生产6-4-氯苯基-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸的方法.pdf

上传人:a1 文档编号:95764 上传时间:2018-01-24 格式:PDF 页数:26 大小:1.36MB
返回 下载 相关 举报
摘要
申请专利号:

CN02816449.0

申请日:

2002.08.21

公开号:

CN1545516A

公开日:

2004.11.10

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):C07D 487/04申请日:20020821授权公告日:20060726终止日期:20130821|||授权|||实质审查的生效|||公开

IPC分类号:

C07D487/04; C07D207/20

主分类号:

C07D487/04; C07D207/20

申请人:

默克勒有限公司;

发明人:

G·丹哈德特; T·卡默迈尔; P·默克勒; H-G·施特里格尔; S·劳弗

地址:

德国布劳博伊伦

优先权:

2001.08.23 DE 10141285.1

专利代理机构:

北京市中咨律师事务所

代理人:

刘金辉;林柏楠

PDF下载: PDF下载
内容摘要

本发明涉及一种生产6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸的方法,其中将5-苄基-3,3-二甲基-3,4-二氢-2H-吡咯与ω-溴-4-氯苯乙酮反应,得到6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪,并在5-位引入乙酸基团,其中通过氢化2,2-二甲基-4-氧代-5-苯基戊腈或缩酮得到5-苄基-3,3-二甲基-3,4-二氢-2H-吡咯。本发明还涉及生产在上述方法中出现的中间体的方法。

权利要求书

1: 一种制备式I化合物的方法: 其中 a)将式IV化合物 通过如下方式a1)或a2)转化成式III化合物: a1)催化氢化式IV化合物或 a2)将式IV化合物转化成式IVa的缩酮并催化氢化该缩酮: 其中基团R可以相同或不同且为C 1 -C 4 烷基或一起为C 2 -C 3 亚烷基, b)使式III化合物与ω-溴-4-氯苯乙酮反应,得到式II化合物: 和 c)将乙酸基团引入式II化合物中。
2: 一种制备式II化合物的方法: 其中将式IV化合物 通过如下方式a1)或a2)转化成式III化合物: a1)催化氢化式IV化合物或 a2)将式IV化合物转化成式IVa的缩酮并催化氢化该缩酮: 其中基团R可以相同或不同且为C 1 -C 4 烷基或一起为C 2 -C 3 亚烷基, b)使式III化合物与ω-溴-4-氯苯乙酮反应,得到式II化合物。
3: 一种制备式III化合物的方法: 其中将式IV化合物 通过如下方式a1)或a2)转化成式III化合物: a1)催化氢化式IV化合物或 a2)将式IV化合物转化成式IVa的缩酮并催化氢化该缩酮: 其中基团R可以相同或不同且为C 1 -C 4 烷基或一起为C 2 -C 3 亚烷基。
4: 根据前述权利要求中任一项所要求的方法,其中在催化氢化中将 无水阮内镍用作催化剂。
5: 根据前述权利要求中任一项所要求的方法,其中氢化在作为溶剂 的甲苯或甲苯与C 1 -C 4 醇的混合物中进行。
6: 根据前述权利要求中任一项所要求的方法,其中式IV化合物以 至少95%的纯度使用。
7: 根据前述权利要求中任一项所要求的方法,其中式IV化合物通 过如下方式得到: 使异丁腈与式V化合物进行迈克尔加成: 将迈克尔加成产物苄基化,得到2-苄基-4,4-二甲基-2-(N-甲基苯胺基)戊二 腈并水解该腈。
8: 根据权利要求7所要求的方法,其中在甲苯中使用二异丙基氨基 锂使异丁腈去质子。
9: 根据权利要求7或8所要求的方法,其中在迈克尔加成中的反应 温度为约-10℃~20℃。
10: 根据权利要求7-9中任一项所要求的方法,其中腈在酸中的水解 在相转移催化作用下于两相体系中进行。
11: 根据权利要求7-10中任一项所要求的方法,其中通过氯乙醛、 N-甲基苯胺和碱金属氰化物的反应以及随后进行碱性消去而得到式V化合 物。
12: 根据权利要求11所要求的方法,其中依次将氯乙醛和碱金属氰 化物加入N-甲基苯胺中。
13: 根据权利要求11或12所要求的方法,其中氯乙醛、N-甲基苯胺 和碱金属氰化物以约1.1-1.3∶1∶1.1-1.3的摩尔比使用。
14: 根据权利要求11-13中任一项所要求的方法,其中碱性消去在相 转移催化下在两相体系中进行。

说明书


生产6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢 -1H-吡咯里嗪-5-基乙酸的方法

    本发明涉及一种制备6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸(ML3000)的方法以及制备在该方法中出现的中间体的方法。

    ML3000是环加氧酶和5-脂氧化酶的一种有前景的抑制剂,因此适于治疗风湿性疾病以及预防性治疗过敏诱发的疾病,为此参见例如Drugs ofthe Future(未来药物),1995,20(10):1007-1009。在该出版物中,还发现了一种可能的制备途径。其他制备的可能性描述于EP-A-397175、WO95/32970、WO95/32971、WO95/32972、Archiv der Pharmazie 312,896-907(1979)和321,159-162(1988)、J.Med.Chem.1994(37),1894-1897、Arch.Pharm.Med.Chem.330,307-312(1997)中。在所有这些合成中,吡咯里嗪(pyrrolizin)母体结构根据如下反应方案中所示的方法合成:

    该反应在二氯甲烷、乙醇或乙醚中进行。通过加入碳酸氢钠水溶液捕获该反应中形成的溴化氢。

    在5位上引入乙酸基团可以通过与重氮基乙酸酯、草酸酯酰氯或草酰氯反应并随后水解或水解和使用肼还原酮基而实现。

    Arch.Pharm.312,896-907(1979)描述了下列反应:

    该反应在作为溶剂的苯中进行。然而,COCOCl基团并未随后转化成乙酸基团,而是与二乙胺反应。

    根据肼方法以钾盐得到并随后从用无机酸酸化的反应混合物中沉淀出来的粗ML3000除了含有在水中溶解性差的钾盐外,还含有肼、副产物和分解产物(脱羧产物和二聚体)作为杂质。这要求额外的提纯操作。

    专利申请PCT/EP 01/00852公开了一种通过使6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪与草酰氯和肼反应、然后进行特殊处理而制备ML3000的方法。在该文献中,在该吡咯里嗪与草酰氯反应之后,将所得产物用肼和碱金属氢氧化物在水相中于升高的温度下处理;在处理完成之后通过加入与水不混溶或仅有限混溶的醚产生三相体系,并通过酸化中间相而回收ML3000。多晶形ML3000以高产率和纯净的确定结晶形式得到。

    总而言之,该合成反应以在下列反应方案中所示的步骤进行:

                    步骤1                 步骤2                       步骤3

    步骤1和2由EP 0 172 371 A1已知。2,2-二甲基-1,3-丙二醇与亚硫酰氯的反应在惰性有机溶剂如卤代烃或醚中,优选于0-60℃下进行。在DMSO中于约80-120℃下将5,5-二甲基-1,3,2-二氧硫杂环己烷2-氧化物与氰化钠进一步反应以生成4-羟基-3,3-二甲基丁腈。步骤1的产率为约93-99%,而步骤2的产率为55-60%且质量良好。

    对于步骤3,即与亚硫酰氯反应得到4-氯-3,3-二甲基丁腈,高纯度的前体是必需的。来自步骤1和2的粗产物必须在进一步反应之前进行蒸馏。

    步骤3中得到的4-氯-3,3-二甲基丁腈还必须进行蒸馏,因为随后的格利雅反应需要高纯度。若所需纯度为97%,则步骤3中地产率并不令人满意。

    其它技术问题源于步骤1和3的粗产物来自于强酸性反应这一事实,这会导致对设备产生腐蚀。

    若4-氯-3,3-二甲基丁腈具有所需纯度,则步骤4中的苄基氯化镁格利雅试剂加成为5-苄基-3,3-二甲基-3,4-二氢-2H-吡咯以及随后与ω-溴-4-氯苯乙酮在步骤5中的环化可以得到质量良好的6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪,并且两个步骤的产率为40-45%。

    通过与草酰氯反应、然后使用肼在碱金属氢氧化物存在下还原以及酸化而最终将在步骤5中得到的吡咯里嗪转化成6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸(ML3000)。步骤6中的产率(取决于产物的提纯)为约62-86%。

    已知方法以可接受的纯度和产率得到ML3000,但具有一些缺点,如第二和第三步的化学过程有问题,需要在进一步反应之前,尤其在格利雅反应之前费事地提纯中间体,停留时间长以及在提纯来自步骤1和3的强酸性反应排出物的过程中对设备腐蚀的问题。

    因此,本发明的目的是提供一种制备6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸(ML3000)的方法,其中已有技术的这些缺点得以避免。使用本发明方法可以克服前面合成过程的步骤1-4中的技术困难、避免该合成的第二和第三反应步骤的难以实施的化学过程、回避格利雅反应、提高总产率、缩短停留时间以及因此从总体上来说整个合成过程更经济。

    该目的通过制备式I化合物的方法实现:

    其中

    a)将式IV化合物

    通过如下方式a1)或a2)转化成式III化合物:

    a1)催化氢化式IV化合物或

    a2)将式IV化合物转化成式IVa的缩酮并催化氢化该缩酮:

    其中基团R可以相同或不同且为C1-C4烷基或一起为C2-C3亚烷基,

    b)使式III化合物与ω-溴-4-氯苯乙酮反应,得到式II化合物:

    和

    c)将乙酸基团引入式II化合物中。

    本发明还涉及一种通过氢化式IV化合物并闭环而制备式III化合物的方法以及制备式II中间体的相应方法。

    优选通过与草酰氯反应并还原酮基(优选使用肼和碱金属氢氧化物)来实现在式II化合物中引入乙酸基团。

    本发明的优选方法可以通过下列反应方案说明:

    化合物IV的合成根据本发明优选经由下列步骤进行:

    1.由氯乙醛、N-甲基苯胺和碱金属氰化物如氰化钾制备2-(N-甲基苯胺基)丙烯腈(V)

    2.通过已经使用强碱去质子的异丁腈与式V化合物的迈克尔加成、迈克尔加成产物的苄基化以及所得2-苄基-4,4-二甲基-2-(N-甲基苯胺基)戊二腈的水解制备2,2-二甲基-4-氧代-5-苯基戊腈(IV)

    (BnCl=苄基氯)

    式IV和V的化合物及其制备是已知的。因此,根据H.Ahlbrecht和K.Pfaff,Synthesis(合成),1980,413制备2-(N-甲基苯胺基)丙烯腈(V)。2,2-二甲基-4-氧代-5-苯基戊腈(IV)可以根据H.Ahlbrecht和M.Ibe,Synthesis,1985,421制备。

    然而,根据所述文献程序制备2-(N-甲基苯胺基)丙烯腈(V)的方法具有的缺点在于在与氰化钠或氰化钾的反应中或在碱性消去中不会发生完全转化,使用醚进行萃取以及产物必须进行蒸馏提纯,因分解而造成严重损失。根据本发明,因此优选调整和改进文献方法并将它们结合起来以得到用于制备式III化合物或式II或I化合物的多步合成方法。

    下面解释根据本发明的改进之处。它们可以单独使用或优选组合使用。根据本发明,所述缺点得以避免,因为以不同摩尔比使用原料和/或引入N-甲基苯胺而不是氯乙醛且计量加入反应组分和/或在两相体系烃/氢氧化钠溶液中在加入相转移催化剂,优选苄基三乙基氯化铵下进行消去反应。优选的工艺条件如下所示:

    氯乙醛、N-甲基苯胺和氰化钾以1.1-1.3∶1∶1.1-1.3的摩尔比使用,尤其以约1.2∶1∶1.2的摩尔比使用。N-甲基苯胺的加成以放热方式进行且应选择冷却和/或加料速率以使温度不超过25℃。为此,例如可以将N-甲基苯胺加入冰和浓盐酸的混合物中。

    优选以水溶液将氯乙醛加入N-甲基苯胺盐酸盐中,其中温度通过合适的加料速率维持为至多20℃且必要的话进行冷却。然后以水溶液计量加入氰化钾。通过合适的加料速率和任选进行冷却也可维持20℃的温度上限。

    N-甲基苯胺、氯乙醛和氰化钾的加入也可在显著更低的温度下进行,例如在0℃以下进行。然而,优选靠近所述上限的温度,因为它们允许更快速的加成且要求较小的冷却费用,而不会对产物的产率和质量产生不利影响。

    若形成的悬浮液的N-甲基苯胺含量低于约10%,则加入与水不混溶的溶剂,优选脂族或芳族烃,尤其是甲苯,并将中间体3-氯-2-(N-甲基苯胺基)丙腈萃取到有机相中。然后在两相体系甲苯/氢氧化钠溶液中进行消去。为了加速和达到完全消去的目的,加入相转移催化剂,优选苄基三乙基氯化铵。NaOH加料过程中的温度应不超过15℃;在加料完成后它可升至室温。在消去反应中用氢氧化钾代替氢氧化钠会使相分离变得困难。

    当反应混合物的3-氯-2-(N-甲基苯胺基)丙腈含量低于0.5%时,将产物相分离出来并任选洗涤,例如首先用水洗涤,然后用柠檬酸/水洗涤。然后将有机相干燥,例如使用硫酸镁,并任选过滤,优选通过压滤器过滤。如此得到的2-(N-甲基苯胺基)丙烯腈在甲苯中的溶液可以在-15℃至-20℃下在氮气中毫无问题地储存直到进一步加工。在这些温度下不会发生分解。以约95%(基于甲基苯胺)的优异产率得到产物。

    将含氰化物的废水和洗涤液以及过滤残渣供入废水处理体系。

    通过所述文献程序制备2,2-二甲基-5-苯基-4-氧代戊腈(IV)的方法进行到在-78℃下苄基化迈克尔加成产物。使用昂贵的苄基溴进行苄基化,并在乙腈中进行水解和氰化物断裂,这些反应需要约40-50小时。粗产物必须进行蒸馏。

    在根据本发明对用于制备化合物IV的方法进行改性时,可以省去粗产物的蒸馏。提纯仅通过重结晶来实现。氰化物断裂在含水/有机体系中在加入相转移催化剂下进行,由此可以显著缩短反应时间。此外,本发明方法并不复杂,因为不必进行去质子化和在-78℃下的缩合。此外,不必通过致癌的六甲基磷酰胺(HMPT)进行活化,并且不必使用昂贵且干燥工艺复杂的四氢呋喃。最后,可以使用较便宜的苄基氯代替苄基溴。优选的工艺条件如下所示:

    将异丁腈计量加入强碱在惰性溶剂中的溶液中。合适的强碱有例如氨基钠、萘钠和优选二异丙基氨基锂(LDA)。去质子化作用优选在作为溶剂的烃如乙苯中在低于10℃的温度下进行。然后优选以在甲苯中的溶液计量加入式V化合物,温度同样优选保持低于10℃。异丁腈和化合物V的加料速率需相应地进行选择。

    迈克尔加成过程中优选的反应温度为约-10℃至-20℃。

    当化合物V在反应混合物中的含量降到约2%以下时,计量加入苄基氯。优选在低温(约-10℃至-20℃)下开始加料,然后将混合物升温至例如约50-55℃。

    当2,2-二甲基-4-(N-甲基苯胺基)戊二腈的含量降到约2%以下时(这需要几小时),进行氰化物断裂。为此,通常不分离苄基化的迈克尔加成产物,而是通过酸性水解将其转化成2,2-二甲基-4-氧代-5-苯基戊腈(IV),同时释放出氰化氢和甲基苯胺并再形成羰基。在加入水之后优选在相转移催化作用下进行水解。所用相转移催化剂优选为苄基三乙基氯化铵或苄基二甲基十六烷基氯化铵。反应温度通常为约20-60℃。通过加入相转移催化剂,将反应时间缩短至约15-18小时。若将至多约20%体积的甲醇加入甲苯相中和/或使用浓酸,则反应时间可进一步缩短。例如在约40℃下仅1小时的反应时间是可能的。

    就氰化物断裂/水解来说,加入强无机酸如氢溴酸或盐酸并使反应混合物优选在升高的温度下反应,直到苄基化的迈克尔加成产物的含量降到约0.5%。然后以常规方式处理有机相并蒸除甲苯。蒸馏过程中的温度不应超过50℃。蒸馏残余物然后可以通过重结晶提纯或在重结晶之前与异丙醇共蒸发一次或多次,以除去甲苯残余物。

    重结晶可以在异丙醇中进行,但甲苯以及异丙醇与甲苯的混合物也是非常合适的。优选将产物用两份比例为9∶1的异丙醇/甲苯重结晶。

    由于化合物IV在异丙醇中的溶解性好,所以为了结晶必须冷却到优选-15℃至-20℃。

    在某些情况下,得到的产物仍会被迈克尔加成产物污染,即使在重结晶之后也是如此。但这类杂质并不成问题,因为在进一步反应过程中可以轻易地除去它们。然而,总体来讲重结晶具有非常好的提纯效果,从而可以以非常纯的形式得到产物。

    作为随后的反应步骤,将所得2,2-二甲基-4-氧代-5-苯基戊腈(IV)催化氢化而产生2-苄基-4,4-二甲基-1-吡咯啉(III)。可以使用的催化剂是贵金属催化剂,如Pt或Pd。然而,优选阮内催化剂,尤其是阮内镍和阮内钴。

    在Arch.Pharm.299,518(1966)中描述了通过使用阮内镍氢化4-氧代-(4-羟基苯基)丁腈制备2-(4-羟基苯基)-4,4-二氢-3H-吡咯。当采用类似于文献方法的方式(即使用处于醇中的含水阮内镍)进行本发明的氢化,但仅仅缓慢地并在升高的压力或升高的温度下进行时,可以观察到显著的过度氢化。

    因此,人们尝试缩短反应时间并减少副产物的形成,尤其是通过过度氢化得到吡咯烷。在这里发现增加氢气压力或提高反应温度均不能显著缩短反应时间,然而在这些更耗能的条件下副产物的比例,尤其是部分氢化产物、低聚的缩合产物以及过度氢化的吡咯烷的比例会增加。

    令人惊奇的是,现已发现所用式IV起始化合物的质量(纯度)对时间进程和氢化作用的副产物分布均有重要影响。起始原料越纯,反应进行得越顺利且越没有问题。优选以超过90%,尤其是超过95%(m/m)的纯度使用化合物IV。

    在使用式III的吡咯啉对式IV的腈酮化合物进行的氢化中,叔腈基团在两个氢化子步骤中被还原成新戊基胺基团,其自发地与酮基缩合并消去水得到环状亚氨基。吡咯啉的环状亚氨基可以进一步氢化成吡咯啉中的环状仲氨基。为了防止这种氢化发生,将阮内镍用作催化剂,但通常并不以含水形式使用,而是以基本无水形式使用。作为溶剂,已经证明甲苯以及尤其是甲苯和C1-C4醇(如甲醇、乙醇、异丙醇)的混合物,如体积比为8∶2-6∶4的甲苯/甲醇是最合适的。

    抑制过度氢化的另一可能途径是为腈酮的酮基引入缩醛(缩酮)保护基团,从而得到式IVa的化合物:

    其中基团R可以相同或不同且为C1-C4烷基或一起为C2-C3亚烷基。将叔腈基团氢化成新戊基胺基团因此也可以在选择性较差的条件下进行,从而得到式IVb的化合物:

    其中基团R具有上述含义。在这些条件下,缩酮断裂在酸性介质如稀无机酸中发生,并同时又环化成吡咯啉。在将吡咯啉鎓盐的酸性水溶液碱化后,得到游离吡咯啉碱,使用与水不混溶的有机溶剂将其分离并可在除去这些溶剂后以高度纯净的形式得到。

    通过氢化化合物IV直接得到化合物III的优选反应条件如下所示:

    若将甲苯和甲醇的混合物用作溶剂,优选约8-12体积份甲苯/甲醇/重量份化合物V,则反应温度通常为约50-60℃。若在纯甲苯中进行氢化,则选择稍低的温度,例如20-30℃,以防止过度氢化。氢气压力通常为约4-6巴。

    在反应之前,例如通过用无水甲醇悬浮一次或多次或通过恒沸蒸馏将引入的阮内镍进行干燥。

    若反应在吸收理论量的氢气之前停止,则可以恒沸蒸馏反应混合物并可以加入新鲜溶剂。还可以加入新鲜阮内镍并恒沸蒸馏混合物以除去水。该反应通常持续3-4小时。

    然后使阮内镍沉淀并过滤上层反应溶液。任选将该催化剂用于进一步氢化作用。将溶剂从反应溶液中蒸除。产物可以通过成盐作用(例如通过形成盐酸盐)并使用碱如氨释放出式IV化合物和再次萃取来提纯。

    另外,还可以仅将一部分溶剂蒸除,例如蒸除甲苯/甲醇溶剂混合物中的甲醇。在这种情况下,蒸馏残余物有利的是先用水洗涤,并在分离出水相后可以如上所述提纯产物。

    在本发明的反应程序中,氢化尤其可以通过使用无水阮内镍作为催化剂以及甲苯或甲苯和甲醇的混合物作为溶剂而大大加速,并且可以将副反应保持在限度内。

    通过氢化环状或无环缩醛(缩酮)中间体而获得式III化合物的优选反应条件如下所示:

    在酸催化剂存在下使用醇将式IV的腈酮在与水形成恒沸物的溶剂中转化成缩酮,或在等量的低沸点醛或酮的缩醛或缩酮存在下在醇中进行酮到缩酮的转化。用于形成缩酮的合适醇是C1-C4链烷醇,如甲醇、乙醇或1,2-乙二醇、1,3-丙二醇等。与水形成恒沸物的溶剂有例如甲苯、二甲苯、环己烷等。

    优选的实施方案例如是在酸如甲苯磺酸存在下在回流条件下使用乙二醇在甲苯中转化成氧杂戊环衍生物,并例如使用脱水器从反应混合物中除去水。另一优选实施方案是在甲苯磺酸吡啶鎓存在下于约40-60℃下使用1,1-二甲氧基乙烷在甲醇中转化成二甲基缩酮。然后通过用碱洗涤而处理缩酮并在氢化催化剂存在下使其氢化。特别优选的实施方案是在无水阮内镍存在下于5-50巴的氢气压力和室温至70℃下在醇溶剂如甲醇中或在芳族溶剂如甲苯中氢化二氧杂戊环衍生物。在通过将以氢化产物得到的氨基缩酮从有机相搅拌到含水稀无机酸中而滤除催化剂之后得到式III化合物。缩酮的断裂和环状亚胺的形成通常均在室温下30分钟至1小时后完成。环状亚胺III可以在将产物水溶液碱化至pH为9-11后以非常纯净的形式得到。

    然后将式IV的2-苄基-4,4-二甲基-1-吡咯啉用ω-溴-4-氯苯乙酮环化,得到式III的6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪。该反应由开头所提到的已有技术已知。ω-溴-4-氯苯乙酮例如可以如Bull.Soc.Chim.Fr.21,69(1899)所述得到。

    式III化合物与ω-溴-4-氯苯乙酮的反应通常在极性有机溶剂中进行。合适的极性有机溶剂尤其是C1-C4醇,如甲醇、乙醇、异丙醇或醚,如乙醚、四氢呋喃(THF)或二噁烷。根据本发明,特别优选将甲醇作为溶剂。反应组分可以等摩尔量使用。然而,优选过量使用ω-溴-4-氯苯乙酮,例如过量10-40mol%。

    为了捕获反应中释放的溴化氢,在碱存在下进行该反应。优选使用无机碱,尤其是碱金属碳酸氢盐或碱金属碳酸盐,特别优选钠和钾的化合物。无机碱可以水溶液形式使用。然而,已经证明特别优选的是使用固体形式的无机碱。这有助于除去无机反应产物并减少了副产物。基于释放的溴化氢的量,无机碱可以等摩尔量使用。然而,有利的是过量使用无机碱,例如过量至多1.8当量,优选约1.4当量。此外,有利的是在避光下进行该反应。反应温度可以在宽范围内变化且优选为0-50℃,特别优选约18-25℃。反应在约17-20小时后完成。

    例如通过离心分离将所得式II的粗产物分离出来并以常规方式通过除去无机杂质而使其纯化。为此,优选将粗产物引入温水中,例如40-45℃的水中,并处理1-2小时。这样可以得到产率平均为58%和纯度至少97%的式II化合物。在5位上含有4-氯苯基的异构体的含量低于2%,ω-溴-4-氯苯乙酮的含量低于0.1%以及无机杂质的含量低于0.5%。

    为了制备ML3000(I),将乙酸侧链引入式II化合物的5位。这优选通过式II化合物与草酰氯的反应以及随后使用肼和碱金属氢氧化物的还原反应而实现。该反应例如描述于WO95/32971实施例5C和PCT/EP 01/00852中。对于反应产物的提纯,描述了不同途径。根据WO95/32971,将反应混合物用水处理,酸化并将沉淀的羧酸溶于乙醚中。通过以下方法提纯产物,即在干燥试剂如无水硫酸钠或硫酸镁上搅拌醚溶液一定时间并使其静置,然后滤除被水饱和的硫酸盐并最后加热蒸发醚。收集浓缩时由母液结晶的物质并将其干燥。在该分离和提纯方法中,甚至在提纯步骤中和在干燥过程中,会新形成某些分解产物,因而为了获得药物质量需要例如通过重结晶进一步费事地提纯ML3000。

    在替换的提纯方法中,在使用肼和碱金属氢氧化物进行还原之后,将醚和水加入反应混合物中,这任选在较高温度下进行。优选使用与水有限混溶的醚,如乙醚或甲基叔丁基醚。通过加入醚而形成三相体系,中间相为产物相,其基本由ML3000与反应中所用碱金属氢氧化物的盐组成。最上层相为醚相,其中存在有机杂质,而最下层相为强碱性水相,其含有无机成分。

    分离各相并用水和仅与水有限混溶的醚的混合物处理中间相,然后用无机或有机酸将其酸化。然后将ML3000溶于醚相中。

    可以从醚相中得到ML3000,例如通过蒸发醚并由乙酸乙酯或异丙醇结晶ML3000。在该方法中,得到含有1分子乙醚/2分子ML3000或含有1分子乙酸乙酯/2分子ML的溶剂化物。

    当将沸点高于醚的烃加入醚相中,任选至少部分蒸除该醚,并用常规方法从母液中分离出以固体结晶形式沉淀的ML3000的时候,获得基本不含溶剂的ML3000的晶体变形。可以使用的烃尤其是直链或支化的脂族C6-C12烃,如正己烷、正庚烷、环己烷、环庚烷等。

    下列实施例说明本发明,但不限制本发明。

    实施例1

    A)2-(N-甲基苯胺基)丙烯腈(约50%浓度的甲苯溶液)

    将浓HCl(32%,22.33kg)和冰(32.6kg)引入250升搪瓷反应器中。在水冷却以及不使温度上升到25℃以上(30分钟)的情况下计量加入N-甲基苯胺(17.39kg,162.2mol)。将绿黄色溶液在15-20℃下搅拌5-10分钟。在该温度下开始计量加入氯乙醛水溶液(45%,34.2kg,196.1mol),加料在水冷却下进行以将内部温度保持在低于20℃(30分钟)。将反应混合物在15-20℃下除混合时间之外再搅拌5-10分钟,然后在该温度下用氰化钾(12.7kg,195.1mol)在水(19.5kg)中的溶液处理。这里的加料用水冷却来控制,以使温度不超过20℃(1小时)。将混合物在18-23℃下搅拌110-130分钟。形成高度液体状的悬浮液。气相色谱样品显示甲基苯胺低于10%。然后向反应混合物中加入甲苯(25.7kg),随后在搅拌下加入浓盐酸(32%,9.3kg),并在室温下再搅拌5-10分钟。

    将从设备中逸出的氢氰酸保留在装满浓NaOH的吸收器中。

    关闭搅拌器,使水相(114kg,氰化物废水1)沉降并将其转移到容器中的密封体系中以待处理。

    将苄基三乙基氯化铵(0.3kg)加入蓝色有机相中并将其冷却至-5℃~0℃。当达到此内部温度时,使氢氧化钠溶液(30%,32.6kg)流入,这样内部温度不会超过15℃(30分钟)。当加料完成后,加热反应混合物至室温并额外再搅拌50-70分钟。

    样品的GC分析显示中间体3-氯-2-(N-甲基苯胺基)丙腈的含量低于0.5%。当达到该值时,用水(40.7kg)洗涤该混合物:加入水,将两相混合物搅拌5-10分钟,然后使水相(79kg,氰化物废水2)沉降并转移到容器中(进入氰化物废水1)。

    用经柠檬酸(0.81kg)酸化的水(40.7kg)以相同的方式再次洗涤有机相。

    将该柠檬酸/水相(45kg,氰化物废水3)与其他氰化物废水合并。将有机相在硫酸镁(3.8kg)上于室温下干燥10-20分钟。Karl-Fischer滴定表明水含量低于0.2%。通过压滤器过滤该甲苯溶液(50-52kg)并将其抽出以用于下一步骤。将过滤残渣(4.8kg)与氰化物废水合并。将这些氰化物废水供入废水处理体系。将室温下不稳定的2-(N-甲基苯胺基)丙烯腈(53.86kg)溶液在氮气下于-15℃~-20℃下储存直到进一步加工。为了测定含量,取出50ml样品。干残渣由30ml该样品通过在最高70℃和真空下大量蒸发甲苯而测定。为了测定含量,使用样品在氯仿中1H-NMR光谱的积分面积和GC分析。根据1H-NMR,2-(N-甲基苯胺基)丙烯腈在溶液中的含量为45.54%。因此产率基于所用甲基苯胺为95.4%。

    用浓H2O2和30%NaOH在pH 10-12下进行氰化物废水的处理直到残留氰化物含量低于30mg/kg(<30ppm)。

    B)2,2-二甲基-4-氧代-5-苯基戊腈

    将二异丙基氨基锂在THF/正己烷中的溶液(25.1%w/w LDA溶液,约2M,80.7kg,188.7mol)注入用保护气体冲洗的干燥设备(钢制容器,250升)中并在氮气下通过盐水冷却而冷却到-15℃~20℃。在冷却下加入异丁腈(11.4kg,165mol),以使内部温度不超过-10℃。加料完成后,用甲苯(2kg)冲洗容器(45分钟)。

    将反应混合物在-10℃~-20℃的温度下搅拌55-65分钟。然后在-20℃下借助盐水冷却计量加入2-(N-甲基苯胺基)丙烯腈(47.1%,52.8kg,157.2mol)的甲苯溶液,以使内部温度不超过-10℃(90分钟)。用甲苯(5.0kg)冲洗供料容器和进料管线。将红棕色反应混合物在-10℃~-20℃下搅拌60-90分钟。这样在气相色谱分析中原料(2-(N-甲基苯胺基)丙烯腈)的含量低于2%。

    关闭冷却,在-10℃~-20℃下开始计量加入苄基氯(23.9kg,188.8mol),使内部温度升至5℃。当超过该温度时,使用水冷却进行反应。当内部温度达到15℃时,将混合物以20℃/小时的加热速率加热至50℃的内部温度,同时进一步计量加入苄基氯。加料所需时间为2.5小时。

    将反应混合物在50-55℃下保持3-4小时,在气相色谱样品中2,2-二甲基-4-(N-甲基苯胺基)戊二腈的含量低于2%。

    然后将该批料冷却到低于25℃并转移到容器中,向该容器中引入冰(22.6kg)、水(45.2kg)和甲苯(22.6kg)的三相混合物(10分钟)。使用甲苯(14kg)进行冲洗。然后将该甲苯/水相混合物加热至35-40℃,并分离各相。除去透明的底层(水相,75kg)并剩下中间层和有机产物相。

    首先将苄基三乙基氯化铵(3.4kg)和冰(34.7kg)加入有机相中,然后在0-15℃下在10分钟内加入氢溴酸(48%,69.4kg,411.6mol)。由此批料温度升至约50℃,驱除氢氰酸,将其收集在填充氢氧化钠溶液(32%)的吸收器中。在50-60℃下搅拌6小时后,取出红棕色反应混合物的样品。4-苄基-2,2-二甲基-4-(N-甲基苯胺基)戊二腈在混合物中的含量根据GC分析(GC=气相色谱法)应低于0.5%。

    当满足该条件时,在内部温度低于60℃下将各相沉降10-15分钟并将含有氰化氢的HBr酸性深色水相(氰化物废水1,90-110kg)转移到紧紧密封的容器中。将同样为深色的有机相冷却到低于30℃,然后通过在15-25℃下与水(22.5kg)和氢氧化钠溶液(30%,2.5kg)的混合物一起搅拌5-10分钟而将其萃取。使颜色显著较浅的碱性水相(pH 10-14)沉降并排出到容器中以待随后处理(氰化物废水2.25kg)。然后在15-25℃下将有机相与水(25kg)一起搅拌10-15分钟,并将10-15分钟后完全分离的水相分离出来,得到碱性氰化物废水2(25kg)。该洗涤液的pH应为7-9。

    将甲苯相转移到蒸馏设备中,并将容器和供料连接管用甲苯(5kg)冲洗。在最高50℃和真空下将甲苯完全蒸除(馏出物1a,110-120kg)。将蒸馏的残余物溶于异丙醇(22.7kg)中,然后在最高内部温度为60℃和真空下完全蒸除溶剂(馏出物1b,23kg)。以相同方式再次重复与异丙醇(22.7kg)的恒沸蒸馏(馏出物1c,23kg)。

    在25-30℃下将恒沸蒸馏的残余物溶于异丙醇(16kg)中并计量加入异丙醇(8.0kg)和庚烷(16kg)的混合物中,向其中加入2,2-二甲基-4-氧代-5-苯基戊腈(0.05kg)的晶种以控制结晶。将供料容器和连接管线用异丙醇(2.0kg)冲洗。将晶体悬浮液冷却到-15℃~-20℃并再搅拌至少2小时,但最多搅拌16小时。吸滤晶体物质并在-15℃~20℃下将其再悬浮于异丙醇(8kg)和庚烷(8kg)的预冷却混合物中几分钟,再次吸滤。除了总共66.9kg母液外,还得到26.7kg 2,2-二甲基-4-氧代-5-苯基戊腈的潮湿的粗物料。将晶体在30-35℃下真空干燥并在干燥后得到22.3kg(70.6%)产物,其纯度根据GC分析大于90%。

    C)2,2-二甲基-4-氧代-5-苯基戊腈的提纯

    在250升的搪瓷反应器中将2,2-二甲基-4-氧代-5-苯基戊腈(85-90%,22.3kg,110.8mol)悬浮于异丙醇(40.0kg)和甲苯(4.4kg)的混合物中,并通过在搅拌下加热该混合物至50-55℃而使其完全溶解。将然后冷却到25-30℃的该溶液注入填充有异丙醇(5kg)的带搅拌的压滤器中,向该溶液中加入结晶的2,2-二甲基-4-氧代-5-苯基戊腈(0.05kg)晶种,然后缓慢冷却至5-10℃。将其搅拌直到形成浓稠的晶体悬浮液。然后冷却到-15℃~-20℃并在该温度下搅拌至少2小时或一夜。

    用吸滤器将产物过滤出来并用预冷却至-15℃~-20℃的异丙醇洗涤两次(每次4.8kg)。在30-35℃下真空干燥潮湿的晶体物料(26.6kg),得到16.6kg纯度为96.1%(GC分析)的产物(74.4%产率)。丢弃母液(53.2kg)。

    D)2-苄基-4,4-二甲基-1-吡咯啉

    在250升钢制高压釜中将事先已经通过倾析除去含水上清液的阮内镍(7.7kg)用氮气层覆盖,然后在甲醇(67kg)中悬浮15分钟。在关闭搅拌后,使阮内镍沉降15-30分钟并通过浸渍管使用氮气通过覆盖有Dicalite的压滤器将甲醇上清液排出。在15-20℃下将该催化剂用2,2-二甲基-4-氧代-5-苯基戊腈(13.2kg)在甲苯(92.4kg)中的溶液层覆盖,并用甲醇(14.3kg)处理,该甲醇用于冲洗甲苯溶液的加料容器。将设备用氮气填充3次至3巴并释放压力以置换大气氧。然后用氢气在1巴下冲洗3次,并最终将氢气压力增加到4.5-5.5巴。在5.0巴和55-60℃下通过启动搅拌而开始氢化。约3小时后停止吸收氢气;此时吸收了3.3m3氢气。将反应混合物冷却到15-20℃,关闭搅拌并释放氢气过压。将设备用氮气冲洗4次并将样品取出以检测反应。未反应的原料和过度氢化的产物的总和应不超过10%。若样品显示出所需的结果,则将反应溶液用覆盖有Dicalite(0.5kg)的压滤器进行澄清过滤。将设备和过滤残渣用甲醇(10kg)冲洗,然后在75-80℃的内部温度下从反应溶液中蒸除甲醇。将蒸馏残余物冷却至20-30℃并用水(49.5kg)洗涤。将两相混合物搅拌5-10分钟,静置20-30分钟以进行相分离,然后除去水相(47-51kg)。然后在15-20℃下将冰(44kg)和水(44kg)以及随后浓盐酸(32%,17.7kg)加入有机相中,并将该混合物搅拌5-10分钟。HCl-酸性水相的pH为1-2。使两相沉降(10-20分钟)并分离含水的吡咯啉萃取相。将Marmite、水(用于冲洗废水管线,5.6kg)和甲苯(86.9kg)加入该HCl-酸性产物水相中。在最高25℃和冷却下加入氨溶液(24%,17.7kg)。相混合物的水相中pH应为9-11。将该两相混合物搅拌5-10分钟。然后使各相沉降并分离水相。将甲苯相转移到蒸馏设备,用甲苯(5.5kg)冲洗,并在不超过50℃的内部温度和真空下完全蒸除甲苯。得到的甲苯馏出物可以再用于萃取。用一等份甲苯相(50g)测定吡咯啉的含量,其中首先通过在真空下完全蒸发甲苯而测定干燥残余物。该干燥残余物根据GC分析含有70%的所需2-苄基-4,4-二甲基-1-吡咯啉。

    由100.7kg产物溶液(50g样品中干重含量为13.74%且GC含量为74.1%)计算出2-苄基-4,4-二甲基-1-吡咯啉的产量为54.7mol。基于所用氧代戊腈的产率为84%。

    E)6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪

    为了随后直接闭环合成该吡咯里嗪,相对于测定的吡咯啉(54.7mol)以10mol%过量使用ω-溴-4-氯苯乙酮(60.2mol)并以36mol%过量使用碳酸氢钠(74.4mol)。

    在15-20℃下将来自步骤D的蒸馏残余物用甲醇(49kg)处理,然后用碳酸氢钠(6.25kg)处理,最后在冷却下用ω-溴-4-氯苯乙酮(14.06kg)处理。将所得浅黄色的高度液体状的悬浮液在避光和18-25℃下搅拌17-20小时。然后将该悬浮液离心并将离心液用甲醇(11kg)分两份洗涤。

    除去甲醇母液和甲醇洗涤溶液。得到16.5-18.5kg潮湿粗产物,将其悬浮于水(88kg)中并在40-45℃下搅拌1-2小时。将经提纯除去无机杂质的粗产物离心分离并用水(22kg)分两份洗涤。潮湿粗产物的产率为14-16kg。丢弃含水母液和含水洗涤相。

    将粗产物在35-40℃下真空干燥。干燥时,基于重量的量降低至12.5-13.5kg(38.4mol-41.95mol)6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪,浓度为97.3%(HPLC)。基于在氢化中得到的吡咯啉这对应产率71.0-76.7%,而基于氢化中使用的氧代戊腈这对应产率59-64%。异构的5-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪的含量低于2%,ω-溴-4-氯苯乙酮的含量低于0.1%,而无机杂质的含量低于0.5%(灰分测定)。

    实施例2

    步骤A)-D)按实施例1进行。

    E)2-苄基-2-(2-氰基-2-甲基丙基)-1,3-二氧杂戊环

    将氧代戊腈(50g,0.25mol)用乙二醇(75g,1.21mol)和对甲苯磺酸(9.2g,0.048mol)在甲苯(300ml,260.1g,2.82mol)中处理,并将反应混合物缓慢加热到沸腾(2.5小时)。进一步回流2小时后,通过GC检测该批料。在加热和回流阶段中蒸除甲苯并用干燥溶剂(185.3g)代替。在低温下于干燥N2中放置该批料直至处理。就处理来说,将粗产物的甲苯溶液用冰冷的氢氧化钠溶液(25g,0.625mol NaOH/150g冰)萃取并分离各相。使用无水硫酸镁(MW 120.37,50g,0.4mol)干燥有机相。过滤后得到245g滤液。

    F)2-苄基-4,4-二甲基-1-吡咯啉

    将E)中得到的二氧杂戊环的粗溶液引入1升高压釜中,然后一起加入20g已经事先用无水甲醇萃取三次的阮内镍B113W(MW 58.71,0.34mol)和71.1g甲苯。通过用氮气加压三次并随后释放,置换出高压釜中的大气氧。在使用连续地加入氢气和排气三次获得48巴的氢化压力并将高压釜的夹套温度调节到63℃(需3小时)后开始氢化。在约3小时后(内部压力为23巴)和再过18小时后(内部压力为17巴)1升高压釜中的氢化需要用氢气再填充至起始压力值。当总共氢化26.5小时后,将混合物冷却并将反应产物经Decalite过滤。

    缩醛断裂后紧接着用稀盐酸(HCl 32%,50g,0.43mol,在200g H2O中)溶解粗产物,并在30℃下搅拌1小时。排出有机上清液(甲苯相)并将水相在0-5℃下用浓氨水(25%,50g,0.73mol)碱化至pH为9-10。将沉淀的吡咯啉溶于乙醚(200g)中并分离。真空蒸发乙醚后得到32.1g产物。以69%的产率和92.6%(GC)的纯度得到2-苄基-4,4-二甲基-1-吡咯啉。

    若在用于氢化之前通过蒸馏提纯二氧杂戊环(92%,GC),则可以在氢化中在较低压力(5巴)和较低温度下获得较高的氢化速率。得到的吡咯啉的纯度为94-98%(GC)。

    实施例3

    制备ML3000:

    A)5-(4-氯苯基)-2,2-甲基-7-苯基-2,3-二氢-1H-吡咯里嗪

    将根据实施例1或2制备的17.9kg(95.5mol)2-苄基-4,4-二甲基-1-吡咯啉(基于吡咯啉化合物的含量)、29.7kg(127.2mol,1.33当量)邻-溴-4-氯苯乙酮和226.6kg甲醇引入反应器(500升)中。在加入12.7kg(151.2mol,1.58当量)碳酸氢钠后,将混合物在避光和17-24℃下搅拌,形成米色悬浮液。继续反应直到吡咯啉化合物在混合物中的残余含量<5%。17小时后取样并通过气相色谱法测试吡咯啉化合物的含量。分析显示含量为2%。然后在18-22℃的内部温度下离心分离该悬浮液,并用14.4kg甲醇分两份洗涤离心得到的固体。仍然潮湿且稍呈黄色的产物重25.8kg。

    将仍潮湿的粗产物(25.8kg)悬浮于150kg水中,然后在15分钟内加热至50-60℃的内部温度并在该温度下搅拌40分钟。将冷却至40℃(40分钟)的悬浮液离心分离,并将通过离心分离得到的浅黄色结晶固体用27kg水分两份洗涤。将产物在50-60℃下真空干燥12-24小时。得到18.6kg 6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪,灰分含量为0.33%且异构体5-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪的含量为1.0%。B)6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸(ML-3000)

    在抽空3次并引入N2后,将11.5kg(35.7mol)6-(4-氯苯基)-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪引入在250升反应器中的60kg四氢呋喃(THF)中。在供入0.5巴氮气(N2)下将黄色溶液冷却至10-15℃。然后在N2下由供料容器在35分钟内计量加入6.8kg(54.7mol)草酰氯,以使内部温度不超过20℃。

    当加料完成后,将此时呈深绿色的稀悬浮液在18-25℃的内部温度下搅拌20-30分钟。

    将18kg冰片加入500升反应器中。在5分钟内将25℃的温热悬浮液计量加入该冰上,以使混合物的内部温度不超过20℃。

    将反应混合物在25-35℃的内部温度下搅拌10-20分钟。在25-35℃下用62.2kg二甘醇稀释仍呈绿色的溶液。然后由供料容器在10-15分钟内在冷却下加入14.9kg(298mol)水合肼。内部温度升至至多40-45℃。通过在1.5小时内逐步升高温度,将此时呈米色的悬浮液加热至70-75℃的内部温度,蒸除THF。达到75℃的内部温度时收集到45.4kgTHF馏出物。

    将反应混合物冷却至50-55℃,并在45分钟内用总共26.4kg氢氧化钾片(KOH)分8-10份对其进行处理,甚至在最初5kg KOH的情况下内部温度就升至65-70℃,且最初的浓稠悬浮液变成黄色、呈现高度液体状,并且短时间地进行温和回流。

    将该悬浮液以15℃/小时的升温速率温热到90℃,从85℃开始轻微发泡且悬浮液变稠。在2℃/小时的升温速率下,将内部温度进一步升至102℃并同时通过浸渍管以增加的搅拌器转速将氮气吹入反应混合物中。由于大量发泡和额外放出气体,反应器内容物的体积增加一倍。需要的话,通过冷却降低反应温度。在100-105℃的内部温度下,泡沫开始破裂并产生红棕色的稀悬浮液,将该悬浮液以15℃/小时的加热速率进一步加热至140-145℃的内部温度。在过量发泡的情况下,通过短时间冷却而降低反应温度。同时收集共44kg含水馏出物。

    将批料在120-145℃下保持2-2.5小时。然后将反应温度冷却至30-40℃并加入74.7kg水和56.7kg乙醚。将反应混合物在30-33℃的内部温度下搅拌10-15分钟,然后使各相沉降。分离所得的三相体系。最下层的强碱性水相(重154.9kg)呈无色且仅轻微混浊。将该水相作为废水除去。具有油状稠度的黄色混浊的中间相重29.6kg且其包含的主要产物是钾盐。在30℃的内部温度下于10分钟内将最上层的透明黄色醚相剧烈搅拌到具有10kg水的萃取设备中。关闭搅拌10分钟后分离水相。在萃取设备中用126.2kg乙醚和59.7kg水处理中间相(29.6kg)和醚相的含水萃取物(10.9kg),并将该混合物冷却至0-5℃的内部温度。

    现在将6.0kg 32.5%浓度的盐酸和6.0kg水的混合物经由供料容器在15分钟内计量加入,这样可以不超过10℃的最大内部温度并达到1-2的pH。若没有达到该pH,则另外添加0.2kg 32.5%浓度的盐酸与0.2kg水的混合物。达到该pH后,再彻底搅拌各相5-10分钟,然后将其在关闭搅拌下静置10-20分钟以进行相分离。

    排出HCl-酸性水相。经由供料容器用9.5kg盐酸和19kg水的混合物再次处理该醚相,并在不超过10℃的内部温度下彻底搅拌5-10分钟。分离各相,并且需要的话重复HCl处理至多3次。

    然后将醚相用30kg软化水处理,彻底搅拌10-20分钟并加热至15-20℃。分离各相并重复萃取过程。

    将洗涤后不含痕量酸的醚相用悬浮在1kg乙醚中的6.5kg无水硫酸镁和0.4kg活性炭(Acticarbon 2S)处理,并在18℃下搅拌30-45分钟。在蒸馏设备中通过覆盖有0.5kg过滤助剂(Cell絮凝物)的压滤器对悬浮液进行澄清过滤。用8kg乙醚冲洗过滤器和设备。

    将95.6kg庚烷加入醚相中并在15-20℃的内部温度下真空蒸除乙醚。将蒸除乙醚后得到的晶体悬浮液冷却到13-18℃的内部温度并在该温度下搅拌0.5-1.5小时。然后离心分离晶体。将所得潮湿产物用23.0kg庚烷分两份洗涤。将潮湿产物在真空干燥箱中于50-60℃下干燥一夜,并且如果需要的话,对其进行研磨。得到10.5kg(77.2%)的ML-3000,其熔点根据DSC方法测定为157℃。IR光谱对应于参考标准的光谱。

生产6-4-氯苯基-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸的方法.pdf_第1页
第1页 / 共26页
生产6-4-氯苯基-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸的方法.pdf_第2页
第2页 / 共26页
生产6-4-氯苯基-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸的方法.pdf_第3页
第3页 / 共26页
点击查看更多>>
资源描述

《生产6-4-氯苯基-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸的方法.pdf》由会员分享,可在线阅读,更多相关《生产6-4-氯苯基-2,2-二甲基-7-苯基-2,3-二氢-1H-吡咯里嗪-5-基乙酸的方法.pdf(26页珍藏版)》请在专利查询网上搜索。

本发明涉及一种生产6(4氯苯基)2,2二甲基7苯基2,3二氢1H吡咯里嗪5基乙酸的方法,其中将5苄基3,3二甲基3,4二氢2H吡咯与溴4氯苯乙酮反应,得到6(4氯苯基)2,2二甲基7苯基2,3二氢1H吡咯里嗪,并在5位引入乙酸基团,其中通过氢化2,2二甲基4氧代5苯基戊腈或缩酮得到5苄基3,3二甲基3,4二氢2H吡咯。本发明还涉及生产在上述方法中出现的中间体的方法。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 有机化学〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1