CN200880019826.5
2008.05.20
CN101682936A
2010.03.24
终止
无权
未缴年费专利权终止IPC(主分类):H05B 3/12申请日:20080520授权公告日:20120829终止日期:20140520|||授权|||实质审查的生效IPC(主分类):H05B 3/12申请日:20080520|||公开
H05B3/12; B29C35/02; B29C45/72; H05B3/16
H05B3/12
赫斯基注射器成型系统有限公司
吉姆·皮拉夫季奇; 斯特凡·冯比伦
加拿大安大略省
2007.6.30 US 11/772,156
北京律盟知识产权代理有限责任公司
孟 锐
本发明涉及一种可施加到衬底的加热器。所述加热器可包括沉积在衬底的至少一部分上的分级材料、电阻性材料和热障介电涂层。所述电阻性材料可包括至少两种电阻性成分,其中可通过改变给定区域中的成分来更改所述材料的电阻率。
1. 一种加热器,其包含:分级材料;电阻性材料,其安置在所述分级材料的至少一部分上,所述电阻性材料包含具有第一电阻率ρ1的第一电阻性材料与具有第二电阻率ρ2的所述第二电阻性材料的混合物,其中ρ1≠ρ2;以及热障介电材料,其安置在所述电阻性材料的至少一部分上。2. 根据权利要求1所述的加热器,其中所述加热器安置在衬底上。3. 根据权利要求1所述的加热器,其中所述介电材料包含选自由氧化物、硼化物、氮化物及其组合组成的群组的陶瓷。4. 根据权利要求1所述的加热器,其中所述分级材料包含包括基本材料的合金,所述基本材料选自由钴、铬、铁、镍及其组合组成的群组,其中所述基本材料以至少35重量百分比存在。5. 根据权利要求1所述的加热器,其中所述第一电阻性材料包含镍铬合金。6. 根据权利要求1所述的加热器,其中所述第二电阻性材料包含陶瓷。7. 根据权利要求1所述的加热器,其进一步包含安置在所述介电材料的至少一部分上的密封剂。8. 根据权利要求1所述的加热器,其进一步包含展现出在约100μN/A2到25,000μN/A2的范围内的渗透性的材料。9. 根据权利要求1所述的加热器,其进一步包含安置在所述分级材料与所述电阻性材料之间的介电材料。10. 根据权利要求1所述的加热器,其中所述电阻性材料形成图案。11. 根据权利要求1所述的加热器,其中所述电阻性材料形成连续的圆柱形线圈图案,其经配置以产生用于连同所述电阻层中所产生的电阻加热一起进行加热的电磁场。12. 一种用于加热的系统,其包含:加热器,其包括:分级材料,电阻性材料,其沉积在所述分级材料的至少一部分上的层中,其中所述电阻性材料包括至少两种电阻性成分,其中第一电阻性成分具有第一电阻率ρ1且第二电阻性成分具有第二电阻率ρ2,且所述电阻性材料的电阻率取决于所述第一和第二电阻性成分存在于所述层的至少一部分中的重量百分比而在所述部分上改变,以及热障介电材料,其安置在所述电阻性材料的至少一部分上;至少一个接触端子,其与所述电阻性材料电连通;以及控制器,其与所述至少一个接触端子连通。13. 根据权利要求12所述的系统,其进一步包含:衬底,在其上安置所述加热器;以及热电偶,其与所述控制器连通且经配置以测量所述衬底的至少一部分的温度。14. 根据权利要求12所述的系统,其中所述第一电阻性成分在所述电阻性材料的给定部分中以大于0到小于100重量百分比的范围存在,且所述第二电阻性成分在所述电阻性材料的所述给定部分中以大于0到小于100重量百分比的范围存在。15. 根据权利要求12所述的系统,其中所述介电材料包含选自由氧化物、硼化物、氮化物及其组合组成的群组的陶瓷。16. 根据权利要求12所述的系统,其中所述分级材料包含包括基本材料的合金,所述基本材料选自由钴、铬、铁、镍及其组合组成的群组,其中所述基本材料以至少35重量百分比存在。17. 根据权利要求12所述的系统,其中所述第一电阻性成分包含镍铬合金。18. 根据权利要求12所述的系统,其中所述第二电阻性成分包含陶瓷。19. 根据权利要求12所述的系统,其进一步包含安置在所述介电材料上的密封剂。20. 一种用于形成加热器的方法,其包含:将分级材料沉积在衬底的至少一部分上;将电阻性材料沉积在所述衬底的至少一部分上,其中所述电阻性材料包括第一电阻性成分和第二电阻性成分,其中所述第一电阻性成分具有第一电阻率ρ1且所述第二电阻性成分具有电阻率ρ2,其中ρ1≠ρ2;以及将热障介电材料沉积在所述衬底的至少一部分上。21. 根据权利要求20所述的方法,其中可通过热喷涂来沉积所述第一和第二电阻性材料。22. 根据权利要求20所述的方法,其进一步包含制备所述衬底的表面。23. 根据权利要求20所述的方法,其中沉积所述电阻性材料进一步包含改变所述第一和第二电阻性成分在所述衬底的至少一部分上的重量百分比。24. 根据权利要求20所述的方法,其进一步包含在将所述成分沉积在所述衬底的至少一部分上之前,混合所述第一和第二电阻性成分。25. 根据权利要求20所述的方法,其进一步包含在将所述成分喷涂到所述衬底的至少一部分上之前,混合所述第一和第二电阻性成分。26. 根据权利要求20所述的方法,其进一步包含在将所述成分喷涂到所述衬底上之后,混合所述第一和第二电阻性成分。27. 根据权利要求20所述的方法,其中所述第一和第二电阻性成分包括大体上相同的基本材料,且通过用第一气体沉积所述第一成分且用第二气体沉积所述第二成分来更改所述成分的所述电阻率。28. 根据权利要求20所述的方法,其中可通过电子束来沉积所述第一和第二电阻性材料。29. 根据权利要求20所述的方法,其进一步包含制备所述衬底的表面。30. 根据权利要求20所述的方法,其中沉积所述电阻性材料进一步包含改变所述第一和所述第二电阻性成分在所述衬底的至少一部分上的所述重量百分比。31. 根据权利要求20所述的方法,其进一步包含在将所述成分沉积在所述衬底的至少一部分上之前,混合所述第一和所述第二电阻性成分。32. 根据权利要求20所述的方法,其进一步包含在将所述成分喷涂在所述衬底的至少一部分上之前,混合所述第一和所述第二电阻性成分。33. 根据权利要求20所述的方法,其进一步包含在将所述成分喷涂到所述衬底上之后,混合所述第一和所述第二电阻性成分。34. 根据权利要求20所述的方法,其中所述第一和所述第二电阻性成分包括大体上相同的基本材料,且通过用第一气体沉积所述第一成分且用第二气体沉积所述第二成分来更改所述成分的所述电阻率。
喷涂沉积加热器元件 技术领域 本发明涉及喷涂沉积加热元件以及应用所述加热器元件的方法。 背景技术 在各种模制工艺中,可供应聚合材料,其中需要加热聚合材料,并使维持在足以允许所述聚合材料在模制设备中流动的粘度。在其它模制工艺中,可供应聚合材料,其中一旦聚合材料已到达模具,就需要加热所述材料,使得材料固化或交联。因此,模制设备的不同方面可利用加热元件。举例来说,在注射模制机器中,可能有必要加热机筒、喷嘴、浇口衬套、热浇道歧管(包括热浇道喷嘴)以及模具的部分。 加热器元件可包括例如滤筒、加热器带、螺旋电缆加热器、硅橡胶加热器等的零件。然而,这些加热元件中的许多加热元件依靠与待加热表面的密切接触来传导热量,且在一些情况下,可能甚至有必要在加热元件与待加热表面之间施加传热化合物。另外,加热器元件相对于元件必须配合在其中的间隙来说可能是庞大的,且可能需要提供用以容纳所述元件的额外设计空间。此外,一些类型的加热器元件可能不能够配合到需要加热的区域中。其它元件还可能易于使渗入加热元件与待加热表面之间的聚合物材料熔融。此类问题可降低这些加热器的效率。此外,模制工艺所产生的聚合物粉尘可能覆盖线绕加热器,且导致其由于表面污染而过热。 已开发了其它加热元件,并将其应用于模制工艺装备的各个方面,旨在减少用于加热器元件的必要间隙或设计空间,或增加加热效率。举例来说,第2005/0257367号美国专利申请案在摘要中描述“一种用于生产注射模制用的组件的方法,所述组件包含由导热材料制成的主体,所述导热材料的膨胀系数与绝缘层的膨胀系数匹配,且所述组件具备供材料注射的通路”。所述摘要继续揭示将电阻随温度而较高变化的至少一条导电材料施加到电绝缘基层上,所述电绝缘基层被先前施加到主体。 发明内容 本发明的一方面涉及加热器,其可包括:分级材料层;电阻性材料,其安置在所述分级材料的至少一部分上,包含具有第一特定电阻率ρ1的第一电阻性材料与具有第二电阻率ρ2的第二电阻性材料的混合物,其中ρ1≠ρ2;以及热障介电材料,其安置在所述电阻性材料的至少一部分上。 本发明的另一方面涉及用于加热的系统,其包括加热器、至少一个接触端子和控制器。所述加热器可包括:分级材料;电阻性材料,其沉积在所述分级材料的至少一部分上的层中,其中所述电阻性材料包括至少两种电阻性成分,且所述第一电阻性成分具有第一电阻率ρ1且所述第二电阻性成分具有第二电阻率ρ2。所述电阻性材料的电阻率可取决于所述第一和第二电阻性成分存在于所述电阻性层的至少一部分中的重量百分比而在所述部分上改变。 本发明的另一方面涉及形成加热器的方法。所述方法包括:将分级材料沉积在衬底的至少一部分上;将电阻性材料沉积在所述衬底的至少一部分上,所述电阻性材料包括第一电阻性成分和第二电阻性成分,其中所述第一电阻性成分具有第一电阻率ρ1且所述第二电阻性成分具有电阻率ρ2,其中ρ1≠ρ2;以及将热障介电材料沉积在所述衬底的至少一部分上。 附图说明 可参看附图更好地理解下文的详细描述,出于说明性目的而提供附图,且附图不应被认为限制本发明的任何方面。 图1是包括喷涂沉积加热器元件的示范性喷嘴主体的透视图; 图2是喷涂沉积加热器元件的示范性横截面; 图3是喷涂沉积加热器元件的示范性横截面; 图4是穿透加热衬底的示范性示意图; 图5是喷涂沉积加热器元件的示范性横截面; 图6a和图6b是提供在喷嘴(a)和歧管(b)上的图案化加热器(pattern heater)的示范性实施例; 图7是应用电阻性加热器的示范性方法; 图8是用于将加热器元件沉积在衬底上的示范性设备;以及 图9是用于将加热器元件沉积在衬底上的另一示范性设备。 具体实施方式 本发明涉及提供模制设备中的喷涂沉积加热器。可供应聚合材料,其中需要加热聚合材料并使其维持在足以允许聚合材料在模制设备中流动的粘度。在其它模制工艺中,可供应聚合材料,其中一旦聚合材料已到达模具,就需要加热所述材料,使得材料固化或交联。因此,由于各种工艺需求,模制设备的不同组件可能需要加热元件。举例来说,注射模制机器可利用注射单元喷嘴、模具、经加热浇口衬套或热浇道歧管和喷嘴。然而,这些组件周围的空间可能受到限制,且所述组件可能在注射模制周期期间经受某一程度的移动。此外,这些组件中的一些组件可能具有复杂的几何形状且/或包括许多散热片。 本发明的一方面涉及提供一种喷涂沉积加热器,其可符合给定组件几何形状、电阻率变化,且包括厚度可能小于约几毫米的轮廓。喷涂沉积加热器可包括由具有不同电阻率的至少两种成分组成的电阻性层,即所述成分的电阻率可能相差至少0.1%或更大。所述成分可以改变所述层的至少一部分的电阻的方式施加。这可通过更改电阻性材料在给定部分中的重量百分比来完成。 加热器还可包括介电材料和分级材料,其用以适应给定衬底与电阻性介电层之间的热膨胀差异。此外,加热器可包括密封剂材料、传导材料和/或具有相对较高渗透性的材料。渗透性是以线性方式响应所施加磁场(响应有效吸收到的磁场并将其用于转换成热量)的材料的磁化程度。加热器可形成于给定衬底的表面上,例如机器喷嘴、模具、浇口衬套、热浇道歧管、热浇道喷嘴等的表面上。 图1和图2中说明加热元件的示范性实施例。图1说明呈喷嘴主体10的形式的衬底的透视图,其可结合压出机或热浇道使用。因此,虽然本实施例是参考喷嘴主体10来描述的,但加热器12可施加于形成模制机器的一部分的任何衬底。加热器12可安置在喷嘴主体10的表面上。图2说明图1的喷嘴10和加热器12在截面X-X处截取的横截面图。加热器12可包括安置在喷嘴主体10的至少一部分上的分级材料14。介电材料16可安置在分级材料14的至少一部分上。电阻性层18也可施加在介电材料16上,且可在电阻性层18上包括热障介电材料20。任选地,密封剂涂层22可施加在第二介电材料上。各个层14、16、18和/或20可大体上与一个或一个以上邻近层同延。 图3说明安置到衬底30上的加热器31的另一示范性横截面图。加热器31可包括半传导分级材料32、安置在分级材料32上的电阻性材料34、安置在与电阻性材料34的混合物中的传导材料36以及安置在传导层36上的热障介电材料28。任选地,密封剂涂层39可施加在热障介电材料28上。密封剂涂层39可经调配以防止湿气进入衬底中,但还可包括以物理方式产生的不可渗透表面。举例来说,密封剂涂层39可包括激光或等离子体熔融玻璃密封剂材料。 因此应了解,在此实施例中,衬底30可成为电路的一部分,且电流可传导通过所述衬底。图4说明此配置的示意图,其中电流I可从电源(未说明)流经与至少一个传导层(加热器)31a电连通的触点41,经过衬底44到达类似配置的另一加热器31b和触点47,且返回到电源(未说明)。衬底还可接地48。 图5中说明另一实施例,其包括安置在衬底50上的加热器51。加热器51可包括分级层53、介电层54、电阻性层55、第二介电层56、相对较高电磁渗透性材料57和热障介电材料58。因此,应了解,此加热器51可提供感应加热和电阻加热两者。 因此,在一广泛方面,与本发明一致的加热器可包括分级材料、电阻性材料和热障介电涂层。另外,加热器可在分级材料与电阻性材料之间包括第二介电层。此外,加热器可任选地包括传导材料和/或展现出相对较高渗透性的材料。加热器可形成于衬底上,所述衬底包括塑炼机喷嘴、浇口衬套、模具、热浇道歧管、热浇道喷嘴、机筒、压出机模等。 分级材料可适应衬底材料与加热器材料之间的热膨胀系数的变化。因此,分级材料可防止加热器在材料热循环时断裂或从衬底表面剥离。分级材料可包括基于镍、钴、铬、铁和其组合的合金,使得存在至少约35重量百分比的基本材料。此些合金可包括(例如)NiCr或NiAl、CoNi或Ni。分级材料还可包括各种元素,例如难熔金属、稀土元素、其它过渡金属、非金属、贫金属或类金属。另外,分级材料还可包括陶瓷领域。此些领域还可包括氧化物、氮化物、碳化物、钇铝石榴石、铝尖晶石、莫来石(mullite)等。分级材料可以在约0.01μm到30μm的范围内(包括此范围内的所有值和增量)的厚度存在。 电阻性材料可将电能转换为热能,例如在电流被提供到电阻性材料时。电阻性材料可包括至少两种电阻性成分。第一电阻性成分可具有第一特定电阻率ρ1,且额外(第二、第三或更多)电阻性成分可具有第二(或更多)特定电阻率ρ2,其中第一电阻率ρ1与第二电阻率ρ2可不相等。因此,通过改变电阻性材料中的至少两种电阻性成分在电阻性层的给定区域中的重量百分比,可更改电阻性材料在所述给定区域中的电阻率。应了解,在一些给定区域中,第一电阻性成分可以大于0到小于100重量百分比的范围(包括此范围内的所有值和增量)存在,且第二电阻性成分可以大于0到小于100重量百分比的范围(包括此范围内的所有值和增量)存在。此外,假如利用第三或更多电阻性成分,那么第三或更多电阻性成分可在0到小于100重量百分比的范围内(包括此范围内的所有值和增量)。因此,在其它给定区域中,第一和第二(或第三或更多)电阻性成分可以不同的重量百分比存在。举例来说,在另一给定区域中,电阻性成分可以至少0.1重量百分比到99.9重量百分比(包括此范围内的所有值和增量)存在,且第二电阻性成分可以至少0.1重量百分比到99.9重量百分比(包括此范围内的所有值和增量)存在。此外,虽然上文描述仅提供两种电阻性成分,但可提供两种以上电阻性成分,且额外电阻性成分也可取决于衬底的加热需求而以0到100%的重量百分比存在于给定位置中。 以此方式,可改变电阻性材料的电阻率,而不必改变电阻性层的厚度或几何形状,而是通过改变电阻性层的材料成分。然而,这并不排除改变电阻性层的厚度或几何形状,其同样可被更改。此外,电阻性层和/或加热器可经图案化;即,如图6a和图6b所说明,电阻性层和/或加热器61可被提供在衬底60的选定区域上。因此还应了解,电阻率的此变化和/或图案化可在特定区域中提供热量,或适应不同的散热片,以及错综复杂的体积减少等。 电阻性材料可包括许多材料,其在20℃下具有在约1×10-9到1×10-6欧姆-米的范围内(包括此范围内的所有值和增量)的电阻率。电阻性材料还可包括例如银、金、钨、铜、铂、钼、钯、铱、氮化铬、钛、氮化钛、碳化钛、碳氮化钛、氮化钛铝等材料。然而,电阻性材料还可包括在20℃下具有在约1×10-6到1×1014欧姆-米的范围内(包括此范围内的所有值和增量)的电阻率的材料。此些其它材料可包括氧化铝、二氧化钛等。 在另一实施例中,电阻性材料可经由使用不同气体混合物的热喷涂处理从类似的基本材料供应,且因此形成具有不同特定电阻的稍微不同的合金或氧化物。此些气体可包括氮、氧、二氧化碳、氦、氩、氖、氙等。因此,可通过使用第一气体沉积电阻性材料来形成第一电阻性成分,且可通过使用第二气体沉积电阻性材料来形成第二电阻性成分。电阻性材料可以约1μm到2000μm(包括此范围内的所有值和增量)的厚度存在。 热障介电成分可包括展现出高温稳定性和相对较高的热导率的材料。举例来说,热障介电层可展现出在1Wm-1K-1到220Wm-1K-1的范围内(包括此范围内的所有值和增量)的热导率。几种示范性热障介电材料可包括陶瓷(例如过渡金属/类金属氧化物)、氮化物或碳化物(例如氧化铝、氧化镁、氮化铝、碳化硅或氧化硅)。第二介电层也可由陶瓷(例如过渡金属或类金属氧化物、氮化物或碳化物)组成。在任何给定实施例中,热障介电成分和介电层可由相同或不同材料组成。热障介电涂层可以在约10μm到2500μm的范围内(包括此范围内的所有值和增量)的厚度存在。额外介电涂层可以在约1μm到2000μm的范围内(包括此范围内的所有值和增量)的厚度存在。 示范性传导材料可包括可导电或导热的材料。此些材料可为或可不为磁性材料。举例来说,所述材料在20℃下可展现出在约1×10-9到1×10-6欧姆-米的范围内(包括此范围内的所有值和增量)的电阻率。另外,所述材料可展现出约10Wm-1K-1到450Wm-1K-1(包括此范围内的所有值和增量)的导热率。示范性材料可包括铜、铝、铁、镍、钨、金、银以及其合金。传导材料可以在约0.1μm到150μm的范围内(包括此范围内的所有值和增量)的厚度存在。 还可提供具有相对较高的渗透性的材料,且其可展现出约100μN/A2到25,000μN/A2(包括此范围内的所有值和增量)的渗透性。展现出相对较高的渗透性的示范性材料可包括镍、软铁氧体、钴、铁、磁铁矿、钇铁石榴石、氧化铬等。相对较高渗透性的材料可以在约0.1μm到3000μm的范围内(包括此范围内的所有值和增量)的厚度存在。 电阻性材料可连接到经由电连接件或触点提供电流的电源。触点可喷涂、印刷或以其它方式连接到电阻性材料,使得电阻性材料与所述触点电连通。触点接着可电连接到电源或控制器,其向电阻性材料提供电流。 此外,热电偶或其它温度检测装置可经定位而接触或接近衬底。热电偶还可与控制器电连通。控制器接着可利用来自热电偶的反馈或信号来确定何时供应电流或驱动加热器所必需的电流的量。控制器可为适合控制多个位置中的多个加热器的控制器。举例来说,在注射模制机器中,除了控制多个加热区(包括热浇道歧管、塑炼机喷嘴、热浇道喷嘴、浇口衬套等)之外,控制器可能够控制本文所述的加热器以及其它类型的加热器(即,卡尔罗德(calrod)、加热器带等)。 可经由许多涂布技术来施加个别加热器层。举例来说,所述层中的许多层可通过热喷涂工艺(例如电弧喷涂、火焰喷涂或等离子体喷涂)来施加,此些技术因此可包括高速氧燃料、DC电弧等离子体喷涂、焊丝电弧(wire-arc)喷涂等。用于喷涂和沉积的电子束应用可在用于沉积特定材料的迹线时提供特别高的分辨率。然而,应了解,同样可使用各种其它技术。举例来说,如果施加玻璃密封剂涂层,那么可将玻璃用激光烧结到加热器的表面上。另外,可使用激光来使传导层融化并在传导层中形成孔,从而迫使电流在孔周围,并通过加热器的传导层中的孔图案的改变来影响加热器的表面上的电流分布。溶胶-凝胶也可用于施加一些材料。 如图7所说明,可通过将分级层沉积到衬底的至少一部分上来施加加热器(70)。接着可将电阻性材料沉积在所述衬底的至少一部分上(72),使得电阻性材料沉积在步骤70中所沉积的分级材料的至少一部分上。接着可将热障介电材料沉积在电阻性材料上的衬底的至少一部分上(74)。可将额外介电材料沉积在分级层与电阻性材料之间。此外,可将传导层沉积在电阻性材料与热障介电材料之间,或可将相对较高渗透性的材料沉积在介电材料与热障涂层之间。 在示范性实施例中,可在适当铣削和定形工艺之后提供衬底。接着可使用激光或热喷涂系统来制备或清洗衬底的表面。接着可将衬底定位在喷涂池中,其中(例如)伺服控制机器人可将电阻性材料和/或其它材料施加到衬底。因此机器人或其它应用装置可能够施加电阻性材料,使得可在施加工艺期间在给定中更改材料成分。 相对于电阻性材料,可使用合适的热喷涂技术来沉积材料。可利用至少两个喷涂枪或在单个或多个枪中使用电阻性材料或气体的多个馈源来施加电阻性材料,所述馈源可在成分馈送方面受到严密控制。举例来说,可控制一个喷涂装置以提供第一电阻性材料,且可控制第二喷涂装置以提供第二电阻性材料。喷涂装置可逐步引入和逐步停止电阻性材料,以供应电阻性材料上所要的成分变化。此外,喷涂装置可经控制以使得电阻性材料可以所要的几何形状被施加在衬底上。 图8中说明示范性喷涂装置的示意图,其中可提供单个喷涂装置和/或喷嘴80以用于喷涂电阻性层。可提供至少两个馈源82a和82b,以通过许多馈送线83a、83b、83c、83d和83e来供应电阻性成分。可提供馈送控制器或泵84a和84b来计量电阻性成分,且将所述成分馈送到混合阀86或其它混合装置。接着可将电阻性成分混合物供应到喷涂装置或喷嘴80,并施加到衬底。应了解,可通过混合阀来提供和馈送两种以上电阻性成分。 图9中说明另一示范性喷涂装置90的示意图,其中多个喷嘴92a、92b和92c不仅可用于电阻性材料93,而且还可用于将其它材料94和95施加到衬底97上。尽管未说明,但喷嘴92a、92b和92c还可能能够施加单种材料的多个层,或多种材料的单个层,其中所述材料在沉积到衬底上时混合。此外,应了解,电阻性材料成分可由一个以上喷嘴施加,或在喷涂之前组合且由单个喷嘴施加。喷涂枪可为手动控制的或自动的,且可使用用于热管理系统的设计和/或预测的软件来控制。此外,衬底可经接合以方便涂布工艺。 另外,应了解,可结合定位在衬底上的遮罩来使用喷涂装置。遮罩可提供各种图案,或可防止衬底的多个部分被喷涂到。此外,遮罩可定位在喷涂装置的孔隙上以提供经界定的喷涂图案。 提供以上描述内容以说明并阐释本发明。然而,上文的描述内容不应被认为限制本文所附的权利要求书中所陈述的本发明的范围。
《喷涂沉积加热器元件.pdf》由会员分享,可在线阅读,更多相关《喷涂沉积加热器元件.pdf(19页珍藏版)》请在专利查询网上搜索。
本发明涉及一种可施加到衬底的加热器。所述加热器可包括沉积在衬底的至少一部分上的分级材料、电阻性材料和热障介电涂层。所述电阻性材料可包括至少两种电阻性成分,其中可通过改变给定区域中的成分来更改所述材料的电阻率。 。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1