一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用.pdf

上传人:小** 文档编号:214792 上传时间:2018-02-03 格式:PDF 页数:13 大小:3.72MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410372951.1

申请日:

2014.07.31

公开号:

CN104155353A

公开日:

2014.11.19

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):G01N 27/26申请日:20140731|||公开

IPC分类号:

G01N27/26; G01N27/327; B81C1/00

主分类号:

G01N27/26

申请人:

深圳市容大感光科技股份有限公司; 北京师范大学

发明人:

海波; 邹应全; 杨遇春; 晏凯

地址:

518103 广东省深圳市宝安区福永街道福永立新湖第一科技园研发楼1-3楼

优先权:

专利代理机构:

北京同恒源知识产权代理有限公司 11275

代理人:

张水俤

PDF下载: PDF下载
内容摘要

本发明公开了一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用。本发明的技术方案是:以硅片为基底,在其表面采用光刻方法制备出光刻胶微阵列,经高温碳化后得到三维碳微阵列,然后在其表面沉积AlOOH薄层,最后置于水热釜中原位生长出水滑石薄层,即得到三维碳微阵列与水滑石复合材料。具有良好生物相容性的碳微阵列,形成一个个微型的集流体,其表面密布的水滑石薄层,提供了大比表面积的电催化活性位点,使复合材料适宜于用做无酶传感器工作电极。此外本发明的复合电极,可批量生产,并且固定有碳微阵列的硅片电极可以切割成多个电极使用,极大降低了传感器工作电极的生产成本,并具有良好的操作稳定性及储存稳定性。

权利要求书

1.  一种三维碳微阵列与水滑石复合材料,其特征在于,该材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度范围是35-120μm,直径范围是20-60μm,间距范围是20-120μm;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石薄层的厚度范围是0.2-0.9μm;水滑石片的厚度范围是5-40nm,径向尺寸范围是10-400nm。

2.
  根据权利要求1所述的三维碳微阵列与水滑石复合材料,其特征在于,所述的水滑石片的化学组成为[M2+1-βAl3+β(OH)2]β+;M2+代表二价金属阳离子Ni2+或Co2+,较佳的为Ni2+;1-β和β分别为二价金属阳离子、Al3+的物质的量分数,且0.2≤β≤0.4;β+为水滑石片所带正电荷量。

3.
  根据权利要求1所述的三维碳微阵列与水滑石复合材料的制备方法,其特征在于,其具体操作步骤为:
(1)在超净间,以处理后的硅片为基底,旋涂上光刻胶,匀胶厚度为35-120μm,在21-24℃、相对湿度为49-51%的条件下自平整30-60分钟后置于烘胶台上进行前烘,先60-70℃烘干10-20分钟,再90-100℃烘干20-40分钟,最后置于温度为21-24℃、相对湿度为49-51%条件下冷却30-90分钟,得到光刻胶薄膜;采用圆孔直径为20-60μm,间距为20-120μm的掩膜图形进行曝光,曝光剂量为260-540mJ/cm2,曝光后的图形立即中烘,于90-100℃烘胶台烘干20-50分钟,然后置于21-24℃、相对湿度为49-51%条件下冷却20-30分钟;最后浸泡于显影液中30-40分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;
(2)将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以8-12℃/分钟的升温速度,从室温升至250-350℃煅烧30-50分钟,再以相同升温速度升至900-1000℃,煅烧100-140分钟后降至室温,得到三维碳微阵列;
(3)将得到的三维碳微阵列浸入到AlOOH胶体溶液中15-20分钟后取出,常温自然晾干,完成一层AlOOH的沉积;
(4)重复步骤(3)操作60-70次,在三维碳微阵列表面沉积不同厚度的AlOOH薄层;然后浸入到反应底液中,密封,升温到85-95℃,12-16小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑石复合材料。

4.
  根据权利要求3所述的制备方法,其特征在于,步骤(1)中所述的光刻胶选自SU-82025、SU-82050、SU-82075、SU-82100光刻胶中的一种。

5.
  根据权利要求3所述的制备方法,其特征在于,步骤(1)所述的硅片处理方法为: 将硅片依次置于丙酮、乙醇、二次水中分别超声5-20分钟后用丙酮淋洗,最后用N2吹干。

6.
  根据权利要求3所述的制备方法,其特征在于,所述的AlOOH胶体溶液的制备方法为:按照异丙醇铝与去离子水质量比为1/9-1/12的比例将异丙醇铝溶于去离子水中,70-90℃下搅拌15-45分钟;使用1-3mol/L的HNO3水溶液调节pH至3-4,70-90℃下搅拌1-4小时,然后在45-60℃下干燥得到固体AlOOH,研磨成粉状;按照AlOOH与去离子水质量比为1/17-1/20的比例溶解,于80-90℃下搅拌30-120分钟,然后逐滴加入1-3mol/L的HNO3水溶液,调节pH至1-4,即得乳白色半透明的AlOOH胶体溶液。

7.
  根据权利要求3所述的制备方法,其特征在于,所述的反应底液的配制方法为:按照二价金属阳离子与NH4NO3摩尔比为1/5-1/8的比例将可溶二价金属盐和NH4NO3溶于去离子水中,NH4NO3的浓度为1-3mol/L;最后用1-3mol/L的氨水调节pH至5-7,即得反应底液。

8.
  根据权利要求7所述的制备方法,其特征在于,所述的二价金属阳离子选自Ni2+或Co2+

9.
  根据权利要求7所述的制备方法,其特征在于,所述的可溶二价金属盐选自硝酸镍或硝酸钴。

10.
  根据权利要求3-9任一所述的方法制备得到的三维碳微阵列与水滑石复合材料作为无酶传感器的应用。

说明书

一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用
技术领域
本发明属于电化学生物传感器及其制备技术领域,特别涉及一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用。
背景技术
日趋重要的生物小分子检测技术推动着电化学生物传感器的蓬勃发展。电化学生物传感器,通过生物分子识别元件,快速准确感应检测基质,再以电信号的形式,定性定量表述指定生物分子的含量。生物分子识别元件主要由生物敏感膜和基底材料组成,根据生物敏感膜作用机理的不同,生物传感器可以分类为酶传感器和无酶传感器。酶传感器中的生物酶在高温,强酸强碱,重金属,有毒物质等等条件下均易减弱或失去活性,这使酶传感器的发展和应用受到了极大的限制;也使无酶传感器日益引来广泛的关注。
无酶传感器制备中,选择利于生物敏感膜活性的基底材料非常重要,常见的基底材料包括各类导电金属,玻璃,石英等等。此外,种类繁多,物化性能各具特点的碳材料近年来也被广泛用作生物传感器的基底材料,碳材料被选作基底材料主要由于以下几点:(1)石墨化程度较高的碳材料具有优异的导电性能;(2)具有比其他基底更宽的电化学稳定窗口;(3)具有良好的生物相容性,在生化器件中应用普遍;(4)原材料广泛,合成简便,形貌各异。
微制造技术由于体积小,成本低,精度高,一体成型等优点已渗透到现代化研发的方方面面,基于碳材料的碳微制造也发展成了微制造领域的一大分支。碳微制造包括离子铣,离子刻蚀以及近两年新兴的光刻碳化工艺。光刻碳化工艺相较于其他碳微制造技术具有以下几大优点:(1)由于光刻工艺的图形灵活多变,光刻碳化工艺所制备的碳材料形貌丰富多样;(2)控制碳化温度可以得到物化性能稳定的碳材料;(3)光刻碳化工艺易于量产,能极大降低生产成本;(4)结合不同纳米材料得到微纳复合结构,延伸出多种机械,化学及电学性能。将这种碳微制造技术应用于生物传感器中基底材料的制备已有报道。
在文献(1)Biosensors and Bioelectronics,2008,23:1637-1644中,Han Xu等人以SU-8光刻胶为基底材料,采用光刻碳化的方法,得到整齐排列的碳微阵列,再采用聚合物固定葡萄糖氧化酶到碳微柱表面,制备了酶传感器,并通过控制涂胶厚度和掩膜图形,考察了碳微柱的高度,间距以及直径对所制备传感器电化学性能的影响。但平整光滑的碳微柱固定酶分子量受限,传感器性能较差。
在文献(2)Sensors and Actuator A:Physical,2013,198:15-20中,Shuang Xi等人采用SU-8 光刻胶涂胶曝光,并在显影液中混合了多壁碳纳米管进行显影。作者利用纳米结构的自组装性能,得到了表面布满碳纳米管的碳微阵列,再利用聚合物在其表面固定酶分子,制备出了葡萄糖氧化酶传感器。密布的碳纳米管,极大增加了比表面积,显著提高了载酶量,但是采用的活性物质是酶分子,所以依然避免不了所制备的传感器受限于环境因素。
发明内容
本发明的目的在于提供一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用。
本发明的技术方案是:以硅片为基底,在其表面采用光刻方法制备出光刻胶微阵列,经高温碳化后得到三维碳微阵列,然后在其表面沉积AlOOH薄层,最后置于水热釜中原位生长出水滑石薄层,即得到三维碳微阵列与水滑石复合材料,该材料可直接用做工作电极以构筑电化学无酶传感器。
本发明所述的三维碳微阵列与水滑石复合材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度范围是35-120μm,直径范围是20-60μm,间距范围是20-120μm;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石薄层的厚度范围是0.2-0.9μm;水滑石片的厚度范围是5-40nm,径向尺寸范围是10-400nm。
所述的水滑石片的化学组成为[M2+1-βAl3+β(OH)2]β+;M2+代表二价金属阳离子Ni2+或Co2+,较佳的为Ni2+;1-β和β分别为二价金属阳离子、Al3+的物质的量分数,且0.2≤β≤0.4;β+为水滑石片所带正电荷量。
本发明所述的三维碳微阵列与水滑石复合材料的制备方法为:
(1)在超净间,以处理后的硅片为基底,旋涂上光刻胶,匀胶厚度为35-120μm,在21-24℃、相对湿度为49-51%的条件下自平整30-60分钟后置于烘胶台上进行前烘,先60-70℃烘干10-20分钟,再90-100℃烘干20-40分钟,最后置于温度为21-24℃、相对湿度为49-51%条件下冷却30-90分钟,得到光刻胶薄膜;采用圆孔直径为20-60μm,间距为20-120μm的掩膜图形进行曝光,曝光剂量为260-540mJ/cm2,曝光后的图形立即中烘,于90-100℃烘胶台烘干20-50分钟,然后置于21-24℃、相对湿度为49-51%条件下冷却20-30分钟;最后浸泡于显影液中30-40分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;
(2)将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以8-12℃/分钟的升温速度,从室温升至250-350℃煅烧30-50分钟,再以相同升温速度升至900-1000℃,煅烧100-140分钟后降至室温,得到三维碳微阵列;
(3)将得到的三维碳微阵列浸入到AlOOH胶体溶液中15-20分钟后取出,常温自然晾 干,完成一层AlOOH的沉积;
(4)重复步骤(3)操作60-70次,在三维碳微阵列表面沉积不同厚度的AlOOH薄层;然后浸入到反应底液中,密封,升温到85-95℃,12-16小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑石复合材料。
步骤(1)所述的光刻胶选自SU-82025、SU-82050、SU-82075、SU-82100光刻胶中的一种。
步骤(1)所述的硅片处理方法为:将硅片依次置于丙酮、乙醇、二次水中分别超声5-20分钟后用丙酮淋洗,最后用N2吹干。
所述的AlOOH胶体溶液的制备方法为:
按照异丙醇铝与去离子水质量比为1/9-1/12的比例将异丙醇铝溶于去离子水中,70-90℃下搅拌15-45分钟;使用1-3mol/L的HNO3水溶液调节pH至3-4,70-90℃下搅拌1-4小时,然后在45-60℃下干燥得到固体AlOOH,研磨成粉状;按照AlOOH与去离子水质量比为1/17-1/20的比例溶解,于80-90℃下搅拌30-120分钟,然后逐滴加入1-3mol/L的HNO3水溶液,调节pH至1-4,即得乳白色半透明的AlOOH胶体溶液。
所述的反应底液的配制方法为:
按照二价金属阳离子与NH4NO3摩尔比为1/5-1/8的比例将可溶二价金属盐和NH4NO3溶于去离子水中,NH4NO3的浓度为1-3mol/L;最后用1-3mol/L的氨水调节pH至5-7,即得反应底液。
所述的二价金属阳离子选自Ni2+或Co2+
所述的可溶二价金属盐选自硝酸镍或硝酸钴。
将上述制备的三维碳微阵列与水滑石复合材料作为无酶传感器的应用。
本发明的特点及效果在于:本发明结合了光刻碳化的碳微制造方法与原位生长方法,制备了三维碳微阵列与水滑石复合材料。具有良好生物相容性的碳微阵列,形成一个个微型的集流体,其表面密布的水滑石薄层,提供了大比表面积的电催化活性位点,使复合材料适宜于用做无酶传感器工作电极。此外本发明的复合电极,可批量生产,并且固定有碳微阵列的硅片电极可以切割成多个电极使用,极大降低了传感器工作电极的生产成本,并具有良好的操作稳定性及储存稳定性。本发明为碳微制造拓宽了新的应用领域,为电化学微电极的研发提供了一种新方法。
附图说明
图1.实施例1制备过程中各阶段材料扫描电镜图;其中,(a)为碳微阵列;(b)为沉积AlOOH薄层的碳微阵列;(c),(d)三维碳微阵列与水滑石复合材料。
图2.三维碳微阵列与水滑石复合材料(a),硅片表面生长水滑石(b)以及硅片表面固定碳微阵列(c)分别对底液中葡萄糖进行催化的电流-时间曲线。
图3为溶液中葡萄糖浓度逐渐增加时三维碳微阵列与水滑石复合材料电极的电流-时间曲线;其中,横坐标-时间,单位为秒(s);纵坐标-电流,单位为毫安(μA)。
图4为三维碳微阵列与水滑石复合材料电极对葡萄糖的催化电流与葡萄糖浓度的关系曲线;其中,横坐标-葡萄糖浓度,单位为微摩尔/升(mmol/L);纵坐标-电流,单位为毫安(μA)。
具体实施方式
以下实施例中所用水溶液均采用二次水配制。
实施例1:
(1)将硅片依次置于丙酮、乙醇、二次水中分别超声20分钟后用丙酮淋洗,最后用N2吹干;在超净间,以处理后的硅片为基底,旋涂上SU-82050光刻胶,在23℃、相对湿度为50%的条件下自平整30分钟后置于烘胶台上进行前烘,先65℃烘干15分钟,再95℃烘干30分钟,最后置于温度为23℃、相对湿度为50%条件下冷却40分钟,得到光刻胶薄膜;采用圆孔直径为40μm,间距为80μm的掩膜图形进行曝光,曝光剂量为360mJ/cm2,曝光后的图形立即中烘,于95℃烘胶台烘干25分钟,然后置于23℃、相对湿度为50%条件下冷却20分钟;最后浸泡于显影液中30分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;
(2)将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以10℃/分钟的升温速度,从室温升至300℃煅烧40分钟,再以相同升温速度升至1000℃,煅烧120分钟后降至室温,得到三维碳微阵列;
(3)将得到的三维碳微阵列浸入到AlOOH胶体溶液中15分钟后取出,常温自然晾干,完成一层AlOOH的沉积;
(4)重复步骤(3)操作60次,在三维碳微阵列表面沉积AlOOH薄层;然后浸入到反应底液中,密封,升温到85℃,12小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑石复合材料。
所述的AlOOH胶体溶液的制备方法为:按照异丙醇铝与去离子水质量比为1/10的比例将异丙醇铝溶于去离子水中,85℃下搅拌20分钟;使用1mol/L的HNO3水溶液调节pH至3.4,85℃下搅拌2小时,然后在60℃下干燥得到固体AlOOH,研磨成粉状;按照AlOOH与去离子水质量比为1/18的比例溶解,于85℃下搅拌60分钟,然后逐滴加入1mol/L的HNO3水溶液,调节pH至2.5,即得乳白色半透明的AlOOH胶体溶液。
所述的反应底液的配制方法为:按照Ni(NO3)2·6H2O与NH4NO3摩尔比为1/6的比例将 Ni(NO3)2·6H2O和NH4NO3溶于去离子水中,NH4NO3的浓度为2mol/L;最后用1mol/L的氨水调节pH至5.9,即得反应底液。
上述制备得到的三维碳微阵列与水滑石复合材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度是55μm,直径是20μm,间距是80μm;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石薄层的厚度是0.4μm;水滑石片的厚度是25-35nm,径向尺寸是100-250nm。所述的水滑石片的化学组成为[Ni2+1-βAl3+β(OH)2]β+,β=0.28。
将上述制备过程中各阶段材料的形貌采用日立S-4800冷场发射扫描电子显微镜进行检测。不同阶段的材料扫描电镜图如图1所示。(a)为碳化光刻胶所得到的碳微阵列扫描电镜图,从图中可以看出得到的碳微阵列分布均匀整齐,单一碳柱推到后可观察到碳柱成规则圆柱型,表面光滑平整;(b)为沉积了AlOOH薄层的碳微阵列扫描电镜图,可以看到沉积AlOOH薄层的过程并没有破坏碳微阵列的形貌,AlOOH薄层平整的沉积在碳微阵列表面,用解剖针掀起一角可以清楚看到AlOOH薄层,证明AlOOH薄层沉积成功;(c),(d)为三维碳微阵列与水滑石复合材料的扫描电镜图,从图中观察到,沿着碳微阵列表面生长出一层均匀密布的片状水滑石,增加放大倍数可以看到卷曲的水滑石片层竖立在碳微阵列表面,构成了一层密布的大孔水滑石薄膜。
将上述制备的三维碳微阵列与水滑石复合材料作为工作电极,铂丝为对电极,Ag/AgCl电极为参比电极,组成电化学生物传感器。将该电化学生物传感器的三电极体系置于0.1mol/L的NaOH溶液中,采用上海辰华仪器公司CHI660D型电化学工作站对其进行电化学性能的表征。将碳微阵列水滑石复合材料切成15*15mm的尺寸(a),再于相同大小的硅片上分别生长水滑石(b)以及固定碳微阵列(c),三种电极分别对50mmol/L的葡萄糖进行催化,电流-时间曲线如图2所示。碳微阵列作为工作电极时,得到的电流-时间曲线为一条平整的直线,底液中注入葡萄糖时电流没有发生变化,说明碳微阵列对葡萄糖没有电催化作用。在光滑硅片表面直接生长水滑石作为工作电极,当底液中加入一定量的葡萄糖时,电流值出现了一个小阶梯的抬高,证明生长有水滑石的硅片对葡萄糖有一定的电催化效果。以生长有水滑石的碳微阵列作为工作电极,加入相同剂量的葡萄糖时,电流有了大幅度明显的升高,说明本发明中的复合材料对底液中的葡萄糖有明显的电催化作用。此外,电极尺寸相同时,相比于单一的碳微阵列以及单一的水滑石,复合材料的电催化性能更优异。
三维碳微阵列与镍铝水滑石复合电极对葡萄糖进行电催化的测试结果如图3所示,随着底液中葡萄糖浓度的增大,电流-时间曲线阶梯变化,电流变化值与葡萄糖浓度的关系如图4所示,从图中可以看出,本发明的复合材料在低于30mmol/L浓度下,对葡萄糖催化成线性。 这说明三维碳微阵列与镍铝水滑石复合材料对葡萄糖具有催化能力。
对制备的同一片复合材料,切分成5根电极,分别对50mmol/L的葡萄糖进行催化,响应电流的相对标准偏差为1.73%,表明制备的复合材料具有良好的均匀性和一致性;对同一批制备的5片复合材料,其催化50mmol/L的葡萄糖响应电流的相对标准偏差为3.48%,表明三维碳微阵列与镍铝水滑石复合电极具有良好的重现性,制备修饰电极过程稳定可靠;当修饰电极放置于室温中保存,储存一个月后仍保持初始响应信号的97.4%,表明复合材料具有良好的储存稳定性。
实施例2:
(1)将硅片依次置于丙酮、乙醇、二次水中分别超声20分钟后用丙酮淋洗,最后用N2吹干;在超净间,以处理后的硅片为基底,旋涂上SU-82025光刻胶,在23℃、相对湿度为50%的条件下自平整30分钟后置于烘胶台上进行前烘,先67℃烘干13分钟,再97℃烘干26分钟,最后置于温度为23℃、相对湿度为50%条件下冷却30分钟,得到光刻胶薄膜;采用圆孔直径为30μm,间距为80μm的掩膜图形进行曝光,曝光剂量为270mJ/cm2,曝光后的图形立即中烘,于95℃烘胶台烘干20分钟,然后置于23℃、相对湿度为50%条件下冷却25分钟;最后浸泡于显影液中40分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;
(2)将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以11℃/分钟的升温速度,从室温升至320℃煅烧40分钟,再以相同升温速度升至950℃,煅烧120分钟后降至室温,得到三维碳微阵列;
(3)将得到的三维碳微阵列浸入到AlOOH胶体溶液中15分钟后取出,常温自然晾干,完成一层AlOOH的沉积;
(4)重复步骤(3)操作60次,在三维碳微阵列表面沉积AlOOH薄层;然后浸入到反应底液中,密封,升温到85℃,12小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑石复合材料。
所述的AlOOH胶体溶液的制备方法同实施例1。
所述的反应底液的配制方法为:按照Co(NO3)2·6H2O与NH4NO3摩尔比为1/6的比例将Co(NO3)2·6H2O和NH4NO3溶于去离子水中,NH4NO3的浓度为2mol/L;最后用1mol/L的氨水调节pH至6.0,即得反应底液。
上述制备得到的三维碳微阵列与水滑石复合材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度是50μm,直径是30μm,间距是80μm;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石 薄层的厚度是0.42μm;水滑石片的厚度是26-31nm,径向尺寸是100-220nm。所述的水滑石片的化学组成为[Co2+1-βAl3+β(OH)2]β+,β=0.29。
将上述制备得到的三维碳微阵列与水滑石复合材料作为工作电极,铂丝为对电极,Ag/AgCl电极为参比电极,组成电化学生物传感器,于0.1mol/L的NaOH溶液中对葡萄糖进行定量检测。如图3所示,随着底液中葡萄糖浓度的增大,电流-时间曲线阶梯变化。电流变化值与葡萄糖浓度的关系如图4所示,从图中可以看出,本发明的复合材料在低于20mmol/L浓度下,对葡萄糖催化成线性。这说明三维碳微阵列与水滑石复合材料对葡萄糖具有催化能力。对制备的同一片复合材料,切分成5根电极,分别对50mmol/L的葡萄糖进行催化,响应电流的相对标准偏差为1.86%,表明制备的复合材料具有良好的均匀性和一致性;对同一批制备的5片复合材料,其催化50mmol/L的葡萄糖响应电流的相对标准偏差为3.74%,表明三维碳微阵列与水滑石复合材料电极具有良好的重现性,制备修饰电极过程稳定可靠;当修饰电极放置于室温中保存,储存一个月后仍保持初始响应信号的97.6%,表明复合材料具有良好的储存稳定性。
实施例3:
(1)将硅片依次置于丙酮、乙醇、二次水中分别超声15分钟后用丙酮淋洗,最后用N2吹干;在超净间,以处理后的硅片为基底,旋涂上SU-82100光刻胶,在23℃、相对湿度为50%的条件下自平整40分钟后置于烘胶台上进行前烘,先63℃烘干20分钟,再94℃烘干40分钟,最后置于温度为23℃、相对湿度为50%条件下冷却60分钟,得到光刻胶薄膜;采用圆孔直径为50μm,间距为50μm的掩膜图形进行曝光,曝光剂量为540mJ/cm2,曝光后的图形立即中烘,于94℃烘胶台烘干40分钟,然后置于23℃、相对湿度为50%条件下冷却30分钟;最后浸泡于显影液中40分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;
(2)将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以10℃/分钟的升温速度,从室温升至300℃煅烧40分钟,再以相同升温速度升至1000℃,煅烧120分钟后降至室温,得到三维碳微阵列;
(3)将得到的三维碳微阵列浸入到AlOOH胶体溶液中15分钟后取出,常温自然晾干,完成一层AlOOH的沉积;
(4)重复步骤(3)操作60次,在三维碳微阵列表面沉积AlOOH薄层;然后浸入到反应底液中,密封,升温到85℃,14小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑石复合材料。
所述的AlOOH胶体溶液的制备方法为:按照异丙醇铝与去离子水质量比为1/9的比例 将异丙醇铝溶于去离子水中,80℃下搅拌30分钟;使用1mol/L的HNO3水溶液调节pH至3.7,80℃下搅拌3小时,然后在50℃下干燥得到固体AlOOH,研磨成粉状;按照AlOOH与去离子水质量比为1/17的比例溶解,于85℃下搅拌100分钟,然后逐滴加入1mol/L的HNO3水溶液,调节pH至2,即得乳白色半透明的AlOOH胶体溶液。
所述的反应底液的配制方法为:按照Ni(NO3)2·6H2O与NH4NO3摩尔比为1/7的比例将Ni(NO3)2·6H2O和NH4NO3溶于去离子水中,NH4NO3的浓度为2.3mol/L;最后用1mol/L的氨水调节pH至5.9,即得反应底液。
上述制备得到的三维碳微阵列与水滑石复合材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度是100μm,直径是50μm,间距是50μm;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石薄层的厚度是0.51μm;水滑石片的厚度是25-40nm,径向尺寸是110-250nm。所述的水滑石片的化学组成为[Ni2+1-βAl3+β(OH)2]β+,β=0.31。
将上述制备得到的三维碳微阵列与水滑石复合材料作为工作电极,铂丝为对电极,Ag/AgCl电极为参比电极,组成电化学生物传感器,于0.1mol/L的NaOH溶液中对葡萄糖进行定量检测。如图3所示,随着底液中葡萄糖浓度的增大,电流-时间曲线阶梯变化。电流变化值与葡萄糖浓度的关系如图4所示,从图中可以看出,本发明的复合材料在低于26mmol/L浓度下,对葡萄糖催化成线性。这说明三维碳微阵列与镍铝水滑石复合材料对葡萄糖具有催化能力。对制备的同一片复合材料,切分成5根电极,分别对50mmol/L的葡萄糖进行催化,响应电流的相对标准偏差为2.03%,表明制备的复合材料具有良好的均匀性和一致性;对同一批制备的5片复合材料,其催化50mmol/L的葡萄糖响应电流的相对标准偏差为4.19%,表明三维碳微阵列与镍铝水滑石复合电极具有良好的重现性,制备修饰电极过程稳定可靠;当修饰电极放置于室温中保存,储存一个月后仍保持初始响应信号的96.8%,表明复合材料具有良好的储存稳定性。
实施例4:
(1)将硅片依次置于丙酮、乙醇、二次水中分别超声20分钟后用丙酮淋洗,最后用N2吹干;在超净间,以处理后的硅片为基底,旋涂上SU-82050光刻胶,在23℃、相对湿度为50%的条件下自平整30分钟后置于烘胶台上进行前烘,先65℃烘干15分钟,再95℃烘干30分钟,最后置于温度为23℃、相对湿度为50%条件下冷却40分钟,得到光刻胶薄膜;采用圆孔直径为40μm,间距为80μm的掩膜图形进行曝光,曝光剂量为360mJ/cm2,曝光后的图形立即中烘,于95℃烘胶台烘干25分钟,然后置于23℃、相对湿度为50%条件下冷却20分钟;最后浸泡于显影液中30分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微 阵列;
(2)将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以10℃/分钟的升温速度,从室温升至300℃煅烧40分钟,再以相同升温速度升至900℃,煅烧120分钟后降至室温,得到三维碳微阵列;
(3)将得到的三维碳微阵列浸入到AlOOH胶体溶液中20分钟后取出,常温自然晾干,完成一层AlOOH的沉积;
(4)重复步骤(3)操作65次,在三维碳微阵列表面沉积AlOOH薄层;然后浸入到反应底液中,密封,升温到85℃,16小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑石复合材料。
所述的AlOOH胶体溶液的制备方法为:按照异丙醇铝与去离子水质量比为1/11的比例将异丙醇铝溶于去离子水中,75℃下搅拌45分钟;使用1mol/L的HNO3水溶液调节pH至3.1,75℃下搅拌4小时,然后在45℃下干燥得到固体AlOOH,研磨成粉状;按照AlOOH与去离子水质量比为1/19的比例溶解,于85℃下搅拌120分钟,然后逐滴加入1mol/L的HNO3水溶液,调节pH至2.9,即得乳白色半透明的AlOOH胶体溶液。
所述的反应底液的配制方法为:按照Ni(NO3)2·6H2O与NH4NO3摩尔比为1/5的比例将Ni(NO3)2·6H2O和NH4NO3溶于去离子水中,NH4NO3的浓度为1.6mol/L;最后用1mol/L的氨水调节pH至5.9,即得反应底液。
上述制备得到的三维碳微阵列与水滑石复合材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度是75μm,直径是40μm,间距是80μm;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石薄层的厚度是0.5μm;水滑石片的厚度是30-40nm,径向尺寸是120-300nm。所述的水滑石片的化学组成为[Ni2+1-βAl3+β(OH)2]β+,β=0.3。
将上述制备得到的三维碳微阵列与水滑石复合材料作为工作电极,铂丝为对电极,Ag/AgCl电极为参比电极,组成电化学生物传感器,于0.1mol/L的NaOH溶液中对葡萄糖进行定量检测。如图3所示,随着底液中葡萄糖浓度的增大,电流-时间曲线阶梯变化。电流变化值与葡萄糖浓度的关系如图4所示,从图中可以看出,本发明的复合材料在低于24mmol/L浓度下,对葡萄糖催化成线性。这说明三维碳微阵列与镍铝水滑石复合材料对葡萄糖具有催化能力。对制备的同一片复合材料,切分成5根电极,分别对50mmol/L的葡萄糖进行催化,响应电流的相对标准偏差为1.29%,表明制备的复合材料具有良好的均匀性和一致性;对同一批制备的5片复合材料,其催化50mmol/L的葡萄糖响应电流的相对标准偏差为3.72%,表明三维碳微阵列与镍铝水滑石复合电极具有良好的重现性,制备修饰电极过程 稳定可靠;当修饰电极放置于室温中保存,储存一个月后仍保持初始响应信号的96.5%,表明复合材料具有良好的储存稳定性。

一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用.pdf_第1页
第1页 / 共13页
一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用.pdf_第2页
第2页 / 共13页
一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用.pdf》由会员分享,可在线阅读,更多相关《一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用.pdf(13页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104155353A43申请公布日20141119CN104155353A21申请号201410372951122申请日20140731G01N27/26200601G01N27/327200601B81C1/0020060171申请人深圳市容大感光科技股份有限公司地址518103广东省深圳市宝安区福永街道福永立新湖第一科技园研发楼13楼申请人北京师范大学72发明人海波邹应全杨遇春晏凯74专利代理机构北京同恒源知识产权代理有限公司11275代理人张水俤54发明名称一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用57摘要本发明公开了一种三维碳微阵列与水滑石复合。

2、材料的制备方法及其作为无酶传感器的应用。本发明的技术方案是以硅片为基底,在其表面采用光刻方法制备出光刻胶微阵列,经高温碳化后得到三维碳微阵列,然后在其表面沉积ALOOH薄层,最后置于水热釜中原位生长出水滑石薄层,即得到三维碳微阵列与水滑石复合材料。具有良好生物相容性的碳微阵列,形成一个个微型的集流体,其表面密布的水滑石薄层,提供了大比表面积的电催化活性位点,使复合材料适宜于用做无酶传感器工作电极。此外本发明的复合电极,可批量生产,并且固定有碳微阵列的硅片电极可以切割成多个电极使用,极大降低了传感器工作电极的生产成本,并具有良好的操作稳定性及储存稳定性。51INTCL权利要求书2页说明书8页附图。

3、2页19中华人民共和国国家知识产权局12发明专利申请权利要求书2页说明书8页附图2页10申请公布号CN104155353ACN104155353A1/2页21一种三维碳微阵列与水滑石复合材料,其特征在于,该材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度范围是35120M,直径范围是2060M,间距范围是20120M;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石薄层的厚度范围是0209M;水滑石片的厚度范围是540NM,径向尺寸范围是10400NM。2根据权利要求1所述的三维碳微阵列与水滑石复合材料,其特征在于,所述的水滑石。

4、片的化学组成为M21AL3OH2;M2代表二价金属阳离子NI2或CO2,较佳的为NI2;1和分别为二价金属阳离子、AL3的物质的量分数,且0204;为水滑石片所带正电荷量。3根据权利要求1所述的三维碳微阵列与水滑石复合材料的制备方法,其特征在于,其具体操作步骤为1在超净间,以处理后的硅片为基底,旋涂上光刻胶,匀胶厚度为35120M,在2124、相对湿度为4951的条件下自平整3060分钟后置于烘胶台上进行前烘,先6070烘干1020分钟,再90100烘干2040分钟,最后置于温度为2124、相对湿度为4951条件下冷却3090分钟,得到光刻胶薄膜;采用圆孔直径为2060M,间距为20120M的。

5、掩膜图形进行曝光,曝光剂量为260540MJ/CM2,曝光后的图形立即中烘,于90100烘胶台烘干2050分钟,然后置于2124、相对湿度为4951条件下冷却2030分钟;最后浸泡于显影液中3040分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;2将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以812/分钟的升温速度,从室温升至250350煅烧3050分钟,再以相同升温速度升至9001000,煅烧100140分钟后降至室温,得到三维碳微阵列;3将得到的三维碳微阵列浸入到ALOOH胶体溶液中1520分钟后取出,常温自然晾干,完成一层ALOOH的沉积;4重复步骤3操作6070次,在三维碳微。

6、阵列表面沉积不同厚度的ALOOH薄层;然后浸入到反应底液中,密封,升温到8595,1216小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑石复合材料。4根据权利要求3所述的制备方法,其特征在于,步骤1中所述的光刻胶选自SU82025、SU82050、SU82075、SU82100光刻胶中的一种。5根据权利要求3所述的制备方法,其特征在于,步骤1所述的硅片处理方法为将硅片依次置于丙酮、乙醇、二次水中分别超声520分钟后用丙酮淋洗,最后用N2吹干。6根据权利要求3所述的制备方法,其特征在于,所述的ALOOH胶体溶液的制备方法为按照异丙醇铝与去离子水质量比为1/91/12的比例将。

7、异丙醇铝溶于去离子水中,7090下搅拌1545分钟;使用13MOL/L的HNO3水溶液调节PH至34,7090下搅拌14小时,然后在4560下干燥得到固体ALOOH,研磨成粉状;按照ALOOH与去离子水质量比为1/171/20的比例溶解,于8090下搅拌30120分钟,然后逐滴加入13MOL/L的HNO3水溶液,调节PH至14,即得乳白色半透明的ALOOH胶体溶液。7根据权利要求3所述的制备方法,其特征在于,所述的反应底液的配制方法为按照二价金属阳离子与NH4NO3摩尔比为1/51/8的比例将可溶二价金属盐和NH4NO3溶于去离子权利要求书CN104155353A2/2页3水中,NH4NO3的。

8、浓度为13MOL/L;最后用13MOL/L的氨水调节PH至57,即得反应底液。8根据权利要求7所述的制备方法,其特征在于,所述的二价金属阳离子选自NI2或CO2。9根据权利要求7所述的制备方法,其特征在于,所述的可溶二价金属盐选自硝酸镍或硝酸钴。10根据权利要求39任一所述的方法制备得到的三维碳微阵列与水滑石复合材料作为无酶传感器的应用。权利要求书CN104155353A1/8页4一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用技术领域0001本发明属于电化学生物传感器及其制备技术领域,特别涉及一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用。背景技术000。

9、2日趋重要的生物小分子检测技术推动着电化学生物传感器的蓬勃发展。电化学生物传感器,通过生物分子识别元件,快速准确感应检测基质,再以电信号的形式,定性定量表述指定生物分子的含量。生物分子识别元件主要由生物敏感膜和基底材料组成,根据生物敏感膜作用机理的不同,生物传感器可以分类为酶传感器和无酶传感器。酶传感器中的生物酶在高温,强酸强碱,重金属,有毒物质等等条件下均易减弱或失去活性,这使酶传感器的发展和应用受到了极大的限制;也使无酶传感器日益引来广泛的关注。0003无酶传感器制备中,选择利于生物敏感膜活性的基底材料非常重要,常见的基底材料包括各类导电金属,玻璃,石英等等。此外,种类繁多,物化性能各具特。

10、点的碳材料近年来也被广泛用作生物传感器的基底材料,碳材料被选作基底材料主要由于以下几点1石墨化程度较高的碳材料具有优异的导电性能;2具有比其他基底更宽的电化学稳定窗口;3具有良好的生物相容性,在生化器件中应用普遍;4原材料广泛,合成简便,形貌各异。0004微制造技术由于体积小,成本低,精度高,一体成型等优点已渗透到现代化研发的方方面面,基于碳材料的碳微制造也发展成了微制造领域的一大分支。碳微制造包括离子铣,离子刻蚀以及近两年新兴的光刻碳化工艺。光刻碳化工艺相较于其他碳微制造技术具有以下几大优点1由于光刻工艺的图形灵活多变,光刻碳化工艺所制备的碳材料形貌丰富多样;2控制碳化温度可以得到物化性能稳。

11、定的碳材料;3光刻碳化工艺易于量产,能极大降低生产成本;4结合不同纳米材料得到微纳复合结构,延伸出多种机械,化学及电学性能。将这种碳微制造技术应用于生物传感器中基底材料的制备已有报道。0005在文献1BIOSENSORSANDBIOELECTRONICS,2008,2316371644中,HANXU等人以SU8光刻胶为基底材料,采用光刻碳化的方法,得到整齐排列的碳微阵列,再采用聚合物固定葡萄糖氧化酶到碳微柱表面,制备了酶传感器,并通过控制涂胶厚度和掩膜图形,考察了碳微柱的高度,间距以及直径对所制备传感器电化学性能的影响。但平整光滑的碳微柱固定酶分子量受限,传感器性能较差。0006在文献2SEN。

12、SORSANDACTUATORAPHYSICAL,2013,1981520中,SHUANGXI等人采用SU8光刻胶涂胶曝光,并在显影液中混合了多壁碳纳米管进行显影。作者利用纳米结构的自组装性能,得到了表面布满碳纳米管的碳微阵列,再利用聚合物在其表面固定酶分子,制备出了葡萄糖氧化酶传感器。密布的碳纳米管,极大增加了比表面积,显著提高了载酶量,但是采用的活性物质是酶分子,所以依然避免不了所制备的传感器受限于环境因素。说明书CN104155353A2/8页5发明内容0007本发明的目的在于提供一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用。0008本发明的技术方案是以硅片为基底,。

13、在其表面采用光刻方法制备出光刻胶微阵列,经高温碳化后得到三维碳微阵列,然后在其表面沉积ALOOH薄层,最后置于水热釜中原位生长出水滑石薄层,即得到三维碳微阵列与水滑石复合材料,该材料可直接用做工作电极以构筑电化学无酶传感器。0009本发明所述的三维碳微阵列与水滑石复合材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度范围是35120M,直径范围是2060M,间距范围是20120M;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石薄层的厚度范围是0209M;水滑石片的厚度范围是540NM,径向尺寸范围是10400NM。0010所述的。

14、水滑石片的化学组成为M21AL3OH2;M2代表二价金属阳离子NI2或CO2,较佳的为NI2;1和分别为二价金属阳离子、AL3的物质的量分数,且0204;为水滑石片所带正电荷量。0011本发明所述的三维碳微阵列与水滑石复合材料的制备方法为00121在超净间,以处理后的硅片为基底,旋涂上光刻胶,匀胶厚度为35120M,在2124、相对湿度为4951的条件下自平整3060分钟后置于烘胶台上进行前烘,先6070烘干1020分钟,再90100烘干2040分钟,最后置于温度为2124、相对湿度为4951条件下冷却3090分钟,得到光刻胶薄膜;采用圆孔直径为2060M,间距为20120M的掩膜图形进行曝光。

15、,曝光剂量为260540MJ/CM2,曝光后的图形立即中烘,于90100烘胶台烘干2050分钟,然后置于2124、相对湿度为4951条件下冷却2030分钟;最后浸泡于显影液中3040分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;00132将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以812/分钟的升温速度,从室温升至250350煅烧3050分钟,再以相同升温速度升至9001000,煅烧100140分钟后降至室温,得到三维碳微阵列;00143将得到的三维碳微阵列浸入到ALOOH胶体溶液中1520分钟后取出,常温自然晾干,完成一层ALOOH的沉积;00154重复步骤3操作6070次,在。

16、三维碳微阵列表面沉积不同厚度的ALOOH薄层;然后浸入到反应底液中,密封,升温到8595,1216小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑石复合材料。0016步骤1所述的光刻胶选自SU82025、SU82050、SU82075、SU82100光刻胶中的一种。0017步骤1所述的硅片处理方法为将硅片依次置于丙酮、乙醇、二次水中分别超声520分钟后用丙酮淋洗,最后用N2吹干。0018所述的ALOOH胶体溶液的制备方法为0019按照异丙醇铝与去离子水质量比为1/91/12的比例将异丙醇铝溶于去离子水说明书CN104155353A3/8页6中,7090下搅拌1545分钟;使。

17、用13MOL/L的HNO3水溶液调节PH至34,7090下搅拌14小时,然后在4560下干燥得到固体ALOOH,研磨成粉状;按照ALOOH与去离子水质量比为1/171/20的比例溶解,于8090下搅拌30120分钟,然后逐滴加入13MOL/L的HNO3水溶液,调节PH至14,即得乳白色半透明的ALOOH胶体溶液。0020所述的反应底液的配制方法为0021按照二价金属阳离子与NH4NO3摩尔比为1/51/8的比例将可溶二价金属盐和NH4NO3溶于去离子水中,NH4NO3的浓度为13MOL/L;最后用13MOL/L的氨水调节PH至57,即得反应底液。0022所述的二价金属阳离子选自NI2或CO2。。

18、0023所述的可溶二价金属盐选自硝酸镍或硝酸钴。0024将上述制备的三维碳微阵列与水滑石复合材料作为无酶传感器的应用。0025本发明的特点及效果在于本发明结合了光刻碳化的碳微制造方法与原位生长方法,制备了三维碳微阵列与水滑石复合材料。具有良好生物相容性的碳微阵列,形成一个个微型的集流体,其表面密布的水滑石薄层,提供了大比表面积的电催化活性位点,使复合材料适宜于用做无酶传感器工作电极。此外本发明的复合电极,可批量生产,并且固定有碳微阵列的硅片电极可以切割成多个电极使用,极大降低了传感器工作电极的生产成本,并具有良好的操作稳定性及储存稳定性。本发明为碳微制造拓宽了新的应用领域,为电化学微电极的研发。

19、提供了一种新方法。附图说明0026图1实施例1制备过程中各阶段材料扫描电镜图;其中,A为碳微阵列;B为沉积ALOOH薄层的碳微阵列;C,D三维碳微阵列与水滑石复合材料。0027图2三维碳微阵列与水滑石复合材料A,硅片表面生长水滑石B以及硅片表面固定碳微阵列C分别对底液中葡萄糖进行催化的电流时间曲线。0028图3为溶液中葡萄糖浓度逐渐增加时三维碳微阵列与水滑石复合材料电极的电流时间曲线;其中,横坐标时间,单位为秒S;纵坐标电流,单位为毫安A。0029图4为三维碳微阵列与水滑石复合材料电极对葡萄糖的催化电流与葡萄糖浓度的关系曲线;其中,横坐标葡萄糖浓度,单位为微摩尔/升MMOL/L;纵坐标电流,单。

20、位为毫安A。具体实施方式0030以下实施例中所用水溶液均采用二次水配制。0031实施例100321将硅片依次置于丙酮、乙醇、二次水中分别超声20分钟后用丙酮淋洗,最后用N2吹干;在超净间,以处理后的硅片为基底,旋涂上SU82050光刻胶,在23、相对湿度为50的条件下自平整30分钟后置于烘胶台上进行前烘,先65烘干15分钟,再95烘干30分钟,最后置于温度为23、相对湿度为50条件下冷却40分钟,得到光刻胶薄膜;采用圆孔直径为40M,间距为80M的掩膜图形进行曝光,曝光剂量为360MJ/CM2,曝光后的图形立即中烘,于95烘胶台烘干25分钟,然后置于23、相对湿度为50条件下冷却20说明书CN。

21、104155353A4/8页7分钟;最后浸泡于显影液中30分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;00332将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以10/分钟的升温速度,从室温升至300煅烧40分钟,再以相同升温速度升至1000,煅烧120分钟后降至室温,得到三维碳微阵列;00343将得到的三维碳微阵列浸入到ALOOH胶体溶液中15分钟后取出,常温自然晾干,完成一层ALOOH的沉积;00354重复步骤3操作60次,在三维碳微阵列表面沉积ALOOH薄层;然后浸入到反应底液中,密封,升温到85,12小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑石复合材。

22、料。0036所述的ALOOH胶体溶液的制备方法为按照异丙醇铝与去离子水质量比为1/10的比例将异丙醇铝溶于去离子水中,85下搅拌20分钟;使用1MOL/L的HNO3水溶液调节PH至34,85下搅拌2小时,然后在60下干燥得到固体ALOOH,研磨成粉状;按照ALOOH与去离子水质量比为1/18的比例溶解,于85下搅拌60分钟,然后逐滴加入1MOL/L的HNO3水溶液,调节PH至25,即得乳白色半透明的ALOOH胶体溶液。0037所述的反应底液的配制方法为按照NINO326H2O与NH4NO3摩尔比为1/6的比例将NINO326H2O和NH4NO3溶于去离子水中,NH4NO3的浓度为2MOL/L;。

23、最后用1MOL/L的氨水调节PH至59,即得反应底液。0038上述制备得到的三维碳微阵列与水滑石复合材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度是55M,直径是20M,间距是80M;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石薄层的厚度是04M;水滑石片的厚度是2535NM,径向尺寸是100250NM。所述的水滑石片的化学组成为NI21AL3OH2,028。0039将上述制备过程中各阶段材料的形貌采用日立S4800冷场发射扫描电子显微镜进行检测。不同阶段的材料扫描电镜图如图1所示。A为碳化光刻胶所得到的碳微阵列扫描电镜图。

24、,从图中可以看出得到的碳微阵列分布均匀整齐,单一碳柱推到后可观察到碳柱成规则圆柱型,表面光滑平整;B为沉积了ALOOH薄层的碳微阵列扫描电镜图,可以看到沉积ALOOH薄层的过程并没有破坏碳微阵列的形貌,ALOOH薄层平整的沉积在碳微阵列表面,用解剖针掀起一角可以清楚看到ALOOH薄层,证明ALOOH薄层沉积成功;C,D为三维碳微阵列与水滑石复合材料的扫描电镜图,从图中观察到,沿着碳微阵列表面生长出一层均匀密布的片状水滑石,增加放大倍数可以看到卷曲的水滑石片层竖立在碳微阵列表面,构成了一层密布的大孔水滑石薄膜。0040将上述制备的三维碳微阵列与水滑石复合材料作为工作电极,铂丝为对电极,AG/AG。

25、CL电极为参比电极,组成电化学生物传感器。将该电化学生物传感器的三电极体系置于01MOL/L的NAOH溶液中,采用上海辰华仪器公司CHI660D型电化学工作站对其进行电化学性能的表征。将碳微阵列水滑石复合材料切成1515MM的尺寸A,再于相同大小的硅片上分别生长水滑石B以及固定碳微阵列C,三种电极分别对50MMOL/L的葡萄糖进行催化,电流时间曲线如图2所示。碳微阵列作为工作电极时,得到的电流时间曲线为一条平整的直线,底液中注入葡萄糖时电流没有发生变化,说明碳微阵列对葡萄糖没有电催化作用。在光滑硅片表面直接生长水滑石作为工作电极,当底液中加入一定量的葡萄糖时,电流说明书CN104155353A。

26、5/8页8值出现了一个小阶梯的抬高,证明生长有水滑石的硅片对葡萄糖有一定的电催化效果。以生长有水滑石的碳微阵列作为工作电极,加入相同剂量的葡萄糖时,电流有了大幅度明显的升高,说明本发明中的复合材料对底液中的葡萄糖有明显的电催化作用。此外,电极尺寸相同时,相比于单一的碳微阵列以及单一的水滑石,复合材料的电催化性能更优异。0041三维碳微阵列与镍铝水滑石复合电极对葡萄糖进行电催化的测试结果如图3所示,随着底液中葡萄糖浓度的增大,电流时间曲线阶梯变化,电流变化值与葡萄糖浓度的关系如图4所示,从图中可以看出,本发明的复合材料在低于30MMOL/L浓度下,对葡萄糖催化成线性。这说明三维碳微阵列与镍铝水滑。

27、石复合材料对葡萄糖具有催化能力。0042对制备的同一片复合材料,切分成5根电极,分别对50MMOL/L的葡萄糖进行催化,响应电流的相对标准偏差为173,表明制备的复合材料具有良好的均匀性和一致性;对同一批制备的5片复合材料,其催化50MMOL/L的葡萄糖响应电流的相对标准偏差为348,表明三维碳微阵列与镍铝水滑石复合电极具有良好的重现性,制备修饰电极过程稳定可靠;当修饰电极放置于室温中保存,储存一个月后仍保持初始响应信号的974,表明复合材料具有良好的储存稳定性。0043实施例200441将硅片依次置于丙酮、乙醇、二次水中分别超声20分钟后用丙酮淋洗,最后用N2吹干;在超净间,以处理后的硅片为。

28、基底,旋涂上SU82025光刻胶,在23、相对湿度为50的条件下自平整30分钟后置于烘胶台上进行前烘,先67烘干13分钟,再97烘干26分钟,最后置于温度为23、相对湿度为50条件下冷却30分钟,得到光刻胶薄膜;采用圆孔直径为30M,间距为80M的掩膜图形进行曝光,曝光剂量为270MJ/CM2,曝光后的图形立即中烘,于95烘胶台烘干20分钟,然后置于23、相对湿度为50条件下冷却25分钟;最后浸泡于显影液中40分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;00452将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以11/分钟的升温速度,从室温升至320煅烧40分钟,再以相同升温速度升至。

29、950,煅烧120分钟后降至室温,得到三维碳微阵列;00463将得到的三维碳微阵列浸入到ALOOH胶体溶液中15分钟后取出,常温自然晾干,完成一层ALOOH的沉积;00474重复步骤3操作60次,在三维碳微阵列表面沉积ALOOH薄层;然后浸入到反应底液中,密封,升温到85,12小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑石复合材料。0048所述的ALOOH胶体溶液的制备方法同实施例1。0049所述的反应底液的配制方法为按照CONO326H2O与NH4NO3摩尔比为1/6的比例将CONO326H2O和NH4NO3溶于去离子水中,NH4NO3的浓度为2MOL/L;最后用1M。

30、OL/L的氨水调节PH至60,即得反应底液。0050上述制备得到的三维碳微阵列与水滑石复合材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度是50M,直径是30M,间距是80M;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石薄层的厚度是042M;水滑石片的厚度是2631NM,径向尺寸是100220NM。所述的水滑石片的化学组成为CO21AL3OH2,029。说明书CN104155353A6/8页90051将上述制备得到的三维碳微阵列与水滑石复合材料作为工作电极,铂丝为对电极,AG/AGCL电极为参比电极,组成电化学生物传感器,于。

31、01MOL/L的NAOH溶液中对葡萄糖进行定量检测。如图3所示,随着底液中葡萄糖浓度的增大,电流时间曲线阶梯变化。电流变化值与葡萄糖浓度的关系如图4所示,从图中可以看出,本发明的复合材料在低于20MMOL/L浓度下,对葡萄糖催化成线性。这说明三维碳微阵列与水滑石复合材料对葡萄糖具有催化能力。对制备的同一片复合材料,切分成5根电极,分别对50MMOL/L的葡萄糖进行催化,响应电流的相对标准偏差为186,表明制备的复合材料具有良好的均匀性和一致性;对同一批制备的5片复合材料,其催化50MMOL/L的葡萄糖响应电流的相对标准偏差为374,表明三维碳微阵列与水滑石复合材料电极具有良好的重现性,制备修饰。

32、电极过程稳定可靠;当修饰电极放置于室温中保存,储存一个月后仍保持初始响应信号的976,表明复合材料具有良好的储存稳定性。0052实施例300531将硅片依次置于丙酮、乙醇、二次水中分别超声15分钟后用丙酮淋洗,最后用N2吹干;在超净间,以处理后的硅片为基底,旋涂上SU82100光刻胶,在23、相对湿度为50的条件下自平整40分钟后置于烘胶台上进行前烘,先63烘干20分钟,再94烘干40分钟,最后置于温度为23、相对湿度为50条件下冷却60分钟,得到光刻胶薄膜;采用圆孔直径为50M,间距为50M的掩膜图形进行曝光,曝光剂量为540MJ/CM2,曝光后的图形立即中烘,于94烘胶台烘干40分钟,然后。

33、置于23、相对湿度为50条件下冷却30分钟;最后浸泡于显影液中40分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;00542将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以10/分钟的升温速度,从室温升至300煅烧40分钟,再以相同升温速度升至1000,煅烧120分钟后降至室温,得到三维碳微阵列;00553将得到的三维碳微阵列浸入到ALOOH胶体溶液中15分钟后取出,常温自然晾干,完成一层ALOOH的沉积;00564重复步骤3操作60次,在三维碳微阵列表面沉积ALOOH薄层;然后浸入到反应底液中,密封,升温到85,14小时后取出,依次用二次水和乙醇淋洗,室温干燥,即得三维碳微阵列与水滑。

34、石复合材料。0057所述的ALOOH胶体溶液的制备方法为按照异丙醇铝与去离子水质量比为1/9的比例将异丙醇铝溶于去离子水中,80下搅拌30分钟;使用1MOL/L的HNO3水溶液调节PH至37,80下搅拌3小时,然后在50下干燥得到固体ALOOH,研磨成粉状;按照ALOOH与去离子水质量比为1/17的比例溶解,于85下搅拌100分钟,然后逐滴加入1MOL/L的HNO3水溶液,调节PH至2,即得乳白色半透明的ALOOH胶体溶液。0058所述的反应底液的配制方法为按照NINO326H2O与NH4NO3摩尔比为1/7的比例将NINO326H2O和NH4NO3溶于去离子水中,NH4NO3的浓度为23MO。

35、L/L;最后用1MOL/L的氨水调节PH至59,即得反应底液。0059上述制备得到的三维碳微阵列与水滑石复合材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度是100M,直径是50M,间距是50M;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组成,水滑石薄层的厚度是051M;水滑石片的厚度是2540NM,径向尺寸是110250NM。说明书CN104155353A7/8页10所述的水滑石片的化学组成为NI21AL3OH2,031。0060将上述制备得到的三维碳微阵列与水滑石复合材料作为工作电极,铂丝为对电极,AG/AGCL电极为参比电极,组。

36、成电化学生物传感器,于01MOL/L的NAOH溶液中对葡萄糖进行定量检测。如图3所示,随着底液中葡萄糖浓度的增大,电流时间曲线阶梯变化。电流变化值与葡萄糖浓度的关系如图4所示,从图中可以看出,本发明的复合材料在低于26MMOL/L浓度下,对葡萄糖催化成线性。这说明三维碳微阵列与镍铝水滑石复合材料对葡萄糖具有催化能力。对制备的同一片复合材料,切分成5根电极,分别对50MMOL/L的葡萄糖进行催化,响应电流的相对标准偏差为203,表明制备的复合材料具有良好的均匀性和一致性;对同一批制备的5片复合材料,其催化50MMOL/L的葡萄糖响应电流的相对标准偏差为419,表明三维碳微阵列与镍铝水滑石复合电极。

37、具有良好的重现性,制备修饰电极过程稳定可靠;当修饰电极放置于室温中保存,储存一个月后仍保持初始响应信号的968,表明复合材料具有良好的储存稳定性。0061实施例400621将硅片依次置于丙酮、乙醇、二次水中分别超声20分钟后用丙酮淋洗,最后用N2吹干;在超净间,以处理后的硅片为基底,旋涂上SU82050光刻胶,在23、相对湿度为50的条件下自平整30分钟后置于烘胶台上进行前烘,先65烘干15分钟,再95烘干30分钟,最后置于温度为23、相对湿度为50条件下冷却40分钟,得到光刻胶薄膜;采用圆孔直径为40M,间距为80M的掩膜图形进行曝光,曝光剂量为360MJ/CM2,曝光后的图形立即中烘,于9。

38、5烘胶台烘干25分钟,然后置于23、相对湿度为50条件下冷却20分钟;最后浸泡于显影液中30分钟,溶解掉未发生交联的光刻胶,即得到光刻胶微阵列;00632将得到的光刻胶微阵列置于管式炉中,N2保护条件下,以10/分钟的升温速度,从室温升至300煅烧40分钟,再以相同升温速度升至900,煅烧120分钟后降至室温,得到三维碳微阵列;00643将得到的三维碳微阵列浸入到ALOOH胶体溶液中20分钟后取出,常温自然晾干,完成一层ALOOH的沉积;00654重复步骤3操作65次,在三维碳微阵列表面沉积ALOOH薄层;然后浸入到反应底液中,密封,升温到85,16小时后取出,依次用二次水和乙醇淋洗,室温干燥。

39、,即得三维碳微阵列与水滑石复合材料。0066所述的ALOOH胶体溶液的制备方法为按照异丙醇铝与去离子水质量比为1/11的比例将异丙醇铝溶于去离子水中,75下搅拌45分钟;使用1MOL/L的HNO3水溶液调节PH至31,75下搅拌4小时,然后在45下干燥得到固体ALOOH,研磨成粉状;按照ALOOH与去离子水质量比为1/19的比例溶解,于85下搅拌120分钟,然后逐滴加入1MOL/L的HNO3水溶液,调节PH至29,即得乳白色半透明的ALOOH胶体溶液。0067所述的反应底液的配制方法为按照NINO326H2O与NH4NO3摩尔比为1/5的比例将NINO326H2O和NH4NO3溶于去离子水中,。

40、NH4NO3的浓度为16MOL/L;最后用1MOL/L的氨水调节PH至59,即得反应底液。0068上述制备得到的三维碳微阵列与水滑石复合材料是由水滑石薄层生长在三维碳微阵列表面构成的;所述的三维碳微阵列由碳微柱子组成,碳微柱子的高度是75M,直径是40M,间距是80M;所述的水滑石薄层由垂直生长于三维碳微阵列表面的水滑石片组说明书CN104155353A108/8页11成,水滑石薄层的厚度是05M;水滑石片的厚度是3040NM,径向尺寸是120300NM。所述的水滑石片的化学组成为NI21AL3OH2,03。0069将上述制备得到的三维碳微阵列与水滑石复合材料作为工作电极,铂丝为对电极,AG/。

41、AGCL电极为参比电极,组成电化学生物传感器,于01MOL/L的NAOH溶液中对葡萄糖进行定量检测。如图3所示,随着底液中葡萄糖浓度的增大,电流时间曲线阶梯变化。电流变化值与葡萄糖浓度的关系如图4所示,从图中可以看出,本发明的复合材料在低于24MMOL/L浓度下,对葡萄糖催化成线性。这说明三维碳微阵列与镍铝水滑石复合材料对葡萄糖具有催化能力。对制备的同一片复合材料,切分成5根电极,分别对50MMOL/L的葡萄糖进行催化,响应电流的相对标准偏差为129,表明制备的复合材料具有良好的均匀性和一致性;对同一批制备的5片复合材料,其催化50MMOL/L的葡萄糖响应电流的相对标准偏差为372,表明三维碳微阵列与镍铝水滑石复合电极具有良好的重现性,制备修饰电极过程稳定可靠;当修饰电极放置于室温中保存,储存一个月后仍保持初始响应信号的965,表明复合材料具有良好的储存稳定性。说明书CN104155353A111/2页12图1图2说明书附图CN104155353A122/2页13图3图4说明书附图CN104155353A13。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 测量;测试


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1