大规膜变压吸附方法 本发明涉及到利用变压吸附(PSA)进行气体分离的方法,该方法大大地提高了分离处理的量。
PSA提供了一种有效而又经济的方法,用来对含有至少两种具有不同吸附特征的气体的多组分气流进行分离。吸附力较强的气体可以是杂质,该杂质被从吸附力较不强的气体(它被分离出来作为产品)中除去;或者,吸附力较强的气体可以是目标产物,它被从吸附力较不强的气体中分离出来的。例如,人们期望从含氢的原料流中去除一氧化碳和轻质烃,以制得纯净(99+%)的氢气流用于氢化裂解或其它催化方法,因为这些杂质可能会对催化剂或对反应产生副作用。另一方面,可能希望从原料流中回收吸附力较强的气体如乙烯,从而制得富含乙烯的产物。
在PSA方法中,一般将多组分气体在能吸附至少一种组分的升高的压力下供入到多个吸附区中的至少一个中,而使至少一种其它组分通过吸附区。在规定的时间内,送到吸附器地原料流被终止,吸附区被一个或多个并流的降压步骤降压,该降压步骤中压力被降至规定的水平,这就使留在吸附区的已分离的、吸附力较不强的组分或多个组分被排除而没有显著浓度的吸附力强的组分。然后,吸附区被逆流的减压步骤降压,该降压步骤中,吸附区的压力通过以与原料流方向呈逆流回收解吸气体而进一步地降低。最后,吸附区被经历了并流降压步骤的吸附床的流出物净化,并被再增压。再增压的最后阶段一般都伴随有产物,并常常被称作产物再增压。在多区系统中,一般都有附加步骤,上面所提到的那些可以分阶段地进行。其它的有US-A-3176444、US-A-3986849、US-A-3430418和3703068,描述了利用并流降压和逆流降压两者的的多区、绝热的PSA系统,这些专利的公开内容被全文引用。属于Fuderer等人和Wagner的上述专利在这里被引用。
已知不同种类的吸附剂适宜用在PSA系统中,对吸附剂的选择依赖于原料流的组成和其它本领域技术人员所公知的因素。一般地,适宜的吸附剂包括分子筛、硅凝胶、活性碳和活性铝土。对于某些分离,专门的吸附剂是有利的。PSA一般使用弱吸附剂并被用于分离,其中待分离成分的含量可从痕量至高于95%(摩尔)。当要回收高浓度的贵重原料、产物或重新使用的溶剂时,优选PSA系统。PSA循环是解吸时的压力远低于吸收时的压力的循环。在某些应用中,解吸在真空条件下进行——真空吸附(VSA)。为克服弱吸附剂所固有的低操作负载的问题,PSA循环一般具有短的循环时间——约为数秒到数分钟——以保持合理的吸附床尺寸。
建造现代化的气体处理设施的一个问题是设施的尺寸或在任何一个设施中待处理气体的量不断增加。现代化的气体处理设备的处理量一般大于约110,000标立方米/小时(1亿标立方英尺/天)。大多数的PSA容器的直径因要运到建造地方而受到限制,容器的直径一般限制在约4米(约13英尺),容器的高度被吸附剂颗粒的压碎强度所限制。对于高于110,000标立方米/小时(1亿标立方英尺/天)的处理量,PSA方法配备有多列重复的设备,如泵、加热器、管线、阀、容器和压缩器。
本发明提供了一种方法,该方法克服了用于多种气体分离的PSA设备的处理量的传统的限制。现在,一个单一的完整操作工艺列的处理量可超过约110,000标立方米/小时(1亿标立方英尺/天)。该单一的完整操作序列可以包括10-20个吸附床。设备的减少来自于没有接受PSA领域中所遵循的原则:净化步骤的长度必须等于或小于吸附步骤的长度。申请人已经发现相对于吸附步骤而增加净化时间能显著地提高处理量,并且在回收率或性能上具有最小的损失。净化步骤的时间与吸收步骤的时间的比值优选大于1.0而小于2.0。这一发现的优点在于,现在可以用远地低于第二条平行设备列的建造费用的费用来建造大规膜PSA单元。
本发明的目的是提供一种用在单列设备内的大量气体处理单元的PSA方法。
本发明的目的是提供一种操作程序,它能克服对容器尺寸和吸附力的物理限制,以便能够处理大量进料而不会失去大规模气体分离系统的整体性能。
在一个实施方案中,本发明是在单列PSA区中从包含非吸附性气体和吸附性气体的气体混合物中分离出非吸附性气体的方法。该方法包括:使气体混合物通过单列PSA区,并回收含有非吸附性气体的产物气流和含有吸附性气体的废气流。单列PSA区具有大量吸附床,每个吸附床进行吸附步骤、至少三个并流平衡步骤(包括一个最后的并流平衡步骤)、一个提供净化气(provide-purge step)步骤、一个逆流泄料步骤、一个净化步骤、至少三个逆流平衡步骤(包括一个最后逆流平衡步骤)和一个再增压步骤。每个处理步骤按序发生并及时转换,从而使吸附步骤发生在吸附步骤的时间内,提供净化气步骤发生在提供净化气步骤的时间内,以及净化步骤发生在净化步骤的时间内。净化步骤的时间大于吸附步骤的时间,净化步骤包括这样步骤:正在进行净化步骤的吸附床从一个或多个正在进行提供净化气步骤的其它吸附床接受净化气,其中这些其它吸附床同时向正在进行净化步骤的吸附床提供净化气。无论何时,进行净化步骤的吸附床的数量总是超过进行吸附步骤的吸附床的数量。
该方法可以将氢气从包含氢气、二氧化碳和氮气的气体混合物中分离出来。
在另一个实施方案中,本发明是在多吸附床PSA区中从包含非吸附性气体和吸附性气体的气体混合物中分离出非吸附性气体的方法。该方法包括以下步骤。使处于吸附压力下的气体混合物通过PSA区中大量吸附床的第一个吸附床。每个吸附床都包含吸附剂,该吸附剂在处于吸附步骤时间内的吸附步骤中对吸附性气体进行选择性吸附,吸附排出物流由此而被回收。在平衡步骤中,第一吸附区与其它吸附床一起被并流地降压,每个其它吸附床具有顺序降低的平衡压力。并流降压步骤至少被重复两次以达到最后平衡步骤。将第一吸附床进一步并流降压,从而在处于提供净化气时间内的提供净化气步骤中产生解吸排出物流,同时使解吸排出物流通过至少两个正在进行净化步骤的其它吸附床。第一吸附床被逆流降压至泄料压力,废物流在解吸压力下被回收。第一吸附床在净化步骤时间内被净化气流所净化,其中净化步骤时间大于吸附步骤时间。该净化气流从一个或多个正在进行并流提供净化气步骤的或正在进行逆流平衡步骤的吸附床通过、通过平衡第一吸附床与其它吸附床的压力,第一吸附床被逆流地再增压,其中每个其它吸附床都具有顺序增加的平衡压力,该逆流再增压步骤至少被重复两次。第一吸附床是具有一部分吸附排出物流的逆流再增压床,以上处理步骤被重复进行以实现连续处理。
图1是一个简化的循环图,介绍了现有技术中的传统的16-床PSA分离系统。
图2是一个简化的循环图,介绍了本发明的用于16-床系统的新PSA循环。
图3是一个简化的循环图,介绍了本发明的用于16-床系统的一种新PSA循环的变化形式。
本发明方法的进料可以包括氢气、一氧化碳、二氧化碳、氮气、惰性气体和烃。本发明的方法可用于从吸附性化合物(如一氧化碳、二氧化碳、氮气和烃)中分离出氢气,或者用于从吸附性较弱的化合物(包括二氧化碳、硫氧化物、硫化氢、重质烃及其混合物)中分离出甲烷。术语“烃”是指每分子具有1到8个碳原子的烃,包括烷烃、烯烃、环烯及芳香烃如苯。术语“单列设备”是指包括泵、加热器、容器、阀、管线及压缩器在内的一系列处理设备,它们被装配起来以完成特定的任务,如气体分离,它不包含完全重复的设备。单列法与多列法相反,多列法包括一组并行的、相同的这类处理设备,它们被装在一起以完成一个单独的任务。
根据本发明,吸附压力一般从约350kPa到约7Mpa(50-1000磅/平方英寸),优选为从700kPa到约3.5Mpa(100-510磅/平方英寸)。解吸压力优选为从约3到550kPa(0.5-80磅/平方英寸),更优选为约3到约210kPa(0.5到30磅/平方英寸)。合适的操作温度一般在约10-65℃(50-150°F)。可以有多种并流降压步骤将压力降到中间压力,还有并流净化步骤及逆流净化步骤,所有这些对本领域技术人员来说都是熟知的,并在前面所引用的与PSA方法有关的专利中有所描述。例如,可以采用一到五个或更多的这样的并流降压步骤以使压力平衡,从而进一步提高产品的收率。
本发明的PSA方法属于一般的PSA类型。原料流被导入一个在最高压力下或吸附压力下进行吸附的吸附床,导入到具有入口端和对面有出料端的吸附床的入口端。
吸附剂可以包括能吸附和解吸可吸附化合物的粉状固体、晶体化合物。这种吸附剂的实施例包括硅凝胶、活性铝石、活性碳、分子筛及其混合物。分子筛包括沸石分子筛。优选的吸附剂是沸石。
US-A-3986849描述了各种循环,例如采用240秒的吸附时间,10吸附床结构,总循环时间为13分20秒。通过增加吸附床的数量,总吸附时间可以被减少。例如,对于吸附时间同为240秒的12吸附床结构,总循环时间可以减至12分钟。当将相同的吸附剂体积用于10吸附床结构和12吸附床结构,并且需要对每单位体积的进料提供相同的相对吸附剂投料量时,12床结构可将生产能力增加约33%。类似地,对于吸附时间同为240秒的14吸附床结构,总循环时间将减至11分12秒,生产能力相对于10吸附床结构增加了66%。同样的分析可以用在任意数量(奇数或偶数)吸附床的结构中。通常,保持吸附时间不变减少了总循环时间并增加了生产能力。当吸附步骤中使用更多的吸附床时(相当于更高的进料速度),亚循环时间(总循环时间除以吸附床的数量)减少,其作用是减少了该循环中其它步骤的可利用时间。与先有技术相反,已经发现与减少吸附步骤的时间相比,减少接受净化的时间对减少未经吸附的排出产物的回收有显著影响,还增加了所需要的吸附剂的相对体积。另外,所有的前述循环在净化步骤中都比在吸附步骤中具有较少数量的吸附床。除了利用外部储罐的PSA循环,所有现有技术中的PSA方法在提供净化气步骤中需要与接受净化步骤或净化步骤中相同数量的吸附床。
参照图1,用一种方法循环图表示具有16吸附床的传统PSA系统。每个吸附床的循环均由以下步骤构成:一个吸附步骤、四个并流降压步骤、一个并流提供净化气步骤、一个逆流泄料步骤、一个净化步骤、四个逆流再增压步骤和一个最后再增压步骤。在这种传统的16-床循环中,在任何时候,六个吸附床在吸附步骤中操作,三个吸附床在净化步骤中操作,及三个吸附床在提供净化气步骤中操作。任何一个吸附床所用的净化气直接由其它吸附床提供。也就是说,提供净化气的吸附床的数量和接受净化气的吸附床的数量或进行净化步骤的吸附床的数量是相同的。对于循环中的任何一个吸附床,用于净化步骤的时间(或净化步骤时间)和用于提供净化气步骤的时间(或提供净化气时间)是相同的。此外,进行吸附步骤的时间(或吸附步骤时间)比提供净化气步骤或净化步骤的时间要长。
参照图2,用单列操作的16个吸附床图解说明了代表本发明的方法循环。图2中所描述的循环包含有图1所示同样的步骤,但是不同点在于:在吸附步骤中仅仅有四个床,在净化步骤中有五个床,在循环中,净化气可在任何时候被从单一的吸附床送到一个以上的吸附床。此外,对于循环中的任何一个床,净化时间显著高于吸附时间。参照图2,在吸附步骤后,吸附床1进行四个并流的降压或平衡步骤。在第一个平衡步骤中,吸附床1和吸附床6并流地相连。在下一个平衡步骤中,吸附床1被连接到吸附床7上。在第三个平衡步骤中,吸附床1被连接到吸附床8上,在最后一个或第四个平衡步骤中,吸附床1被连接到吸附床9上。然后吸附床1进行一个提供净化气步骤,其中在提供净化气步骤的第一阶段,吸附床被并流地降压,净化气从吸附床1被排出,并使之通过吸附床10、11、12、13和14而产生净化气,用以净化几乎所有这些吸附床。在这个实施例中,在同一时间,吸附床16也正在进行并流降压,并给吸附床10、11、12、13和14提供净化气。在提供净化气步骤的下一阶段,净化气被提供给吸附床11、12、13、14和15,在提供净化气步骤的最后阶段,净化气被提供给吸附床11、12、13、14和15。在同一时间,吸附床2也正在进行并流降压,并将净化气提供给同样的吸附床11、12、13、14和15。逆流泄料步骤紧跟着提供净化气步骤。在逆流泄料步骤中,吸附床被逆流降压以释放废气流。第一吸附床随后被最初来自吸附床3、然后是吸附床3和4、然后是吸附床4、然后是吸附床4和5、然后是吸附床5、然后是吸附床5和6、然后是吸附床6、然后是吸附床6和7、然后是吸附床7、最后是吸附床7和8的净化气逆流地净化。在吸附床1逆流净化的最初阶段,吸附床2正在进行逆流泄料至废压(waste pressure)。吸附床3正在进行并流提供净化气的步骤,吸附床4正在与吸附床12进行第4个并流平衡步骤,吸附床5正在与吸附床11进行第二个并流平衡步骤,吸附床6、7、8和9处于吸附步骤,吸附床10正在进行最后再增压,吸附床11正在与吸附床5进行第二个逆流平衡,吸附床12正在与吸附床11进行逆流平衡,吸附床13、14、15和16也正在进行逆流净化。该方法中,净化气被从一个或多个吸附床送到至少两个进行净化步骤的其它吸附床。在最后一个平衡步骤结束时,吸附床1用吸附压力再增压。再增压可通过再进料或逆流导入一部分产物流来实现。在16吸附床的单列多床变压吸附区中,该循环优选包括至少四个吸附步骤、至少五个净化步骤,且净化步骤时间以1.25倍于吸附步骤时间的比例超过吸附步骤时间。当一部分提供净化气由进行最后并流降压步骤的吸附床来提供时,提供净化气步骤的时间为净化步骤时间的0.15-0.4倍。
参照图3,列举了一个用于16床循环的本发明方法循环的可供选择实施方案。在图3所示的16床循环中,有四个吸附步骤和六个净化步骤。在这种结构中,并流提供净化气被认为是与最后并流平衡同步的步骤中的一部分,以及与之不同步的步骤中的一部分。并流提供净化气来自于一个吸附床并同时到达六个吸附床。
下面的实施例是为了说明的目的而提供,而不是对随后权利要求的范围的限制。
实施例1
表1介绍了US-A-3986849(Fuderer等人)的使用了12个吸附床的循环的传统PSA循环。在这种传统的循环中,吸附步骤时间和降压步骤时间是相等的,每一时间几乎占了总循环时间的1/3。接受净化气占了循环的13%,再增压占了总循环的21%。类似地,对于图1所示的现有技术中的传统的16-床循环,16一床循环中循环内部的各步骤的分配如表1所示。现在吸附时间大约占了循环的37.5%,降压时间约占总循环的31.3%,接受净化时间约占总循环时间的15.6%,及再增压时间约占总循环的15.6%。在高进料速度下,吸附床的体积达到了最大实际尺寸,超过此尺寸必须减少吸附时间并相应地减少总循环时间。这样具有减少特定吸附剂投料量的期望效果,但是也具有减少接受净化的时间的不想要的效果。减少接受净化的时间显著地降低了未吸附的排出物的回收,增加了每单位体积进料所需的吸附剂的相对体积。因而,所期望的生产能力增加没有实现,实际上它具有双倍的不利效果。未吸附的排出物的回收降低了,每单位体积进料所需的吸附剂的相对体积增加了。 表1 PSA处理步骤的分配,% 处理步骤 12-床循环 16-床循环 吸附 降压 接受净化 再增压 33.0 33.0 13.0 21.0 37.5 31.3 15.6 15.6 总循环 100.0 100.0
实施例2
表2显示了如图2所示的本发明的用于16-床循环的PSA循环。根据本发明,接受净化步骤的时间被增加,提供净化气步骤被从接受净化步骤中分离(de-coupled)出来。吸附步骤现在大约占了总循环的25%,降压步骤大约占了总循环的28.1%,接受净化步骤大约占了总循环的31.3%,再增压步骤仍是总循环的15.6%。虽然对未吸附的排出物的回收降低了不到约0.1%,但是没有增加每单位体积进料所需的吸附剂的相对体积,并且总的循环时间减少了,相应地增加了整体生产能力。这种循环的另一个优点是在逆流降压步骤和净化步骤中有更多的吸附床,这些步骤释放气体至低压,离开吸附床的组成随着时间而变化。在混合筒(或收集筒)前在所述步骤中具有更多的吸附床供这些气体更充分地混合。这能显著地降低混合所需的体积,因而筒的费用降低了,对低压气体还提供了更好的控制。 表2 新PSA处理步骤的分配,% 处理步骤 16-床循环 吸附 降压 接受净化 再增压 25.0 28.1 31.3 15.6 总循环 100.0
实施例3
用一个试验设备评价在PSA循环中相对于吸附时间来改变净化时间的影响。该试验设备由约含340cc吸附剂的单个吸附室、辅助容器、阀、和模拟多床PSA循环所需的连接管构成。进料包括约72.5%(摩尔百分比)的氢气、0.67%(摩尔百分比)的氮气、2.04%(摩尔百分比)的一氧化碳、5.57%(摩尔百分比)的甲烷和约19.2%(摩尔百分比)的二氧化碳。吸附剂包括活性炭和沸石分子筛,制得的产物氢气包含约小于1ppm的一氧化碳和约1ppm的甲烷。该室的操作按周期性地吸附和解吸的顺序进行,操作压力从约2200kPa(320磅/平方英寸)到约160kPa(23磅/平方英寸)。净化压力约为160kPa(23磅/平方英寸),最后平衡压力约为614kPa(89磅/平方英寸)、以及提供净化气压力约为255kPa(37磅/平方英寸)。该吸附床用约2140kPa(310磅/平方英寸)的产物气压的产物气流再增压。进料温度保持在室温(平均约为21℃(70°F))。吸附剂室的温度基本上与进料温度一样或与进料温度保持在6℃的温差范围内,在循环的吸附时间内上述温度的变化极小。用于现场测试的PSA循环时间包括吸附时间(其范围从约90秒到约180秒),平衡时间和泄料步骤时间约为30秒,提供净化气步骤时间约为60秒。测得的氢气回收率和每个循环的进料量如表3所示。 表3 PSA性能 吸附时间,秒 180 180 90 净化时间,秒 氢气回收率,% 进料量 90 87.4 100 45 85.9 91 90 87.2 100
这些结果清楚地显示了将吸附步骤时间减少约2倍(从约180秒到约90秒)导致氢气的回收率出现约0.2%的变化,而以同样的比例改变净化步骤时间(从90秒到45秒)导致氢气回收率出现约1.5%的变化。因而,减少净化步骤时间的效果是减少吸附步骤时间效果的8-10倍。在PSA方法中,总循环时间和设备的费用具有直接的关系。总循环时间越短,费用越低。象上面结果所支持的那样,通过相对于吸附步骤时间来增加净化步骤时间可以缩短总循环时间,而对总回收率的影响最小。
实施例4
将实施例3所描述的试验设备和过程用于评价相对于提供净化气步骤时间来减少吸附步骤时间对产物回收率和循环时间的影响。表4概括了含有约99%(摩尔百分比)氢气和1%(摩尔百分比)一氧化碳的氢气进料的结果。用于分离的吸附剂是5A型分子筛,吸附发生在约21℃(70°F)。PSA方法包括三个平衡步骤。 表4 PSA性能 吸附时间,秒 180 60 净化时间,秒 氢气回收率,% 进料量 90 89.4 100 90 89.2 96
表4的第一栏显示了在一个传统的总循环时间为12分钟的PSA循环中吸附步骤时间为180秒的氢气回收率,其中净化涉骤时间与吸附步骤时间之比约为0.5。在第二栏中,显示了本发明循环的结果,其中净化步骤时间与吸附步骤时间之比增加到约1.5,总循环时间减至10分钟。表4显示了通过相对于净化步骤时间来减少吸附步骤时间,使总循环时间减少20%,而氢气的回收率仅略有降低。