使用烧蚀膜连接微尺寸器件.pdf

上传人:1520****312 文档编号:826114 上传时间:2018-03-14 格式:PDF 页数:38 大小:1.32MB
返回 下载 相关 举报
摘要
申请专利号:

CN200880012539.1

申请日:

2008.04.04

公开号:

CN101681851A

公开日:

2010.03.24

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的视为放弃IPC(主分类):H01L 21/60放弃生效日:20100324|||实质审查的生效IPC(主分类):H01L 21/60申请日:20080404|||公开

IPC分类号:

H01L21/60; H01L23/48; B81B7/00; B81C1/00; H05K3/10; H01L21/48; G01N27/28

主分类号:

H01L21/60

申请人:

伊斯曼柯达公司

发明人:

M·Z·阿利; P·A·斯托尔特; G·A·豪金斯; T·M·斯蒂芬尼

地址:

美国纽约州

优先权:

2007.4.19 US 11/737,187

专利代理机构:

中国专利代理(香港)有限公司

代理人:

张雪梅;王忠忠

PDF下载: PDF下载
内容摘要

一种为微尺寸器件提供连接性的方法,该方法包括如下步骤:提供具有至少顶表面的烧蚀基底材料;提供具有第一和第二表面以及具有至少在第一表面上的接合焊盘的管芯;放置该管芯,其中该管芯的至少第一表面接触所述烧蚀基底材料的该至少第一表面;以及在靠近管芯的烧蚀材料中烧蚀沟道。在沟道中放置一种提供到管芯的流体或电或光子或磁或机械连接的材料。

权利要求书

1、  一种为微尺寸器件提供连接性的方法,该方法包括如下步骤:
(a)提供具有至少顶表面的烧蚀基底材料;
(b)提供具有第一和第二表面以及具有至少在该第一表面上的接合焊盘的管芯;
(c)放置该管芯,其中该管芯的该至少第一表面接触所述烧蚀基底材料的至少顶表面;以及
(d)在靠近管芯的烧蚀材料中烧蚀沟道

2、
  根据权利要求1所述的方法,还包括在被烧蚀的沟道中放置材料以在其中提供连接材料的步骤。

3、
  根据权利要求1所述的方法,还包括在被烧蚀的沟道中放置流体以通过芯吸流体来提供到部分管芯的接触的步骤。

4、
  根据权利要求1所述的方法,还包括微尺寸器件上的支撑结构以控制流体芯吸。

5、
  根据权利要求1所述的方法,还包括如下步骤:
(a)确定所放置的微器件的位置和存储结果;以及
(b)使得烧蚀沟道与预先定位的微器件对准。

6、
  根据权利要求2所述的方法,其中填充沟道的材料是流体。

7、
  根据权利要求2所述的方法,其中填充沟道的材料提供到管芯的一个或多个电连接。

8、
  根据权利要求2所述的方法,其中填充沟道的材料是磁性材料。

9、
  根据权利要求2所述的方法,其中填充沟道的材料传送光。

10、
  根据权利要求2所述的方法,其中填充沟道的材料响应于声音或运动。

11、
  根据权利要求1所述的方法,包括在微尺寸器件上提供结构以促进到所述器件的流体、电、光子和机械连接。

12、
  一种用于连接在印刷板上安装的微尺寸器件的方法,该方法包括如下步骤:
(a)提供烧蚀印刷板;
(b)在印刷板上安装至少第一和第二微尺寸器件,每个器件具有一个或更多电连接或光学连接;
(c)在每个微尺寸器件之间的印刷板中烧蚀微尺寸沟道;
(d)在该沟道中放置导体或光学元件;以及
(e)在所述第一和第二微尺寸器件的电连接或光学连接之间连接导体或光学元件。

13、
  根据权利要求12所述的方法,还包括在沟道或增强型沟道中放置可芯吸的物质以为电连接或光学连接提供高效连接。

14、
  根据权利要求12所述的方法,还包括在沟道或增强型沟道中放置可固化的物质以稳定沟道中的电元件或光学元件。

15、
  根据权利要求12所述的方法,还包括在沟道或增强型沟道中放置粘性物质以进一步稳定所述电元件或光学元件。

16、
  根据权利要求12所述的方法,包括把电器件提供为第一和第二微尺寸器件的步骤。

17、
  根据权利要求16所述的方法,包括把有源电器件提供为电器件的步骤。

18、
  根据权利要求16所述的方法,包括把无源电器件提供为电器件的步骤。

19、
  根据权利要求12所述的方法,还包括在烧蚀印刷板中具有隆起的部分以用于容纳微尺寸器件的步骤。

20、
  根据权利要求12所述的方法,还包括沿微尺寸器件的相对边缘提供多个接合焊盘的步骤。

21、
  根据权利要求12所述的方法,还包括在微尺寸器件或烧蚀印刷板上放置粘合剂以用于安装的目的。

22、
  根据权利要求12所述的方法,还包括在沟道中放置微流体器件的步骤。

23、
  根据权利要求12所述的方法,还包括确定微尺寸器件的位置和存储结果的步骤。

24、
  根据权利要求23所述的方法,还包括根据存储的结果放置一个或更多烧蚀沟道的步骤。

25、
  一种设备,包括:
(a)具有至少顶表面的烧蚀基底材料;
(b)管芯,该管芯的至少第一表面接触所述烧蚀基底材料的至少第一表面;以及
(c)在靠近管芯的烧蚀材料中设置的沟道。

26、
  根据权利要求25所述的设备,还包括被烧蚀的沟道中的传导的且可芯吸的流体以通过芯吸流体来提供到部分管芯的接触。

27、
  根据权利要求25所述的设备,其中沟道与预先定位的微器件对准。

28、
  根据权利要求25所述的设备,其中传导材料是流体。

29、
  根据权利要求25所述的设备,其中传导材料是电导体。

30、
  根据权利要求25所述的设备,其中传导材料是磁性材料。

31、
  根据权利要求25所述的设备,其中传导材料传送光。

32、
  根据权利要求25所述的设备,其中传导材料响应于声音或运动。

33、
  根据权利要求25所述的设备,还包括微尺寸器件上的结构以促进到所述器件的流体、电、光子和机械连接。

说明书

使用烧蚀膜连接微尺寸器件
技术领域
本发明通常涉及微尺寸器件的领域并且具体地涉及向微尺寸器件提供连接的过程,包括基于烧蚀膜(ablative film)的使用以彼此连接多个微尺寸器件的过程。更具体地,本发明涉及用于向微尺寸器件提供流体连接、电连接、光子连接、磁连接和机械连接的烧蚀装置。
背景技术
微尺寸器件例如包括如由Analog Device公司制造的用于检测线加速度和角加速度的微加速计和微陀螺、用以监测诸如一氧化碳或乙醇之类的某些分子蒸汽的存在的化学敏感场效应晶体管、用于测量汽车系统中的压力的压力传感器或者诸如那些在蜂窝电话中被采用以检测和再现音频声音的微声学传感器、以及用于通过红外线辐射来检测目标存在的光学传感器。这些以及其它微尺寸器件对微系统技术(MST)的实践者而言是熟知的。该领域中还熟知的是在这种微尺寸器件的廉价封装时遇到的困难,部分原因在于它们的小尺寸要求精确定位连接并且还在于这些连接可以具有许多不同的类型,例如电、机械或流体(蒸汽)。因为目标很小,所以对于系统应用可以结合许多互联的器件。另外,由于器件很小,所以必须建立连接以便尤其在面对器件合集(collection)所工作的外部环境(诸如温度或湿度)的变化时不会例如因机械应力而扰乱其功能。
为连接微器件所采用的先前装置已经包括了自动化引线接合设备的使用、球栅阵列技术的使用、利用具有温度匹配膨胀系数的材料对特殊封装的制作、以及在惰性或化学控制的气氛中封装密封器件的使用。尽管这些技术提供了尖端的解决方案,但是例如在封装如Texas Instruments公司制造的微镜器件(MMD)的情况下,众所周知它们的实施也不是没有代价的。近来,较低成本的解决方案已经可用来在聚合物膜上安装和连接微尺寸器件阵列,例如那些使用在其上图案化传导线(conductive line)的膜的解决方案,所述传导线可以通过包括喷墨印制流体的许多技术来沉积。这种流体可以是沉积时就是传导电的或者可以在后续处理例如通过热退火之后变为传导的。这些膜一般是柔性的,因此不大可能因机械应力而扰乱微尺寸器件的功能。
与本发明有关的一种沉积传导线的方式是通过沉积传导流体来填充聚合物膜中制成的沟道,例如通过激光烧蚀聚合物膜(在下文中成为烧蚀膜)而制成的沟道。如MST领域中众所周知的,微尺寸器件然后可以被放置在传导线附近;并且一般为电气的连接可以使用各种技术来建立从而一般确保电引线到器件或“管芯”的可靠连接,所述各种技术包括引线接合、倒装接合、电镀、以及沉积传导材料(包括通过喷墨方式沉积传导流体)。
参照图1a,示出了现有技术烧蚀膜5的横截面。该烧蚀膜5包括:衬底10,一般为柔性聚合物,诸如聚酰胺或聚碳酸酯;以及一个或更多能量吸收层20,其能够通过暴露于强辐射而被全部或部分去除,换言之能够例如通过来自近IR激光器的辐射而被烧蚀。例如由M.Zaki Ali等人在美国专利公开2005/0227182中揭露了能够通过来自近IR激光器的辐射而被去除的烧蚀膜合成物,该专利公开还考虑一旦烧蚀膜被烧蚀就将其用作光刻掩模以用于柔印(flexography)材料的后续逐图像紫外曝光。美国2005/0227182中描述的烧蚀膜可以含有用于除衬底或能量吸收层之外的目的的附加层,例如用于叠层的释放层和用于驱除液体的表面能控制层,以便烧蚀膜一旦被烧蚀就可以用于各种目的。许多其它材料类型的聚合物烧蚀膜和激光烧蚀处理在用于制造图案和结构的激光烧蚀和激光处理的领域中是众所周知的。例如,Richard Stoltz的转让给Raydiance公司的美国专利7,115,514描述了一种使用波长短于近IR的短脉冲的激光烧蚀处理,据描述用于烧蚀包括金属和无机材料在内的各式各样材料以及用于通过烧蚀更改其表面。
参照图1b,示出了更复杂结构的另一现有技术烧蚀膜5的横截面。该烧蚀膜5包括衬底10和多层30,一些层是能量吸收层。这些层能够通过暴露于强辐射而被全部或部分去除。其它层可以提供期望的颜色或表面属性(诸如疏水性),或者可以包括释放层以允许分离这些层,并且当邻近的底下或上覆能量吸收层吸收辐射时可以被去除(烧蚀)。
参照图2a-2b,分别以横截面和顶视图示出了图1a的烧蚀膜5中的沟道40的现有技术形成。该烧蚀膜5包括两个能量吸收层20和衬底10,如上所述。沟道40的基底50可以通过烧蚀处理进行更改,例如可以使其表面亲水。
在烧蚀膜的许多已知用途中,在通过烧蚀进行图案化之后的是那些依赖于被烧蚀的膜的表面属性和几何形状来限制所沉积的流体,诸如含有诸如金属颗粒之类的传导材料的流体的用途。这些流体一般通过诸如喷墨或者浸入液槽而进行沉积,接着例如通过机械刮擦刀片来去除不在烧蚀沟道中的过多流体。参照图2c,以横截面图示了用于在烧蚀膜5中的被烧蚀的沟道40中形成导电材料60的现有技术过程。例如,可以通过喷射(优选通过喷墨印刷装置)含有金属先驱体(precursor)的液体到沟道40内然后对该液体退火以形成导体60,来形成导体60。该导体60例如已由Dimatrix公司和Cabot公司商业化。
导体在形成于聚合物膜中的沟道中的沉积还被用来例如通过在具有图案化于沟道中或膜表面上的导体的聚合物膜的顶表面上定位微尺寸器件而将微尺寸器件电连接在一起,所述定位方式为机械放置或者可选的自组装(如由Alien Technologies公司实践的)中的一个。以逼近方式将微尺寸器件定位在导体附近,然后沉积一个或更多传导金属条,所述传导金属条从(一个或多个)微尺寸器件延伸到(一个或多个)导体以建立电连接。自对准定位的方法包括通过匹配内置于微尺寸器件和衬底两者内的几何特征或者使用衬底上逐图案沉积的吸引涂覆到微尺寸器件上的匹配化学组分的化学组分进行对准,如Sharma等人的美国专利公开2006/0134799和Sharma等人的美国专利公开2006/0057293中引用的。例如,发光二极管阵列可以被如此形成用于显示应用。
尽管这种现有技术能够提供可用的互连器件阵列,但是放置微尺寸器件的过程必须准确得足以考虑到成本经济地提供连接,例如提供由传导金属条制成的连接以建立电连接。这种准确度对于自对准过程而言通常很难实现并且通过精确拾取与放置技术实现的成本很高。此外,如果该连接在柔性衬底上意欲是鲁棒的(robust),则传导条的沉积很昂贵、就可靠性而言耗时并且也有问题。另外,这种技术通常不可应用于除电连接之外的连接类型,例如流体、磁、光学的连接或者机械类型或混合类型的连接。
发明内容
本发明旨在克服上面阐述的一个或更多问题。简而言之,根据本发明的一个方面,本发明在于一种为微尺寸器件提供连接的方法,该方法包括如下步骤:提供具有至少顶表面的烧蚀基底材料;提供具有第一和第二表面以及具有至少在第一表面上的接合焊盘的管芯;放置该管芯,其中该管芯的至少第一表面接触烧蚀基底材料的该至少顶表面;以及在靠近管芯的烧蚀材料中烧蚀沟道。
本发明的有益效果
本发明具有将烧蚀材料的用途扩展到包括在其上具有微尺寸器件的以下优点。
微尺寸器件的放置可以在对用于到器件或在器件之间的连接(包括机械连接、光学连接、磁连接、流体连接或电连接)的初始布线的图案化之前。
这些连接可以是上面类型的组合,与各个连接类型相比不用很大的过程复杂度来实现。
微尺寸器件与连接的对准可以具有自对准的性质而没有以前到微尺寸器件的自对准连接所需的复杂度。
微尺寸器件的位置和对准的记录被包含在制造过程中。
通过回顾以下对优选实施例和所附权利要求书的详细描述并且参照附图,将更清楚地理解和明白本发明的这些以及其它方面、目标、特征和优点。
附图说明
图1a是现有技术烧蚀膜的横截面;
图1b是现有技术烧蚀膜的横截面;
图2a-2b分别以横截面和顶视图图示了烧蚀膜中沟道的现有技术形成;
图2c以横截面图示了用于在烧蚀膜中的被烧蚀的沟道中形成导电材料的现有技术过程;
图2d以横截面示意性图示了本发明的烧蚀膜70的实施例;
图3a-b示出了具有两个接触区的本发明的微尺寸器件的顶视图和横截面图;
图3c示出了具有三个接触区的微尺寸器件的顶视图;
图3d是图3a-b的可选实施例,示出了具有两个接触的本发明的微尺寸器件的顶视图;
图3e示出了具有部分从管芯的顶部延伸到其左边缘上的接触区(实体填充)的微尺寸器件(管芯)的横截面;
图4a示出了三个接触区(虚线)顶面朝下放置在烧蚀膜的顶表面上的微尺寸器件(管芯)的视图;
图4b示出了接触区(虚线)顶面朝下放置在烧蚀膜的顶表面上的两个微尺寸器件(管芯)的视图;
图4c示出了包括通过对烧蚀膜的激光烧蚀而形成的延伸到接触区的沟道的图4b的两个管芯;
图4d-4e图示了用于以与管芯自对准的方式形成图4c的沟道的过程;
图5a-5b图示了通过喷墨印刷装置和通过流体(例如传导墨)的滴管或浸渍装置沉积到图4c的被烧蚀的沟道中,这是喷墨印刷领域和流体涂布领域众所周知的;
图6a图示了一种利用柔性刀片去除通过流体滴管装置沉积的过多流体的技术;
图6b示出了如图2d中的那样但更为详细的管芯、沟道和沉积流体的横截面图;
图7a-7c示出了对于其中到管芯的连接是光子连接的情况时如图2d中的那样但更为详细的管芯、沟道和沉积流体的横截面图;
图8a-8c示出了对于其中到管芯的连接是磁连接的情况时如图2d中的那样但更为详细的管芯、沟道和沉积流体的横截面图;
图9a-9c示出了对于其中到管芯的连接是流体连接的情况时的管芯、沟道和沉积上覆层(overlayer)的横截面图;
图10a-10f示出了对于其中到管芯的连接是流体连接的另一示例性情况时的管芯、沟道和沉积上覆层的横截面图;
图11a-11c示出了对于其中到管芯的连接是机械连接的另一示例性情况时的管芯、沟道和沟道材料的横截面图;
图12a-12b示出了对于其中到管芯的连接是远程的即沟道中的材料接近管芯的接触区但没有物理接触的情况时的管芯、沟道和沟道材料的顶视图和横截面图;以及
图13通过顶视图图示了到多种类型的微尺寸器件的多种类型的多个连接,所述多种类型的多个连接包括电、光子、磁、机械和流体类型的连接,所述多种类型的微尺寸器件包括生成电、光子、磁、机械和流体信号并且对其做出响应的器件。
具体实施方式
微尺寸的意指器件的对功能而言重要的特征在线性尺度上一般为1到100微米且器件是在包括光刻曝光材料层以通过后续处理进行图案化的过程中制造的。微流体器件意指其主要功能是对流体材料(气体和液体)或与所分析的流体材料的性质有关的信息输送、分析和分配的微尺寸器件,诸如但不限于化学或生物材料以及其物理和化学属性的传感器。微流体微器件也可以接收模拟或数字形式的包括电学或光学信息在内的信息并且产生模拟或数字形式的流体信号作为输出,所述流体信号诸如流体连接中的化学成分的变化或压力变化。微尺寸光子器件接收、处理和/或发送包括光脉冲串的光学数据形式的信息或者包括波长光信号的模拟光输入或输出,并且可以以各种方式对光激励做出响应,所述各种方式包括电输出和机械输出。光学微器件也可以接收包括电信息或机械信息在内的模拟或数字形式的信息并且产生模拟或数字形式的光信号作为输出。机械微尺寸器件对模拟或数字形式的包括准静态的机械运动以及声波和脉冲在内的机械刺激敏感并且能够产生这些机械刺激,并且可以以各种方式对机械激励做出响应,所述各种方式包括电输出和光输出。机械微器件也可以接收包括电信息和光学信息在内的模拟或数字形式的信息并且产生模拟或数字形式的机械或声学信号作为输出。磁微器件感测包括准静态磁场以及时变场在内的模拟或数字形式的磁性刺激并且可以以各种方式对磁性激励做出响应,所述各种方式包括产生电输出和光输出。磁微器件也可以接收包括电信息和光学信息在内的模拟或数字形式的信息并且产生模拟或数字形式的磁信号作为输出。
参照图2d,示出了本发明的烧蚀膜70的一个实施例。该烧蚀膜70包括衬底80和两个能量吸收层75,其中微尺寸器件(管芯)90已被定位在烧蚀膜70的顶表面上并且自对准的沟道100通过激光烧蚀而靠近管芯90的一个边缘形成。如激光烧蚀领域中众所周知的,在一个或更多能量吸收层75中吸收的能量导致从能量吸收层中去除材料并且根据周围层的化学性质从相邻层中去除材料。图2d中的管芯90在面向烧蚀膜的一侧上设有一个或更多包括金属接合焊盘110的接触区。含有金属先驱体的液体120例如通过喷墨印刷装置而已被喷射到沟道100中。金属先驱体是一种其在被干燥或退火时为电导体的流体,这在印刷电子学领域中是众所周知的。图2d中含有金属先驱体的液体120填充沟道100并且流到邻近沟道的部分管芯90之下,从而当被退火时通过直接接触金属接合焊盘110来提供到管芯90的电连接及机械连接。有利地,同时通过沉积流体到沟道100中的过程而建立到管芯90的电连接。
参照图3a-3b,示出了微尺寸器件90(管芯)的顶视图和横截面图。微尺寸器件90包括由保护层135部分保护的两个接触区130(对称设置)并且具有沿接触区130的侧面且在这些侧面之间的凸起支撑结构140。如将要描述的,向管芯90提供支撑结构140在建立到管芯90的各种类型的连接方面是有利的。
参照图3c,示出了具有由保护层135部分保护的三个接触区130并且具有分隔一些接触区130的凸起支撑结构140的微尺寸器件90(管芯)的可选实施例的顶视图。
参照图3d,示出了具有由保护层135部分保护的两个接触区130(非对称设置)并且具有分隔接触区的凸起支撑结构140的微尺寸器件90(管芯)的可选实施例的顶视图。保护层135不延伸到在部分接触区130中的管芯90的边缘以便为后续沉积在管芯90边缘附近的液体提供流到接触区130的更直接通路。
参照图3e,示出了具有接触区130的微尺寸器件90(管芯)的可选实施例的横截面图,所述接触区130被设置成部分从管芯90的顶部在其左边缘上延伸以便为后续沉积在管芯90边缘附近的液体提供流到接触区130的更直接通路。尽管图3d图示了到管芯90的电连接,但是如图3d所示的保护层135的位置和凸起支撑结构140的使用在为管芯90提供所有类型的接触方面是有用的。
参照图4a,示出了三个接触区130的顶面朝下放置在烧蚀膜70的顶表面上的微尺寸器件90(管芯)的顶视图。例如通过在加热情况下压入膜70中或者通过将少量粘合剂(未示出)沉积到部分管芯90例如沉积到分隔一些接触区130的凸起支撑结构140(在这个顶视图中不可见,因为它与衬底的顶表面相邻),已把管芯90轻微固定到烧蚀膜70。注意,管芯90未被精确放置;即,相对烧蚀膜70的管芯90的角度以及管芯中心未被精确地控制。
参照图4b,示出了接触区130的顶面朝下放置在烧蚀膜70的顶表面上的两个微尺寸器件90(管芯)的视图。例如通过在加热情况下压入膜70中或者通过将少量粘合剂沉积到部分管芯90,已把管芯90轻微固定到烧蚀膜70。注意,管芯90未被精确放置;即,相对烧蚀膜70及相对彼此的管芯90的角度以及管芯中心未被精确地控制。
参照图4c,示出了图4b的两个管芯90。优选地通过对烧蚀膜70的激光烧蚀来形成延伸到接触区130的沟道150。以使沟道方向与芯片方向对准的方式形成沟道150,即在图4c中沟道150垂直于最接近接触区130的芯片边缘而形成,尽管芯片被定向为与烧蚀膜70的边缘成一角度。
参照图4d-4e,示出了用于以与管芯90自对准的方式形成图4c的沟道150的过程。注意,尽管图4d-4e图示了具有覆盖衬底80的两个能量吸收层75的实施例,但是单个能量吸收层通常也是足够的。辐射的扫描源(例如激光束)烧蚀部分烧蚀膜70直至其到达管芯90的边缘为止,在此其能量被反射离开膜70,从而精确地在管芯边缘处停止形成沟道150,而不管管芯90的定向的角度和位置如何。如果需要,未精确放置的管芯90的位置用照相机进行检测并且存储在存储器文件中。这个文件在扫描能量射束时被查询并且用来控制扫描器以使射束朝管芯90上的期望位置(一般为接触焊盘的位置且一般垂直于最接近接触区的芯片边缘,尽管芯片可被定向为与烧蚀膜70的边缘成一角度。)移动。注意,管芯90主要由分隔接触区130的凸起支撑结构140支撑以便在接触区130和烧蚀膜70的顶表面之间存在一些空间。
参考图5a-5b,图示了通过喷墨印刷装置和通过流体160例如传导墨160a(稍后示出)的滴管或浸渍装置(dipping means)而沉积到图4c的被烧蚀的沟道150中,这是喷墨印刷领域和流体涂布领域中众所周知的。图5a图示了在该过程实际上正在发生时滴传导流体160的过程,图5b图示了已经由多个液滴沉积的被沉积传导流体160的最终位置。如传导流体领域中众所周知的,流体一般变硬以形成固体,也标记为161。在下文中,图中的阴影不区分流体和硬化的流体。
参照图6a,图示了一种利用柔性刀片170去除通过流体滴管装置沉积的过多流体161的技术。
参照图6b,示出了如图5a中的那样但更为详细的管芯90、沟道150和沉积流体161的横截面图。依据本发明,流体161芯吸(wick)到部分管芯90之下并且与管芯90的接触区130物理接触。这个实施例图示了其中到管芯90的连接是电连接的情况。例如,如薄膜材料领域中众所周知的,如果流体含有金属先驱体或者是导电聚合物材料,则电连接能够由沉积的流体161a形成。沟道150中的材料在退火后与接触区130a电接触。如此形成的到微尺寸器件90的连接使得器件能够发送和接收数字或模拟电信号形式的数据。传导材料不必物理接触接触区130a,只要其被紧密设置就行,这是介质电流检测领域众所周知的。图6b中的接触区130a可以包括MST器件领域中众所周知的电学响应元件,诸如电压或电流源或者电压或电流检测器。图6b中的支撑性结构140辅助流体161a到接触区的芯吸,原因在于它确保在烧蚀膜的顶表面和保护涂层135之间以及在烧蚀膜的顶表面和接触区130a之间存在空间。图6b中的支撑性结构140还由于其与烧蚀膜的顶表面接触而有助于防止流体161a芯吸到管芯右侧的接触区130a。
参照图7a-7c,示出了对于其中到管芯90的连接是光子连接的情况时如图5a中的那样但更为详细的管芯90、沟道150和沉积流体160的横截面图。在这种情况下,沟道150中沉积的材料160是光学透明的(由161b表示)。依据本发明,流体161b芯吸到部分管芯90之下并且与管芯90的接触区130b物理接触。在流体161b是光学透明材料例如诸如聚碳酸酯或苯并氯己烷菠烯(benzo chlorohexal borene)的聚合物的情况下,沟道150中的材料161b在硬化或退火后与管芯上的接触区130b光学接触。在这种情况下,接触区130b包括:光学响应元件,例如由有机聚合物构成的LED光源;或者光检测器,例如由诸如ZnSe或掺杂硅半导体结的沉积膜构成。如此形成的到微尺寸器件90的连接使得器件能够发送和接收数字或模拟光信号形式的数据。透光材料不必物理接触接触区130b,只要其被紧密设置就行,因为光能够经过透射材料和光传感器之间的间隙行进。图7c中的支撑性结构140辅助流体161b芯吸到管芯左边的接触区,原因在于它确保在烧蚀膜的顶表面和接触区130b之间存在空间。图7c中的支撑性结构140另外由于其与烧蚀膜的顶表面接触而防止流体芯吸到管芯右侧的接触区130b。
注意,电接触130a可以设置在管芯90的左部分上并且如上所揭露地进行连接。
参照图8a-8c,示出了对于其中到管芯90的连接是磁连接的情况时如图5a中的那样但更为详细的管芯90、沟道150和沉积流体161c的横截面图。在这种情况下,沟道150中沉积的材料161c是具有高磁导率的磁致激活材料(由161c表示)。依据本发明,流体161c芯吸到部分管芯90之下并且与管芯90的接触区130c物理接触,所述接触区130c被示为一对用来传导往返接触区130c的磁场的沟道,该接触区130c对施加的场是敏感的,例如接触区130c可以是霍尔型磁场传感器。在流体161c是磁致激活材料例如铁或铁合金的情况下,沟道150中的材料在硬化或退火后与管芯90上的接触区130c磁连通。在这种情况下,接触区130c包括:磁响应电路,例如霍尔传感器;或者磁场源,例如具有磁性部分的可移动机械换能器,这在MST器件领域中是众所周知的。如此形成的到微尺寸器件90的连接使得器件能够发送和接收数字或模拟磁信号形式的数据。磁致激活材料不必物理接触接触区130c,只要其与接触区130c紧密设置就行,因为能够经过材料和场传感器之间的间隙来感测磁场。
参照图9a-9c,示出了对于其中到管芯90的连接是流体连接的情况时的微尺寸器件或管芯90、沟道150和上覆共形叠层膜180的横截面图。注意,在图中颜色不区分空的沟道150和用外部采样的流体161d填充的沟道。在这种情况下,接触区130d包括对沟道150中存在的流体161d的化学性质或流变响应的装置,例如接触区130d可以是化学敏感的场效应晶体管(CHEM-FET)(其表示为130d),例如对外部采样的流体160d(例如气体或液体)的离子含量敏感;或者接触区130d可以是传导率检测器、湿度检测器、气体传感器或者分子特异性传感器诸如MIP谐振器。接触区130d还可以是内置于微器件本身内的流体开口,以将流体传送到器件以用于生物分析或处理。在这种情况下,微器件可以包括用于吸取或分配沟道150中的外部采样的流体161d的泵送装置。外部采样的流体160d可以包括液体或气体。在这种情况的一个实施例中,在沟道150中没有沉积材料,但是共形叠层膜180(图9c)被至少放置在已经形成沟道150之处的管芯90的那些部分上方以用作沟道的帽子。
注意,管芯90的左部分可以包括如上所述进行连接的电接触130a。
可选地(图10a-10f),可以在沟道150中放置牺牲材料,例如诸如蜡的相变液体可以沉积在沟道中并且通过冷却进行硬化。依据本实施例,牺牲流体161e可以芯吸到部分管芯90之下并且与管芯90的接触区130d物理接触。然后可以例如通过浸渍或喷涂将流体密封剂涂布到整个烧蚀膜上或者至少涂布到具有管芯和沟道的部分上,随后去除牺牲材料161e以形成用于外部采样的流体161d的沟道150。例如可以通过化学溶解或通过加热以汽化材料来去除牺牲材料161e(由161d表示)。依据任一过程,在烧蚀膜中形成与管芯90的(一个或多个)接触区流体连通的流体沟道150。如此形成的到微尺寸器件的连接使得器件90能够对化学内容例如沟道中已经存在的流体中的盐的存在做出响应,或者对例如通过流体的压力或介电常数所感测的自沟道引入和/或去除的流体做出响应。类似地如果流体是气体,则传感器可以检测在沟道中扩散或循环的诸如乙烷的分子种类。
参照图10a-10f,示出了对于其中到管芯90的连接是流体连接的另一示例性情况时的管芯90、沟道150和沉积上覆层的横截面图。在这种情况下,接触区130是内置于微器件本身的末端内的流体开口而不是在器件表面上限定的开口或传感器,以将流体传送到器件以用于生物分析或处理。微器件可以包括用于吸取或分配沟道150中的流体的泵送装置以及用于分析微器件中的流体的化学或生物属性的数据分析装置,这种流体功能在微型全分析系统领域中是众所周知的。在图10a-10c中,还包括在微器件的右边准备了本质上是电气的沟道连接,如结合图6a-6c所讨论的。事实上,本发明设想了使用到单个管芯和管芯90之间的多种类型的连接,包括电、光子、磁和流体类型的连接。在图10a-10c中,如上所讨论的,利用牺牲材料的流体沉积接着涂布密封层然后去除牺牲材料的过程来形成流体沟道。
参照图11a-11c,示出了对于其中到管芯90的连接是机械连接的另一示例性情况时的管芯90、沟道150和沟道材料161f的横截面图。在这种情况下,接触区130f是机械响应的因此能够感测或产生沟道材料的静态运动(应变)或者感测或产生振荡运动,即声波。许多微器件是MST技术领域中已知的,诸如压电悬臂和静电致动器,它们具备所有这些功能。在图11a-11c中,还包括在微器件的右边准备了本质上是电气的沟道连接,如结合图6a-6c所讨论的。本发明设想了使用到多种类型管芯以及其之间的多种类型的连接,包括电、光子、磁、机械和流体类型的连接。
参照图12a-12b,示出了对于其中到管芯90的连接是远程的即沟道150中的材料接近管芯90的接触区130但没有物理接触的情况时的管芯90、沟道150和沟道材料160的顶视图和横截面图。如图12b(其考虑流体160沉积在沟道150中的情况)所示,没有出现流体160芯吸到管芯90之下。这可以通过选择管芯90和流体160的表面以致界面表面张力低并且不利于芯吸来实现,例如水性流体通常不会芯吸到被聚四氟乙烯(Teflon)涂布的管芯之下。在这种情况下,接触区130仍能够感测或接收或发送电、光子、磁、机械和流体连接但灵敏度降低。许多微器件是MST领域中已知的,诸如磁检测器和温度传感器,其能够检测比如说由图12a的右侧所描绘的电流流动所产生的微小场变化或者比如说由图12a的左侧所描绘的暖流体的流动所产生的微小温度变化。
最后参照图13,图示了具有多个微尺寸器件的烧蚀膜70的顶视图,所述微尺寸器件带有多种类型的多个连接,包括电、光子、磁、机械和流体类型的连接。这种互连微尺寸器件阵列包括生成电、光子、磁、机械和流体信号并且对其做出响应的器件,所述器件阵列用作微系统,如MST领域中众所周知的。如已经讨论的且如图13所示,本发明考虑建立到未被精确定位在烧蚀膜上的器件的连接。通过例如用数字照相机检测微尺寸器件的位置、将这个信息存储在存储器文件中以及使用来自这种文件的信息以朝管芯上的期望位置(一般为接触焊盘的位置)扫描聚焦辐射射束,能够以自对准的方式用聚焦辐射(例如激光)来形成沟道150。
部件列表
5烧蚀膜
10衬底
20能量吸收层
30多层
40沟道
50基底
60导体
70烧蚀膜
75能量吸收层
80衬底
90管芯
100沟道
110金属接合焊盘
120液体
130接触区
130a传导接触
130b光学接触
130c磁接触
130d外部接触
130f机械接触
135保护层
140凸起支撑结构
150沟道
160流体
160a传导墨
160d外部采样的流体
161硬化液体(固体)
161a传导材料/沉积流体
161b光学连接
161c磁连接
161d外部连接
161e牺牲连接
161f机械连接
170柔性刀片
180共形叠层膜

使用烧蚀膜连接微尺寸器件.pdf_第1页
第1页 / 共38页
使用烧蚀膜连接微尺寸器件.pdf_第2页
第2页 / 共38页
使用烧蚀膜连接微尺寸器件.pdf_第3页
第3页 / 共38页
点击查看更多>>
资源描述

《使用烧蚀膜连接微尺寸器件.pdf》由会员分享,可在线阅读,更多相关《使用烧蚀膜连接微尺寸器件.pdf(38页珍藏版)》请在专利查询网上搜索。

一种为微尺寸器件提供连接性的方法,该方法包括如下步骤:提供具有至少顶表面的烧蚀基底材料;提供具有第一和第二表面以及具有至少在第一表面上的接合焊盘的管芯;放置该管芯,其中该管芯的至少第一表面接触所述烧蚀基底材料的该至少第一表面;以及在靠近管芯的烧蚀材料中烧蚀沟道。在沟道中放置一种提供到管芯的流体或电或光子或磁或机械连接的材料。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1