用于过滤内燃机排放气体中含有的颗粒的过滤块.pdf

上传人:1****2 文档编号:884712 上传时间:2018-03-16 格式:PDF 页数:17 大小:774.39KB
返回 下载 相关 举报
摘要
申请专利号:

CN200480019907.7

申请日:

2004.07.15

公开号:

CN1822891A

公开日:

2006.08.23

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):B01D 46/24申请日:20040715授权公告日:20081203终止日期:20160715|||授权|||实质审查的生效|||公开

IPC分类号:

B01D46/24(2006.01); F01N3/022(2006.01)

主分类号:

B01D46/24

申请人:

圣戈班欧洲设计研究中心;

发明人:

塞巴斯蒂安·巴尔东

地址:

法国库伯瓦

优先权:

2003.07.18 FR 0308776

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

余全平

PDF下载: PDF下载
内容摘要

过滤块,其用于过滤一内燃机的排放气体中含有的颗粒,所述过滤块包括相邻的入口孔道(10,11)和出口孔道(12,13)的迭瓦式组件,并且所述入口孔道(10,11)和所述出口孔道(12,13)通过它们的侧壁使流体流通,所述侧壁在横断面上呈一确定的波纹线,以便通过缩减所述出口通道(12,13)的总容积而增大所述入口孔道(10,11)的总容积,且所述入口孔道(10,11)的总容积(Ve)大于所述出口孔道(12,13)的总容积(Vs)。

权利要求书

1.  过滤块,其用于过滤一内燃机的排放气体中含有的颗粒,所述过滤块包括相邻的入口孔道(10,11)和出口孔道(12,13)的迭瓦式组件,并且所述入口孔道和所述出口孔道通过它们的侧壁使流体流通,所述过滤块具有一组侧壁部(161-168),所述侧壁部形成一中间壁(15),所述中间壁介于所述入口孔道(10,11)和出口孔道(12,13)之间并且在横断面上呈一确定的波纹线,以便通过缩减所述出口通道(12,13)的总容积而增大所述入口孔道(10,11)的总容积,且所述入口孔道(10,11)的总容积(Ve)大于所述出口孔道(12,13)的总容积(Vs),其特征在于:
●所述出口孔道(12,13)的水力直径介于0.9至1.4mm之间,
●所述入口孔道(10,11)的总容积(Ve)与所述出口孔道(12,13)的总容积(Vs)之比r介于1.15至4之间,
●所述过滤面积介于0.825m2/l至1.4m2/l过滤块之间,
●所述波纹线的不对称率小于20%。

2.
  按照权利要求1所述的过滤块,其特征在于,所述出口孔道(12,13)的水力直径大于0.95mm。

3.
  按照权利要求1或2所述的过滤块,其特征在于,所述比r大于135。

4.
  按照上述权利要求中任一项所述的过滤块,其特征在于,所述比r小于3。

5.
  按照上述权利要求中任一项所述的过滤块,其特征在于,所述过滤面积大于0.92m2/l过滤块。

6.
  按照上述权利要求中任一项所述的过滤块,其特征在于,所述出口孔道(12,13)具有一横断面,所述横断面的面积在所述过滤块的整个长度(L)上是恒定的。

7.
  按照上述权利要求中任一项所述的过滤块,其特征在于,所述入口孔道(10,11)和所述出口孔道(12,13)是笔直且平行的。

8.
  按照上述权利要求中任一项所述的过滤块,其特征在于,所述入口孔道(10,11)和所述出口孔道(12,13)彼此间相对布置,以便由任意一入口孔道(10,11)过滤的所有气体都通进与所述入口孔道(10,11)相邻的出口孔道(12,13)里。

9.
  按照上述权利要求中任一项所述的过滤块,其特征在于,所述波纹线的不对称率小于15%。

10.
  按照上述权利要求中任一项所述的过滤块,其特征在于,所述波纹线的不对称率小于12%。

11.
  按照上述权利要求中任一项所述的过滤块,其特征在于,所述波纹线的不对称率大于5%。

12.
  按照上述权利要求中任一项所述的过滤块,其特征在于,所述波纹线呈周期性的,而且所述波纹线的半周期延伸在所述孔道(10,11,12,13)之一的宽度上。

13.
  按照上述权利要求中任一项所述的过滤块,其特征在于,所述波纹线在横断面上呈现一正弦的形式。

14.
  过滤体,其用于一颗粒过滤器,其特征在于,它具有至少一个按照上述权利要求中任一项所述的过滤块。

说明书

用于过滤内燃机排放气体中合有的颗粒的过滤块
技术领域
[01]本发明涉及一过滤块,其用于过滤内燃机尤其是柴油机型内燃机的排放气体中含有的颗粒;并且涉及一过滤体,所述过滤体包括根据本发明的至少一过滤块。
背景技术
[02]蜂窝状多孔结构用作过滤体,以便过滤柴油车排放出的颗粒。所述过滤体通常是陶瓷的(堇青石、碳化硅……)。它们可以是整体式,也可以由不同过滤块构成。在后一情况下,过滤块彼此间利用一陶瓷粘合剂通过粘结相互接合在一起。再对组件进行加工以便具有所希望的断面,所述断面一般为圆形或椭圆形。过滤体包括多个孔道。过滤体安插在一金属罩壳里。各孔道在其端部之一上被封闭。因此存在入口孔道和出口孔道。排放气体因此被迫穿过入口孔道的侧壁以到达出口孔道;因此颗粒或炭黑沉积在过滤体里。
[03]使用一段时间后,炭黑积聚在过滤体的孔道里,这会增大过滤器的载荷损失,并使发动机的性能下降。为此,过滤器应该定期再生,当载荷损失达到一约150dPa(对于汽缸工作容积约2升的一发动机一其带有一约4升的过滤体在高速公路上运行)的数值时,一般在运行约7到10小时后进行再生。
[04]再生在于将炭黑氧化。为此,必须加热炭黑,因为在一般运行条件下,排放气体的温度约300℃,而炭黑的自燃温度却达约600℃。尽管进行所述再生,但燃烧残渣仍积留在过滤体内。因此,再生后由过滤体造成的载荷损失总是大于再生前过滤器造成的载荷损失。所述淤塞现象在每次再生时都会继续,并且必须在机动车修理场彻底清洗过滤器,例如每80000公里彻底清洗一次。所述清洗构成过滤器应用的一缺陷。
[05]FR 2 473 113提出一过滤器,所述过滤器可以通过挤压法制得,而且所述过滤器有入口孔道,所述入口孔道的横断面大于出口孔道的横断面。设计者提出一过滤面积为7.89cm2/cm3过滤块(即0.789m2/l),且入口孔道的横断面恒定并小于12.9mm2而且一壁厚小于或等于0.7mm。
[06]然而FR 2 473 113中所描述的过滤体导致一很大的载荷损失,这即表示过滤体应该经常进行再生。因此很难考虑对其所述过滤体进行工业应用。
[07]因而存在对一过滤体的需求,所述过滤体在其使用寿命的任何时刻都呈现一小的载荷损失,并且不必经常清洗。本发明的目的即是要满足所述需求。
发明内容
[08]本发明尤其涉及一过滤块,其用于过滤一内燃机的排放气体中含有的颗粒,所述过滤块包括相邻入口孔道和出口孔道的迭瓦式(imbriqué)组件,所述入口孔道和出口孔道通过它们的侧壁使流体流通,所述侧壁在横断面上具有一条确定的波纹线,以便通过缩减出口通道的总容积而增大入口孔道的总容积,且入口孔道的总容积大于出口孔道的总容积,其特征在于:
●所述出口孔道的水力直径(diamètre hydraulique)介于0.9至1.4mm之间,优选大于0.95mm,
●所述入口孔道的总容积与所述出口孔道的总容积之比介于1.15至4之间,优选大于1.35和/或小于3,
●过滤面积介于0.825m2/l至1.4m2/l过滤块之间,优选大于0.92m2/l。
●所述波纹线的不对称率小于20%。
[09]正如在以下描述中将能更详细地看到的,所述特怔可以显著地降低过滤块导致的载荷损失,并且因此可以减少对过滤块所属的过滤体进行再生的频率。
[10]按照本发明的其它优选特征,
[11]一所述出口孔道具有一横断面,所述横断面的面积在所述过滤块的整个长度上是恒定的;
[12]—所述入口孔道和所述出口孔道是笔直且平行的;
[13]—所述入口孔道和所述出口孔道彼此间相对布置,以便由任意一入口孔道过滤的所有气体都通进与所述入口孔道相邻的出口孔道里;
[14]—所述波纹线在横断面上呈现一正弦的形式;所述波纹线的不对称率小于15%,优选小于12%,和/或大于5%,优选大于6%;
[15]—所述波纹线是周期性的,而且所述波纹线的半个周期延伸在所述孔道之一的宽度上;
[16]—所述入口孔道和出口孔道按照所述过滤块的任意一横行或一纵列交替布置,因此在过滤块的前或后表面形成一格式结构。
[17]本发明还涉及一用于颗粒过滤器的过滤体,其特征在于它具有至少一个根据本发明的过滤块。
附图说明
[18]下面的描述参照附图以及实施例,将能更好地了解和评价本发明的优点。在图中:
[19]—图1a是现有技术的过滤块的前表面(即排放气体到达的表面)的局部视图,而图1b是所述过滤块按图1a的剖面线AA的剖面图,而图1c是为制造所述过滤块而设计的一挤压模的横剖面视图,
[20]—图2a至图2c是与图1a至1c分别相似的视图,并且示出一根据本发明的过滤体地第一实施方式,
[21]—图3是根据本发明第二实施方式的一根据本发明的过滤块的前表面的局部视图,
[22]—图4是一线图,其示出对于经过测试的新的即“清洁”的不同过滤体,其随使用时间而变化的载荷损失。
[23]—图5是一线图,其示出对于不同的被测试过滤体,其随使用时间而变化的载荷损失,在所述过滤体中,燃烧残渣占据一容积,所述容积对应参照过滤器的入口孔道容积的50%,这相当于车辆行驶约80 000公里的距离。所述过滤体称为已“淤堵”。所述残渣一般停留在入口孔道的底部里。
具体实施方式
[24]图1到图3全都对应过滤块的局部视图。事实上,它可以涉及一整体式过滤体的局部视图、或者一由过滤块组装而形成的过滤体的局部视图。
[25]在所述图中,分隔不同孔道的壁的厚度不是按比例画的,且不构成对本发明的限制。
[26]图1a表示一目前使用的过滤块的前表面,所述前表面用于阻挡由柴油机驱动的机动车的排放气体中含有的颗粒。所述过滤块包括全都相同的孔道,所述孔道的横断面呈正方形,且所述横断面的尺寸在过滤体的整个长度上保持恒定。在所述前表面上,一半孔道被淤堵。孔道1和孔道2是畅通的,且因此构成被称为的入口孔道。孔道3和孔道4是淤堵的,且因此构成被称为的出口孔道。图1b是按图1a的剖面线AA的一纵向剖面图。排放气体流F通过入口孔道进入过滤块中,然后穿过孔道的侧壁以便到达出口孔道。图1c是挤压模的一横剖面图,所述挤压模应用于制造如图1a所示的目前使用的过滤决。在所述图上,实线表示通过加工挖空的部分,陶瓷浆可以从所述部分里通过。
[27]图2a示出一根据本发明的过滤块的第一实施方式的前表面。孔道10和11畅通且构成入口孔道。孔道12和13淤堵且构成出口孔道。孔道根据孔道网布设—所述孔道的横断面为变形的三角形状,以便通过缩减出口孔道的总容积而增大入口孔道的总容积。因此如图2a所示,介于一入口孔道和一出口孔道之间的一不平直的中间壁在入口孔道一侧可以是凹形的,而在出口孔道一侧是凸形的。
[28]图2b是按图2a的线AA的一剖面图。排放气体流F通过入口孔道进入过滤体里,然后穿过孔道壁从而到达出口孔道。由于所述的入口孔道总容积增加,入口孔道壁上的可用面积或“过滤面积”相对于一如图1所示的现有技术的过滤体而言,(通过缩减出口孔道的可用面积)而增加。
[29]有利地是,入口孔道的全部面积用于排放气体的过滤。事实上,不存在一个或多个入口孔道的一个或几个区域—其通进另一入口孔道里,由于排放气体能够在两个方向上穿过所述区域,因而所述区域无法对过滤起作用。
[30]优选入口孔道和出口孔道相互平行且笔直的。因此有利地是,可以用挤压法制造根据本发明的过滤块。
[31]图2c是为制造图3a的过滤块而使用的挤压模的一横剖面图;在所述图上,实线表示通过加工挖空的部分,陶瓷浆可以从所述部分里通过。所述挤压模能够制造其横断面在过滤块的整个长度上恒定的孔道,这便于对其进行挤压。
[32]孔道沿过滤体的长度是笔直的。因此在纵剖面视图上(见图2b),孔道具有一在其整个长度L上平直而恒定的断面。因而方便过滤块的制造。
[33]入口孔道有一横断面,所述横断面大于出口孔道的横断面,以便增加用于存放炭黑的可用容积。入口孔道与出口孔道彼此间相对地布置,以便由任何一入口孔道过滤的所有气体进入与所述入口孔道相邻的出口孔道里,对于一已确定的过滤块容积,这使可用过滤面积最优化。
[34]图3示出根据本发明的一过滤块的另一实施方式的前表面。孔道10和11是畅通的且构成入口孔道。孔道12和13淤堵且构成出口孔道。所述孔道按照一孔道网布设—所述孔道的横断面为变形的正方形状,以便通过缩减出口孔道的总容积而增大入口孔道的总容积。入口孔道和出口孔道按照任意一横行(x)或纵列(y)交替布置,从而形成格式结构。因此,一入口孔道11的侧壁14由四个侧壁部14a-14d形成,所述四个侧壁部将所述孔道的内部容积与四个相邻出口孔道的四个内部容积分隔开。
[35]优选地,孔道的一中间壁15—其不是平直的且将两横行R1和R2和/或两纵列分隔开(且因此所述中间壁由标号161至168的所有侧壁部形成),在入口孔道一侧呈凹形的,并在出口孔道一侧呈凸形的。
[36]沿着一孔道横行(沿x轴)或纵列(沿y轴),中间壁15在横断面上优选呈现一波纹或“波浪”的形式(英语为“wavy”),所述中间壁15在一孔道的宽度上基本波动半个波长。
[37]波的“波长”,指分隔所述波的两点—所述两点处于相同的高度上且具有相同的斜率变化方向—之间的距离。在一周期波的情况下,所述波的“长度”称为“周期”。
[38]所述波纹线优选是周期性的,但波幅可以恒定也可以是可变化的。所述波幅优选恒定。还优选地,波纹线呈现一正弦的形式,其半周期等于孔道网的孔距“p”,如图3所示。
[39]最后,一过滤块的所有中间壁15—其垂直或水平地延伸,在横断面上优选呈现一相同形状的波纹状。
[40]“不对称率”指所述波的波幅“h”与其半波长之比(或者在一周期波的情况下,指波幅“h”与半周期之比)。图表1里概括的下述例子,以示意性的且非限制性的给出。图4和图5分别示出对于清洁的和淤堵的过滤器,载荷损失随时间而增加的曲线图,其对应图表1的某些例子。
[41]被测试过滤体由16个过滤块组装而构成,所述过滤块通过一厚度1毫米的接圈相连接。所述过滤体呈柱形,其直径为144毫米且长度为9英寸(即228.6毫米)。孔道是图4所示的孔道类型,所述孔道壁呈一大致正弦形的型面,且入口孔道和出口孔道具有一横断面,所述横断面在过滤体的整个长度L上面积保持恒定。
[42]为计算需要,排放气体引入被测试过滤体的入口孔道里,所述排放气体在一250℃的温度下且其具有一320立方米/小时的流量。所述排放气体里的颗粒浓度达2.2×10-5千克/立方米。
[43]为测试淤堵过滤体,入口孔道里燃烧残渣的浓度是1.8×10-9立方米/立方米排放气体。
[44]参照例“Ref”对应一过滤器,所述过滤器由16个过滤块组装而构成,所述过滤块通过一厚度1毫米的接圈相连接。所述过滤体呈柱形,其直径为144毫米且长度为9英寸(即228.6毫米)。孔道是图1中所示的孔道类型,入口孔道和出口孔道具有一正方形横断面,所述横断面的面积在过滤体的整个长度L上是恒定的。孔道网的孔距是1.8毫米且壁的厚度为350微米。
[45]过滤面积、孔道容积和载荷损失的计算已由图卢兹流体力学学院(法国)(Institut de Mécaniques des Fluides de Toulouse)实施。
[46]一横断面或一孔道的“水力直径”,指孔道断面面积的四倍与孔道周长之比。
[47]孔道密度是按每平方英寸的孔道数(cpsi,英文即“cells per squareinch”)测定。
[48]Ve表示入口孔道的总容积,Vs表示出口孔道的总容积。以下述方式定义比r∶r=Ve/Vs。
[49]“过滤面积”指可以让需过滤的气流穿过的入口孔道壁的面积。过滤面积按m2/l过滤块来估算。
[50]过滤体的性能通过测量为达到一确定的载荷损失“dP”而所需的时间“t”(单位:分钟)以及通过初始载荷损失(即t=0时的dP值》进行衡量。测得的为达到一值为x毫巴的载荷损失“dP”所需的时间“t”(单位:分钟)记为t/x
[51]可以认为一过滤体符合以下标准是有利的:
●初始载荷损失小于50毫巴;
●对于一清洁的过滤器,t/100≥300;
●对于一清洁的过滤器,t/150≥500;
●对于一淤堵的过滤器,t/150≥200;
[52]表1以及图5和图6可以得出以下说明:
[53]对于新过滤体,过滤面积越大,载荷损失的增加随时间越慢。换言之,载荷损失由于过滤面积大而越小。但如比较例15和参照例而显示的,过滤面积并非唯一的标准。从所述比较中看出:根据本发明,有利地是,当过滤器淤堵时,一大的比r可以补偿一小的过滤面积。
[54]本申请人采用以下方式解释所述现象,而无需涉及任何理论。
[55]一大的比r表示在入口孔道里有一更大的容积,以便储存燃烧残渣。对于一给定的过滤面积以及一给定的燃烧残渣容积(即一再生次数),由于燃烧残渣的覆盖而导致无效的过滤面积的比例因而更小。因此造成的载荷损失更小。在两次再生之间,由过滤体引起的载荷损失增加因而更缓慢。
[56]另外,入口孔道里的最大容积可以储存一更大量的燃烧残渣。在过滤器拆卸/重装前的再生次数因此可能增加。
[57]在壁厚恒定的情况下,不对称率的增加意味着入口孔道的储存容量增加和过滤块的过滤面积增加。
[58]但不对称率不应过度增加,否则会造成出口孔道的断面减小,因而导致有害的载荷损失增加。
[59]因此应当确定一折衷方案。优选地,不对称率低于20%,优选低于15%,优选低于12%,且大于5%,优选大于6%。
[60]根据本发明,两次拆卸/清洗过滤体作业之间的时间间隔因而增加,这不仅因为每次再生后过滤器表面由燃烧残渣引起的淤塞更少—这使得两次再生之间炭黑污塞更缓慢,而且因为可以进行更多次的再生,燃烧残渣的储存容积更大。
[61]因此,机动车驾驶员可以行驶更多公里的里程,而无需对过滤器进行维护。
[62]根据本发明,认为使其最优化要有:
●一比r,所述比大于或等于1.15,优选大于1.35,并且小于4,优选小于3,
●一过滤面积,所述过滤面积至少等于0.825m2/l过滤块,优选大于或等于0.92m2/l过滤块。
[63]对于入口孔道和出口孔道—它们具有一个在过滤块的整个长度上保持恒定面积的横断面,比r增加造成入口孔道的水力直径增大,和/或出口孔道的水力直径减小。在表1中可看出(尤其参见例3、6和10):当出口孔道的水力直径很小时,清洁过滤体引起的载荷损失太高。这可能造成严重瑕疵,因为检验发动机功率性能是否合格要考虑排放线路。
[64]根据本发明,出口孔道的水力直径应该大于和等于0.9毫米,且优选介于0.95至1.4毫米之间。
[65]当然,本发明并不局限于以上描述和图示出的实施方式,所述实施方式以举例且非限制性的方式给出。
[66]因此,本发明还涉及一整体式过滤体。过滤块可具有任何形状和任何孔道排列。
[67]最后,孔道的横断面不受所述实施方式的限制。
                                                         表1

  孔道密度  (cpsi)  壁厚  (μm)  不对称率  r=Ve/Vs出口孔道的水力直径(mm)  每升过滤块  的过滤面积  (m2/l) dp=150毫巴时所 需时间t(分钟) (清洁过滤块) dp=100毫巴时所 需时间t(分钟) (清洁过滤块)  dp=150毫巴时所  需时间t(分钟)  (淤堵过滤块)  t=0时的dP值  (清洁过滤块)  Ref.  200  350  0  1  1.45  0.918  481  319  134  26.7  Ex1  250  350  0  1  1.26  0.997  495  341  ND  28.7  Ex2  250  350  10%  1.986  1.03  1.149  >600  443  279  33.9  Ex3  250  350  20%  4.806  0.74  1.283  522  100  ND  89.6  Ex4  250  300  10%  1.867  1.09  1.183  >600  508  337  27.8  Ex5  250  300  15%  2.66  0.97  1.25  >600  514  ND  36.8  Ex6  250  300  20%  4.061  0.82  1.314  >600  376  ND  60.5  Ex7  250  400  10%  2.099  0.97  1.115  >600  372  ND  41.8  Ex8  200  350  10%  1.883  1.2  1.05  >600  412  264  29.7  Ex9  200  350  15%  2.723  1.06  1.111  >600  411  309  38.7  Ex10  200  350  20%  4.223  0.89  1.168  >600  281  284  63.8  Ex11  300  350  10%  2.054  0.9  1.233  >600  446  ND  39.5  Ex12  200  350  2%  1.132  1.4  0.946  516  342  160  26.3  Ex13  200  350  5%  1.365  1.33  0.987  566  374  200  26.6  Ex14  100  500  10%  1.367  1.88  0.696  307  180  121  35.7  Ex15  150  400  10%  1.363  1.54  0.856  441  288  200  28.8

ND:不可用

用于过滤内燃机排放气体中含有的颗粒的过滤块.pdf_第1页
第1页 / 共17页
用于过滤内燃机排放气体中含有的颗粒的过滤块.pdf_第2页
第2页 / 共17页
用于过滤内燃机排放气体中含有的颗粒的过滤块.pdf_第3页
第3页 / 共17页
点击查看更多>>
资源描述

《用于过滤内燃机排放气体中含有的颗粒的过滤块.pdf》由会员分享,可在线阅读,更多相关《用于过滤内燃机排放气体中含有的颗粒的过滤块.pdf(17页珍藏版)》请在专利查询网上搜索。

过滤块,其用于过滤一内燃机的排放气体中含有的颗粒,所述过滤块包括相邻的入口孔道(10,11)和出口孔道(12,13)的迭瓦式组件,并且所述入口孔道(10,11)和所述出口孔道(12,13)通过它们的侧壁使流体流通,所述侧壁在横断面上呈一确定的波纹线,以便通过缩减所述出口通道(12,13)的总容积而增大所述入口孔道(10,11)的总容积,且所述入口孔道(10,11)的总容积(Ve)大于所述出口孔道(。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般的物理或化学的方法或装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1