁致伸缩曲线。在1.2T磁场下,冷拔态Fe50Mn50合金丝的磁致伸缩为750ppm;再结晶退火态Fe50Mn50合金丝的磁致伸缩为1660ppm。XRD测试结果表明冷拔后的Fe50Mn50合金丝具有<110>择优取向。
实施例4:制具有<110>择优取向的Fe30Mn70磁致伸缩合金丝
(1)熔炼铸棒,将纯度为99.7%的Fe、Mn原料按原子百分比30:70称量后放入石英坩埚内,抽真空至5×10-2~2×10-3Pa,通入氩气作保护气体,中频加热感应熔炼,然后利用铜模浇注成直径为20mm的Fe30Mn70合金铸棒,待用。
(2)成分均匀化,将熔炼后的Fe30Mn70合金铸棒放入真空管式炉中进行成分均匀化热处理,在温度1100℃下,保温24h,炉冷,。
(3)铣削,将成分均匀化热处理后的Fe30Mn70合金铸棒在铣床上进行铣削加工;制得截面为方形,厚度为16mm的Fe30Mn70合金棒。
(4)冷轧,将铣削加工后的Fe30Mn70合金棒在室温经过10道次冷轧获得轧制率为72%,厚度为4mm的Fe30Mn70合金冷轧板。
(5)线切割,将Fe30Mn70合金冷轧板经电火花线切割加工成截面为方形,厚度为4mm的Fe30Mn70合金棒。
(6)去应力退火,将线切割后的Fe30Mn70合金棒置于真空管式炉中进行去应力退火;在450℃下,保温8h,炉冷。
(7)冷拔,将去应力退火后的Fe30Mn70合金棒在卧式拉拔机上进行拉拔,经7个道次后制得直径为0.5mm的Fe30Mn70合金丝。
(8)再结晶退火,将冷拔后的Fe30Mn70合金丝置于真空管式炉中进行去应力退火;在600℃下,保温2h,炉冷。
采用涡流位移传感器法测量直径为0.5mm的Fe30Mn70合金丝分别在冷拔和再结晶退火态的磁致伸缩系数。在1.2T磁场下,冷拔态Fe30Mn70合金丝的磁致伸缩为645ppm;再结晶退火态Fe30Mn70合金丝的磁致伸缩为1586ppm。
通过冷轧加工后Fe-Mn合金有了一定的板织构,在冷拔拉丝过程中板织构消失,形成了丝织构,具有明显的<110>择优取向;有利用提高Fe-Mn合金丝的磁致伸缩性能。图3是Fe45Mn55合金丝和熔炼后铸态Fe45Mn55合金块体的XRD图谱,(220)由第三强峰变成第一强峰,表明冷拔后有明显的<110>择优取向丝织构形成。

一种大磁致伸缩合金丝的制备方法.pdf_第1页
第1页 / 共10页
一种大磁致伸缩合金丝的制备方法.pdf_第2页
第2页 / 共10页
一种大磁致伸缩合金丝的制备方法.pdf_第3页
第3页 / 共10页
点击查看更多>>
资源描述

《一种大磁致伸缩合金丝的制备方法.pdf》由会员分享,可在线阅读,更多相关《一种大磁致伸缩合金丝的制备方法.pdf(10页珍藏版)》请在专利查询网上搜索。

本发明公开了一种大磁致伸缩合金丝的制备方法。包括如下步骤:(1)熔炼铸棒;(2)成分均匀化;(3)铣削;(4)冷轧;(5)线切割;(6)去应力退火;(7)冷拔;(8)再结晶退火。该方法采用冷轧和冷拔相结合的塑性加工工艺可制得具有室温大磁致伸缩的新型Fe-Mn磁致伸缩合金丝。合金成分及原子百分比为:Fe:30-60;Mn:70-40。在外加磁场1.2T环境下,能产生4561660ppm的大磁致伸缩;。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 冶金;黑色或有色金属合金;合金或有色金属的处理


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1