地层孔隙压力的确定方法及装置.pdf

上传人:e2 文档编号:618807 上传时间:2018-02-26 格式:PDF 页数:13 大小:1.36MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410778684.8

申请日:

2014.12.15

公开号:

CN104500054A

公开日:

2015.04.08

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):E21B 49/00申请日:20141215|||公开

IPC分类号:

E21B49/00

主分类号:

E21B49/00

申请人:

中国石油天然气集团公司; 中国石油集团钻井工程技术研究院

发明人:

姜英健; 周英操; 王瑛; 刘伟; 蒋宏伟; 王倩; 王凯; 马鹏鹏; 张兴全; 崔堂波; 陈玉龙; 刘渐强

地址:

100007北京市东城区东直门北大街9号

优先权:

专利代理机构:

北京三友知识产权代理有限公司11127

代理人:

王天尧

PDF下载: PDF下载
内容摘要

本发明实施例提供了一种地层孔隙压力的确定方法及装置,其中,该方法包括:实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。该方案可以提高地层孔隙压力计算结果的准确度。

权利要求书

1.  一种地层孔隙压力的确定方法,其特征在于,包括:
实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;
根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;
根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;
根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。

2.
  如权利要求1所述的地层孔隙压力的确定方法,其特征在于,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括:
当钻井液入口流量等于钻井液返出流量时,通过以下公式计算地层孔隙压力:
PP=PBHP=PAF+P1
其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,P1是静液柱压力,PAF是环空摩阻。

3.
  如权利要求1所述的地层孔隙压力的确定方法,其特征在于,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括:
当钻井液入口流量小于钻井液返出流量时,通过以下公式计算地层孔隙压力:
PP=PBHP+4πKh(2S+ln(4Kteγφμcrw2))]]>
其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,q为地层流体流速,K为地层孔隙率,S为表皮系数,t为溢流发生后测量时间间隔,h为地层厚度,φ为地层孔隙度,c为地层流体可压缩度,rw为钻井半径,γ为欧拉常数,μ是流体粘度,e是常数。

4.
  如权利要求1所述的地层孔隙压力的确定方法,其特征在于,根据所述地层 孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括:
当钻井液入口流量大于钻井液返出流量时,通过以下公式计算地层孔隙压力:
Pp=PBHP-QBμ(lnrerw+s)0.0226Kh]]>
其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为漏失量,K为地层渗透率,h为地层厚度,B为水体积系数,μ为流体粘度,re为供给半径,rw为钻井半径,s为表皮效应系数。

5.
  如权利要求1至4中任一项所述的地层孔隙压力的确定方法,其特征在于,还包括:
实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值。

6.
  如权利要求1至4中任一项所述的地层孔隙压力的确定方法,其特征在于,还包括:
实时计算得到地层孔隙压力后,根据计算得出的地层孔隙压力实时计算地层破裂压力。

7.
  一种地层孔隙压力的确定装置,其特征在于,包括:
采集模块,用于实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;
大小关系计算模块,用于根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;
压力差计算模块,用于根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;
地层孔隙压力计算模块,用于根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。

8.
  如权利要求7所述的地层孔隙压力的确定装置,其特征在于,当钻井液入口流量等于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙 压力:
PP=PBHP=PAF+P1
其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,P1是静液柱压力,PAF是环空摩阻。

9.
  如权利要求7所述的地层孔隙压力的确定装置,其特征在于,当钻井液入口流量小于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力:
PP=PBHP+4πKh(2S+ln(4Kteγφμcrw2))]]>
其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,q为地层流体流速,K为地层孔隙率,S为表皮系数,t为溢流发生后测量时间间隔,h为地层厚度,φ为地层孔隙度,c为地层流体可压缩度,rw为钻井半径,γ为欧拉常数,μ是流体粘度,e是常数。

10.
  如权利要求7所述的地层孔隙压力的确定装置,其特征在于,当钻井液入口流量大于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力:
Pp=PBHP-QBμ(lnrerw+s)0.0226Kh]]>
其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为漏失量,K为地层渗透率,h为地层厚度,B为水体积系数,μ为流体粘度,re为供给半径,rw为钻井半径,s为表皮效应系数。

11.
  如权利要求7至10中任一项所述的地层孔隙压力的确定装置,其特征在于,还包括:
筛选模块,用于实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值。

12.
  如权利要求7至10中任一项所述的地层孔隙压力的确定装置,其特征在于,还包括:
地层破裂压力计算模块,用于实时计算得到地层孔隙压力后,根据计算得出的地层孔隙压力实时计算地层破裂压力。

说明书

地层孔隙压力的确定方法及装置
技术领域
本发明涉及石油、天然气钻井技术领域,特别涉及一种地层孔隙压力的确定方法及装置。
背景技术
地层孔隙压力指地层孔隙内的油、气、水的压力,与地层所在深度有关,一般表现为地层与地表连通的静液柱压力。此外,地层孔隙压力还与构造的封闭条件有关,穹窿构造的顶部受上覆表层压力的影响,可以形成异常高压地层。地层孔隙压力对于石油工程来说是一项重要的工程地质参数,与油气资源的钻探和开发都有着密切关系。地层孔隙压力是确定合理钻井液密度的基础依据,而钻井液密度直接影响了钻井工程安全和效率,是实现平衡钻井和欠平衡钻井的关键参数。所以对地层孔隙压力进行准确的计算和分析有助于优化钻井设计、保证钻井安全、提高钻井效率。
目前地层孔隙压力的测量评价方法可根据钻井过程的先后顺序分为三类:钻前预测、随钻测量、钻后检测。其中,钻前预测主要是通过地震资料来预测地层孔隙压力,但一般精度较低,无法真实的反映地层孔隙压力信息;钻后检测是利用测井资料来检测地层孔隙压力,钻后检测精确度较高,是目前最准确的孔隙压力评价方法,但钻后检测属于事后检测无法对正在实时进行的钻井工程提供施工指导;随钻测量是利用钻井过程中采集的录井资料和随钻测井资料实时检测地层孔隙压力变化,相比于钻前预测和钻后检测,其优势是能够及时发现地层孔隙压力变化,并指导调整修改钻井液密度和井身结构设计,因此是地层孔隙压力确定技术的主要发展趋势。
目前常用的地层孔隙压力随钻检测方法主要有dc指数法、泥页岩密度法、标准钻速法、岩石强度法等。其中又以dc指数法应用的最为广泛,dc指数法是一种形式的标准化钻速法,其特点是使用方便,能及时提供压力资料,同时可以保证一定的精度。其原理是利用泥页岩压实规律及井底压差对机械钻速的影响来计算地层孔隙压力。具体方法如下:首先将采集到的数据(每米井深的钻压、转速、钻时、泥浆比重、 钻头直径、正常地层压力当量泥浆比重)代入式(1)中,根据一口井的正常压力地层的dc指数数据,建立指数正常趋势线。
dc=log(3.282N×T)log(0.0684×WD)×ρnρm---(1)]]>
其中,N为转速,r/m;T为钻时,min/m;W为钻压,KN;D为钻头直井,mm;ρn为正常地层孔隙压力梯度等效密度,g/cm3;ρm为钻井液密度,g/cm3
建立正常趋势线后,求得相应井深的dc值,将其与实际计算的dc值相比较,并运用相应的地层孔隙压力计算模型(例如,对数法、等效深度法、反算法、伊顿法),来定量地计算出地层孔隙压力的大小。
虽然dc指数法应用广泛,但仍然存在着局限性。dc指数法在推到过程中假设钻井条件和岩性不变,同时也不考虑钻头因素和水力学因素的影响,对于机械钻速的影响因素处理过于理想化,然而事实上这些因素确实会对地层孔隙压力的计算结果有较大的影响,使得地层孔隙压力的计算结果准确度低。
发明内容
本发明实施例提供了一种地层孔隙压力的确定方法,以提高地层孔隙压力计算结果的准确度。该方法包括:实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。
在一个实施例中,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括:当钻井液入口流量等于钻井液返出流量时,通过以下公式计算地层孔隙压力:
PP=PBHP=PAF+P1
其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,P1是静液柱压力,PAF是 环空摩阻。
在一个实施例中,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括:当钻井液入口流量小于钻井液返出流量时,通过以下公式计算地层孔隙压力:
PP=PBHP+4πKKh(2S+ln(4Kteγφμrw2))]]>
其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,q为地层流体流速,K为地层孔隙率,S为表皮系数,t为溢流发生后测量时间间隔,h为地层厚度,φ为地层孔隙度,c为地层流体可压缩度,rw为钻井半径,γ为欧拉常数,μ是流体粘度,e是常数。
在一个实施例中,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括:当钻井液入口流量大于钻井液返出流量时,通过以下公式计算地层孔隙压力:
Pp=PBHP-QBμ(lnrerw+s)0.0226Kh]]>
其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为漏失量,K为地层渗透率,h为地层厚度,B为水体积系数,μ为流体粘度,re为供给半径,rw为钻井半径,s为表皮效应系数。
在一个实施例中,还包括:实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值。
在一个实施例中,还包括:实时计算得到地层孔隙压力后,根据计算得出的地层孔隙压力实时计算地层破裂压力。
本发明实施例还提供了一种地层孔隙压力的确定装置,以提高地层孔隙压力计算结果的准确度。该装置包括:采集模块,用于实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;大小关系计算模块,用于根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;压力差计算模块, 用于根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;地层孔隙压力计算模块,用于根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。
在一个实施例中,当钻井液入口流量等于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力:
PP=PBHP=PAF+P1
其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,P1是静液柱压力,PAF是环空摩阻。
在一个实施例中,当钻井液入口流量小于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力:
PP=PBHP+4πKKh(2S+ln(4Kteγφμrw2))]]>
其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,q为地层流体流速,K为地层孔隙率,S为表皮系数,t为溢流发生后测量时间间隔,h为地层厚度,φ为地层孔隙度,c为地层流体可压缩度,rw为钻井半径,γ为欧拉常数,μ是流体粘度,e是常数。
在一个实施例中,当钻井液入口流量大于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力:
Pp=PBHP-QBμ(lnrerw+s)0.0226Kh]]>
其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为漏失量,K为地层渗透率,h为地层厚度,B为水体积系数,μ为流体粘度,re为供给半径,rw为钻井半径,s为表皮效应系数。
在一个实施例中,还包括:筛选模块,用于实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值。
在一个实施例中,还包括:地层破裂压力计算模块,用于实时计算得到地层孔隙 压力后,根据计算得出的地层孔隙压力实时计算地层破裂压力。
在本发明实施例中,通过采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量,来确定井下钻井液入口流量与返出流量之间的大小关系,并根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息实时计算出地层孔隙压力与井底钻井液液柱压力之差,最后,根据地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。即通过井下钻井液入口流量与返出流量之间的大小关系,来推导地层孔隙压力与井底钻井液液柱压力之差,进而得出地层孔隙压力,与现有技术中通过dc指数法来确定地层孔隙压力相比,避免了钻井条件、岩性变化等因素对地层孔隙压力计算结果的影响,且通过水力学公式来计算井底钻井液液柱压力,考虑了钻头类型和钻头磨损和水力学等因素的影响,从而可以提高地层孔隙压力计算结果的准确度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1是本发明实施例提供的一种地层孔隙压力的确定方法的流程图;
图2是本发明实施例提供的一种地层孔隙压力的确定装置的结构框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本发明做进一步详细说明。在此,本发明的示意性实施方式及其说明用于解释本发明,但并不作为对本发明的限定。
发明人发现,在钻井过程中,钻井液由泥浆泵泵入井内,经过钻柱、环空、液气分离器、振动筛,返回泥浆池,这一过程中假设钻井液为不可压缩液体,出入口钻井液流量应遵守质量守恒原则;若出入口流量产生偏差,则证明地层流体与井筒内流体之间存在着流动。而无论是地层流体还是井筒内流体的流动都是受井筒内钻井液液柱压力与地层孔隙压力之差驱动的。所以假设井下溢流与漏失发生在近钻头处,通过精确测量钻井液的出入口流量差,便可利用渗流公式逆向推导出钻井液液柱压力与地层孔隙压力之差,再经过水力学公式计算出井筒内钻井液液柱压力,即可得到地层孔隙 压力,因此,发明人提出基于钻井液的出入口流量差来确定地层孔隙压力的方法,与现有技术中基于dc指数法相比,以提高地层孔隙压力计算结果的准确度。
基于此,在本发明实施例中,提供了一种地层孔隙压力的确定方法,如图1所示,该方法包括:
步骤101:实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;
步骤102:根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;
步骤103:根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;
步骤104:根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。
由图1所示的流程可知,在本发明实施例中,通过采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量,来确定井下钻井液入口流量与返出流量之间的大小关系,并根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息实时计算出地层孔隙压力与井底钻井液液柱压力之差,最后,根据地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液液柱压力,实时计算得出地层孔隙压力。即通过井下钻井液入口流量与返出流量之间的大小关系,来推导地层孔隙压力与井底钻井液液柱压力之差,进而得出地层孔隙压力,与现有技术中通过dc指数法来确定地层孔隙压力相比,避免了钻井条件、岩性变化等因素对地层孔隙压力计算结果的影响,且通过水力学公式来计算井底钻井液液柱压力,考虑了钻头类型和钻头磨损和水力学等因素的影响,从而可以提高地层孔隙压力计算结果的准确度。
具体实施时,可以以一定时间间隔来采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量,进而确定钻井液泵入和返出量的情形,时间间隔可选择:Δt=t2-t1=1min~10min。
具体实施过程中,可以通过以下方式来根据井下钻井液入口流量与返出流量之间的大小关系,确定地层孔隙压力,例如:
当钻井液入口流量等于钻井液返出流量时,则可以认为地层孔隙压力与井底钻井 液液柱压力之差为零,地层孔隙压力等于井底钻井液液柱压力,具体的,可以根据以下公式来计算地层孔隙压力:
PP=PBHP=PAF+P1                      (2)
其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,该井底钻井液液柱压力可以根据水力学公式求得,P1是静液柱压力,PAF是环空摩阻,ρESD是当量静态钻井液密度,单位g/cm3,井筒内钻井液静态密度并不处处相同,而是与温度、压力存在着一定关系,故考虑压力、温度随井筒分布规律,得到钻井液的当量密度来计算可提高计算精度,ρg为环空压耗,单位:g/cm3,环空压耗需根据现场具体情况如钻井液密度、钻井液流变性、钻井泵排量、岩屑浓度、温度、井眼尺寸及钻具组合等因素选择适合的流变模型计算;g是重力加速度,为9.8N/kg;H是井深。
当钻井液入口流量小于钻井液返出流量时,则证明地层流体流入井筒内,发生了溢流。这种情况下,可认为是欠平衡钻井,则可以参考欠平衡钻井时地层流体流出速度与地层孔隙压力与井底钻井液液柱压力之差的关系计算出地层孔隙压力与井底钻井液液柱压力之差,进而计算出地层孔隙压力,具体的,可以根据以下公式来确定地层孔隙压力:
PP=PBHP+4πKKh(2S+ln(4Kteγφμrw2))---(3)]]>
其中,PBHP是井底钻井液液柱压力,单位M Pa;PP为地层孔隙压力,单位M Pa;q为地层流体流速,K为地层孔隙率,S为表皮系数,t为溢流发生后测量时间间隔,h为地层厚度,φ为地层孔隙度,c为地层流体可压缩度,rw为钻井半径,γ为欧拉常数,例如γ=0.57721,μ是流体粘度,单位MPa·s;e是常数,一般约为2.71828,是一个无限循环数。
当钻井液入口流量大于钻井液返出流量时,则证明有井筒内流体流入到地层当中,发生了漏失。这一过程与油田开发注水过程相同,由于钻井过程时间相对较短,可认定为稳定流,借助达西公式特推导漏失中压差与漏失量和漏失速度的关系,通过 测量器件测量漏失速度与漏失量,然后反推出地层孔隙压力与井底钻井液液柱压力之差,进而计算出地层孔隙压力,具体的,可以根据以下公式来确定地层孔隙压力:
Pp=PBHP-QBμ(lnrerw+s)0.0226Kh---(4)]]>
其中,PBHP是井底钻井液液柱压力,单位M Pa;PP为地层孔隙压力,单位M Pa;Q为漏失量,单位m3/h;K为地层渗透率,单位m D;h为地层厚度,m;B为水体积系数;μ为流体粘度,单位M Pa·s;re为供给半径,单位m;rw为钻井半径,单位m;s为表皮效应系数。
具体实施时,为了进一步提高地层孔隙压力计算结果的精度,在本实施例中,实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值,例如,第一预设值可以为2,第二设置值可以为1,以对计算得到的地层孔隙压力进行筛选,使得地层孔隙压力计算结果更准确。
具体实施时,在计算得到地层孔隙压力后,还可以根据计算得出的地层孔隙压力实时计算地层破裂压力,例如,不同漏失的地层破裂压力与地层孔隙压力关系如下:
(1)压裂性漏失,压裂性漏失的漏失压力可认为近似等于破裂压力。完整地层的破裂压力为井筒周向应力与岩石抗拉强度之和。根据线弹性力学理论及平面应变假设,可以得到井眼的破裂压力为:
pf=3δhH+St-αPP                     (5)其中,pf是破裂压力;δH为最大水平主地应力;δh为最小水平主地应力;α为有效应力系数;PP为地层孔隙压力,单位M Pa;St是岩石抗拉强度,单位M Pa。
(2)裂缝扩展性漏失,裂缝扩展性漏失主要发生在强应力敏感性地层,对于裂缝扩展性漏失,存在着临界裂缝宽度。当超过临界裂缝宽度时,钻井液滤失速率明显增加,进而演变成钻井液漏失。通过经典力学理论或数值模拟等手段,就可以求得井筒液柱压力与裂缝面的有效正应力的关系。
Pf2=KnE(ωc-ωo)1-v2+Pp---(6)]]>
其中,Pf2是破裂压力;ωc是临界裂缝宽度,单位:mm;ωo是初始最大裂缝宽 度,单位:mm;Kn是裂缝刚度;Pp是地层孔隙压力,单位:M Pa;E是系数,可根据具体地层岩性条件确定;v是系数,可根据具体地层岩性条件确定。
(3)大型裂缝溶洞性漏失,对于大型裂缝溶洞性地层,漏失通道尺寸较大,钻井液很容易进入地层,漏失只须克服钻井流体在缝洞系统中的流动阻力,故此类漏失的漏失压力为:
pf3=pp+ps                       (7)
其中,pf3是漏失压力,pp为地层孔隙压力,单位M Pa;ps为钻井液漏失的压力损耗,单位M Pa。
基于同一发明构思,本发明实施例中还提供了一种地层孔隙压力的确定装置,如下面的实施例所述。由于地层孔隙压力的确定装置解决问题的原理与地层孔隙压力的确定方法相似,因此地层孔隙压力的确定装置的实施可以参见地层孔隙压力的确定方法的实施,重复之处不再赘述。以下所使用的,术语“单元”或者“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是本发明实施例的地层孔隙压力的确定装置的一种结构框图,如图2所示,包括:采集模块201、大小关系计算模块202、压力差计算模块203和地层孔隙压力计算模块204。下面对该结构进行说明。
采集模块201,用于实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;
大小关系计算模块202,与采集模块201连接,用于根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;
压力差计算模块203,与大小关系计算模块202连接,用于根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;
地层孔隙压力计算模块204,与压力差计算模块203连接,用于根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。
在一个实施例中,当钻井液入口流量等于钻井液返出流量时,所述地层孔隙压力 计算模块通过以下公式计算地层孔隙压力:
PP=PBHP=PAF+P1
其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,P1是静液柱压力,PAF是环空摩阻。
在一个实施例中,当钻井液入口流量小于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力:
PP=PBHP+4πKh(2S+ln(4Kteγφμrw2))]]>
其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,q为地层流体流速,K为地层孔隙率,S为表皮系数,t为溢流发生后测量时间间隔,h为地层厚度,φ为地层孔隙度,c为地层流体可压缩度,rw为钻井半径,γ为欧拉常数,μ是流体粘度,e是常数。
在一个实施例中,当钻井液入口流量大于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力:
Pp=PBHP-QBμ(lnrerw+s)0.0226Kh]]>
其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为漏失量,K为地层渗透率,h为地层厚度,B为水体积系数,μ为流体粘度,re为供给半径,rw为钻井半径,s为表皮效应系数。
在一个实施例中,还包括:筛选模块,用于实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值。
在一个实施例中,还包括:地层破裂压力计算模块,用于实时计算得到地层孔隙压力后,根据计算得出的地层孔隙压力实时计算地层破裂压力。
在本发明实施例中,通过采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量,来确定井下钻井液入口流量与返出流量之间的大小关系,并根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息实时计算出地层孔隙压力与井底钻井液液柱压力之差,最后,根据已知的井底钻井液柱压力和 地层孔隙压力与井底钻井液液柱压力之差,实时计算得出地层孔隙压力。即通过井下钻井液入口流量与返出流量之间的大小关系,来推导地层孔隙压力与井底钻井液液柱压力之差,进而得出地层孔隙压力,与现有技术中通过dc指数法来确定地层孔隙压力相比,避免了钻井条件、岩性变化等因素对地层孔隙压力计算结果的影响,且通过水力学公式来计算井底钻井液液柱压力,考虑了钻头类型和钻头磨损和水力学等因素的影响,从而可以提高地层孔隙压力计算结果的准确度。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明实施例可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

地层孔隙压力的确定方法及装置.pdf_第1页
第1页 / 共13页
地层孔隙压力的确定方法及装置.pdf_第2页
第2页 / 共13页
地层孔隙压力的确定方法及装置.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《地层孔隙压力的确定方法及装置.pdf》由会员分享,可在线阅读,更多相关《地层孔隙压力的确定方法及装置.pdf(13页珍藏版)》请在专利查询网上搜索。

1、10申请公布号43申请公布日21申请号201410778684822申请日20141215E21B49/0020060171申请人中国石油天然气集团公司地址100007北京市东城区东直门北大街9号申请人中国石油集团钻井工程技术研究院72发明人姜英健周英操王瑛刘伟蒋宏伟王倩王凯马鹏鹏张兴全崔堂波陈玉龙刘渐强74专利代理机构北京三友知识产权代理有限公司11127代理人王天尧54发明名称地层孔隙压力的确定方法及装置57摘要本发明实施例提供了一种地层孔隙压力的确定方法及装置,其中,该方法包括实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;根据采集的所述泥浆泵入口的钻井液。

2、流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。该方案可以提高地层孔隙压力计算结果的准确度。51INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求书3页说明书8页附图1页10申请公布号CN104500054A43申请公布日20150408CN104500054A1/3页21一种地层孔隙压力的确定方法,其特征在于,包。

3、括实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。2如权利要求1所述的地层孔隙压力的确定方法,其特征在于,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括当钻井液入。

4、口流量等于钻井液返出流量时,通过以下公式计算地层孔隙压力PPPBHPPAFP1其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,P1是静液柱压力,PAF是环空摩阻。3如权利要求1所述的地层孔隙压力的确定方法,其特征在于,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括当钻井液入口流量小于钻井液返出流量时,通过以下公式计算地层孔隙压力其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为地层流体流速,K为地层孔隙率,S为表皮系数,T为溢流发生后测量时间间隔,H为地层厚度,为地层孔隙度,C为地层流体可压缩度,RW为钻井半径,为欧拉。

5、常数,是流体粘度,E是常数。4如权利要求1所述的地层孔隙压力的确定方法,其特征在于,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括当钻井液入口流量大于钻井液返出流量时,通过以下公式计算地层孔隙压力其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为漏失量,K为地层渗透率,H为地层厚度,B为水体积系数,为流体粘度,RE为供给半径,RW为钻井半径,S为表皮效应系数。5如权利要求1至4中任一项所述的地层孔隙压力的确定方法,其特征在于,还包括实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数。

6、值,所述第一预设值大于所述第二设置值。6如权利要求1至4中任一项所述的地层孔隙压力的确定方法,其特征在于,还包括权利要求书CN104500054A2/3页3实时计算得到地层孔隙压力后,根据计算得出的地层孔隙压力实时计算地层破裂压力。7一种地层孔隙压力的确定装置,其特征在于,包括采集模块,用于实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;大小关系计算模块,用于根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;压力差计算模块,用于根据井下钻井液入口流量与返出流量之间的大小关。

7、系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;地层孔隙压力计算模块,用于根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。8如权利要求7所述的地层孔隙压力的确定装置,其特征在于,当钻井液入口流量等于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力PPPBHPPAFP1其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,P1是静液柱压力,PAF是环空摩阻。9如权利要求7所述的地层孔隙压力的确定装置,其特征在于,当钻井液入口流量小于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力其中,。

8、PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为地层流体流速,K为地层孔隙率,S为表皮系数,T为溢流发生后测量时间间隔,H为地层厚度,为地层孔隙度,C为地层流体可压缩度,RW为钻井半径,为欧拉常数,是流体粘度,E是常数。10如权利要求7所述的地层孔隙压力的确定装置,其特征在于,当钻井液入口流量大于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为漏失量,K为地层渗透率,H为地层厚度,B为水体积系数,为流体粘度,RE为供给半径,RW为钻井半径,S为表皮效应系数。11如权利要求7至10中任一项所述的地层孔隙压力的。

9、确定装置,其特征在于,还包括筛选模块,用于实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值。12如权利要求7至10中任一项所述的地层孔隙压力的确定装置,其特征在于,还包括地层破裂压力计算模块,用于实时计算得到地层孔隙压力后,根据计算得出的地层孔权利要求书CN104500054A3/3页4隙压力实时计算地层破裂压力。权利要求书CN104500054A1/8页5地层孔隙压力的确定方法及装置技术领域0001本发明涉及石油、天然气钻井技术领域,特别涉及一种地层孔隙压力的确定方法及装置。背景技术0002地层孔隙压力指地层。

10、孔隙内的油、气、水的压力,与地层所在深度有关,一般表现为地层与地表连通的静液柱压力。此外,地层孔隙压力还与构造的封闭条件有关,穹窿构造的顶部受上覆表层压力的影响,可以形成异常高压地层。地层孔隙压力对于石油工程来说是一项重要的工程地质参数,与油气资源的钻探和开发都有着密切关系。地层孔隙压力是确定合理钻井液密度的基础依据,而钻井液密度直接影响了钻井工程安全和效率,是实现平衡钻井和欠平衡钻井的关键参数。所以对地层孔隙压力进行准确的计算和分析有助于优化钻井设计、保证钻井安全、提高钻井效率。0003目前地层孔隙压力的测量评价方法可根据钻井过程的先后顺序分为三类钻前预测、随钻测量、钻后检测。其中,钻前预测。

11、主要是通过地震资料来预测地层孔隙压力,但一般精度较低,无法真实的反映地层孔隙压力信息;钻后检测是利用测井资料来检测地层孔隙压力,钻后检测精确度较高,是目前最准确的孔隙压力评价方法,但钻后检测属于事后检测无法对正在实时进行的钻井工程提供施工指导;随钻测量是利用钻井过程中采集的录井资料和随钻测井资料实时检测地层孔隙压力变化,相比于钻前预测和钻后检测,其优势是能够及时发现地层孔隙压力变化,并指导调整修改钻井液密度和井身结构设计,因此是地层孔隙压力确定技术的主要发展趋势。0004目前常用的地层孔隙压力随钻检测方法主要有DC指数法、泥页岩密度法、标准钻速法、岩石强度法等。其中又以DC指数法应用的最为广泛。

12、,DC指数法是一种形式的标准化钻速法,其特点是使用方便,能及时提供压力资料,同时可以保证一定的精度。其原理是利用泥页岩压实规律及井底压差对机械钻速的影响来计算地层孔隙压力。具体方法如下首先将采集到的数据每米井深的钻压、转速、钻时、泥浆比重、钻头直径、正常地层压力当量泥浆比重代入式1中,根据一口井的正常压力地层的DC指数数据,建立指数正常趋势线。00050006其中,N为转速,R/M;T为钻时,MIN/M;W为钻压,KN;D为钻头直井,MM;N为正常地层孔隙压力梯度等效密度,G/CM3;M为钻井液密度,G/CM3。0007建立正常趋势线后,求得相应井深的DC值,将其与实际计算的DC值相比较,并运。

13、用相应的地层孔隙压力计算模型例如,对数法、等效深度法、反算法、伊顿法,来定量地计算出地层孔隙压力的大小。说明书CN104500054A2/8页60008虽然DC指数法应用广泛,但仍然存在着局限性。DC指数法在推到过程中假设钻井条件和岩性不变,同时也不考虑钻头因素和水力学因素的影响,对于机械钻速的影响因素处理过于理想化,然而事实上这些因素确实会对地层孔隙压力的计算结果有较大的影响,使得地层孔隙压力的计算结果准确度低。发明内容0009本发明实施例提供了一种地层孔隙压力的确定方法,以提高地层孔隙压力计算结果的准确度。该方法包括实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出。

14、流量;根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。0010在一个实施例中,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括当钻井液入口流量等于钻井液返出流量时,通过以下公式计算地层孔隙压力0011PPPBHPPAFP10012其中,PP是地。

15、层孔隙压力,PBHP是井底钻井液液柱压力,P1是静液柱压力,PAF是环空摩阻。0013在一个实施例中,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的井底钻井液柱压力,实时计算得出地层孔隙压力,包括当钻井液入口流量小于钻井液返出流量时,通过以下公式计算地层孔隙压力00140015其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为地层流体流速,K为地层孔隙率,S为表皮系数,T为溢流发生后测量时间间隔,H为地层厚度,为地层孔隙度,C为地层流体可压缩度,RW为钻井半径,为欧拉常数,是流体粘度,E是常数。0016在一个实施例中,根据所述地层孔隙压力与井底钻井液液柱压力之差和所述已知的。

16、井底钻井液柱压力,实时计算得出地层孔隙压力,包括当钻井液入口流量大于钻井液返出流量时,通过以下公式计算地层孔隙压力00170018其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为漏失量,K为地层渗透率,H为地层厚度,B为水体积系数,为流体粘度,RE为供给半径,RW为钻井半径,S为表皮效应系数。0019在一个实施例中,还包括实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值。说明书CN104500054A3/8页70020在一个实施例中,还包括实时计算得到地层孔隙压力后,根据计算得出的地层孔隙压力实时计。

17、算地层破裂压力。0021本发明实施例还提供了一种地层孔隙压力的确定装置,以提高地层孔隙压力计算结果的准确度。该装置包括采集模块,用于实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;大小关系计算模块,用于根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;压力差计算模块,用于根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;地层孔隙压力计算模块,用于根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力。

18、,实时计算得出地层孔隙压力。0022在一个实施例中,当钻井液入口流量等于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力0023PPPBHPPAFP10024其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,P1是静液柱压力,PAF是环空摩阻。0025在一个实施例中,当钻井液入口流量小于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力00260027其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为地层流体流速,K为地层孔隙率,S为表皮系数,T为溢流发生后测量时间间隔,H为地层厚度,为地层孔隙度,C为地层流体可压缩度,RW为钻井半径,。

19、为欧拉常数,是流体粘度,E是常数。0028在一个实施例中,当钻井液入口流量大于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力00290030其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为漏失量,K为地层渗透率,H为地层厚度,B为水体积系数,为流体粘度,RE为供给半径,RW为钻井半径,S为表皮效应系数。0031在一个实施例中,还包括筛选模块,用于实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值。0032在一个实施例中,还包括地层破裂压力计算模块,用于实时计算得到地层孔隙压力后。

20、,根据计算得出的地层孔隙压力实时计算地层破裂压力。0033在本发明实施例中,通过采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量,来确定井下钻井液入口流量与返出流量之间的大小关系并根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息实时计算出地层孔隙压力与井底钻井液液柱压力之差,最后,根据地层孔隙压力与井底钻井液液柱压力之说明书CN104500054A4/8页8差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。即通过井下钻井液入口流量与返出流量之间的大小关系,来推导地层孔隙压力与井底钻井液液柱压力之差,进而得出地层孔隙压力,与现有技术中通过DC指数法来确定。

21、地层孔隙压力相比,避免了钻井条件、岩性变化等因素对地层孔隙压力计算结果的影响,且通过水力学公式来计算井底钻井液液柱压力,考虑了钻头类型和钻头磨损和水力学等因素的影响,从而可以提高地层孔隙压力计算结果的准确度。附图说明0034此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中0035图1是本发明实施例提供的一种地层孔隙压力的确定方法的流程图;0036图2是本发明实施例提供的一种地层孔隙压力的确定装置的结构框图。具体实施方式0037为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本发明做进一步详细说明。在此,本发明的示意性实施。

22、方式及其说明用于解释本发明,但并不作为对本发明的限定。0038发明人发现,在钻井过程中,钻井液由泥浆泵泵入井内,经过钻柱、环空、液气分离器、振动筛,返回泥浆池,这一过程中假设钻井液为不可压缩液体,出入口钻井液流量应遵守质量守恒原则;若出入口流量产生偏差,则证明地层流体与井筒内流体之间存在着流动。而无论是地层流体还是井筒内流体的流动都是受井筒内钻井液液柱压力与地层孔隙压力之差驱动的。所以假设井下溢流与漏失发生在近钻头处,通过精确测量钻井液的出入口流量差,便可利用渗流公式逆向推导出钻井液液柱压力与地层孔隙压力之差,再经过水力学公式计算出井筒内钻井液液柱压力,即可得到地层孔隙压力,因此,发明人提出基。

23、于钻井液的出入口流量差来确定地层孔隙压力的方法,与现有技术中基于DC指数法相比,以提高地层孔隙压力计算结果的准确度。0039基于此,在本发明实施例中,提供了一种地层孔隙压力的确定方法,如图1所示,该方法包括0040步骤101实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;0041步骤102根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;0042步骤103根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻井液液柱压力之差;0043。

24、步骤104根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。0044由图1所示的流程可知,在本发明实施例中,通过采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量,来确定井下钻井液入口流量与返说明书CN104500054A5/8页9出流量之间的大小关系,并根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息实时计算出地层孔隙压力与井底钻井液液柱压力之差,最后,根据地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液液柱压力,实时计算得出地层孔隙压力。即通过井下钻井液入口流量与返出流量之间的大小关系,来推导地层孔隙压。

25、力与井底钻井液液柱压力之差,进而得出地层孔隙压力,与现有技术中通过DC指数法来确定地层孔隙压力相比,避免了钻井条件、岩性变化等因素对地层孔隙压力计算结果的影响,且通过水力学公式来计算井底钻井液液柱压力,考虑了钻头类型和钻头磨损和水力学等因素的影响,从而可以提高地层孔隙压力计算结果的准确度。0045具体实施时,可以以一定时间间隔来采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量,进而确定钻井液泵入和返出量的情形,时间间隔可选择TT2T11MIN10MIN。0046具体实施过程中,可以通过以下方式来根据井下钻井液入口流量与返出流量之间的大小关系,确定地层孔隙压力,例如00。

26、47当钻井液入口流量等于钻井液返出流量时,则可以认为地层孔隙压力与井底钻井液液柱压力之差为零,地层孔隙压力等于井底钻井液液柱压力,具体的,可以根据以下公式来计算地层孔隙压力0048PPPBHPPAFP120049其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,该井底钻井液液柱压力可以根据水力学公式求得,P1是静液柱压力,PAF是环空摩阻,ESD是当量静态钻井液密度,单位G/CM3,井筒内钻井液静态密度并不处处相同,而是与温度、压力存在着一定关系,故考虑压力、温度随井筒分布规律,得到钻井液的当量密度来计算可提高计算精度,G为环空压耗,单位G/CM3,环空压耗需根据现场具体情况如钻井液密度。

27、、钻井液流变性、钻井泵排量、岩屑浓度、温度、井眼尺寸及钻具组合等因素选择适合的流变模型计算;G是重力加速度,为98N/KG;H是井深。0050当钻井液入口流量小于钻井液返出流量时,则证明地层流体流入井筒内,发生了溢流。这种情况下,可认为是欠平衡钻井,则可以参考欠平衡钻井时地层流体流出速度与地层孔隙压力与井底钻井液液柱压力之差的关系计算出地层孔隙压力与井底钻井液液柱压力之差,进而计算出地层孔隙压力,具体的,可以根据以下公式来确定地层孔隙压力00510052其中,PBHP是井底钻井液液柱压力,单位MPA;PP为地层孔隙压力,单位MPA;Q为地层流体流速,K为地层孔隙率,S为表皮系数,T为溢流发生后。

28、测量时间间隔,H为地层厚度,为地层孔隙度,C为地层流体可压缩度,RW为钻井半径,为欧拉常数,例如057721,是流体粘度,单位MPAS;E是常数,一般约为271828,是一个无限循环数。0053当钻井液入口流量大于钻井液返出流量时,则证明有井筒内流体流入到地层当说明书CN104500054A6/8页10中,发生了漏失。这一过程与油田开发注水过程相同,由于钻井过程时间相对较短,可认定为稳定流,借助达西公式特推导漏失中压差与漏失量和漏失速度的关系,通过测量器件测量漏失速度与漏失量,然后反推出地层孔隙压力与井底钻井液液柱压力之差,进而计算出地层孔隙压力,具体的,可以根据以下公式来确定地层孔隙压力00。

29、540055其中,PBHP是井底钻井液液柱压力,单位MPA;PP为地层孔隙压力,单位MPA;Q为漏失量,单位M3/H;K为地层渗透率,单位MD;H为地层厚度,M;B为水体积系数;为流体粘度,单位MPAS;RE为供给半径,单位M;RW为钻井半径,单位M;S为表皮效应系数。0056具体实施时,为了进一步提高地层孔隙压力计算结果的精度,在本实施例中,实时计算得出地层孔隙压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值,例如,第一预设值可以为2,第二设置值可以为1,以对计算得到的地层孔隙压力进行筛选,使得地层孔隙压力计算结果更准确。005。

30、7具体实施时,在计算得到地层孔隙压力后,还可以根据计算得出的地层孔隙压力实时计算地层破裂压力,例如,不同漏失的地层破裂压力与地层孔隙压力关系如下00581压裂性漏失,压裂性漏失的漏失压力可认为近似等于破裂压力。完整地层的破裂压力为井筒周向应力与岩石抗拉强度之和。根据线弹性力学理论及平面应变假设,可以得到井眼的破裂压力为0059PF3HHSTPP5其中,PF是破裂压力;H为最大水平主地应力;H为最小水平主地应力;为有效应力系数;PP为地层孔隙压力,单位MPA;ST是岩石抗拉强度,单位MPA。00602裂缝扩展性漏失,裂缝扩展性漏失主要发生在强应力敏感性地层,对于裂缝扩展性漏失,存在着临界裂缝宽度。

31、。当超过临界裂缝宽度时,钻井液滤失速率明显增加,进而演变成钻井液漏失。通过经典力学理论或数值模拟等手段,就可以求得井筒液柱压力与裂缝面的有效正应力的关系。00610062其中,PF2是破裂压力;C是临界裂缝宽度,单位MM;O是初始最大裂缝宽度,单位MM;KN是裂缝刚度;PP是地层孔隙压力,单位MPA;E是系数,可根据具体地层岩性条件确定;V是系数,可根据具体地层岩性条件确定。00633大型裂缝溶洞性漏失,对于大型裂缝溶洞性地层,漏失通道尺寸较大,钻井液很容易进入地层,漏失只须克服钻井流体在缝洞系统中的流动阻力,故此类漏失的漏失压力为0064PF3PPPS70065其中,PF3是漏失压力,PP为。

32、地层孔隙压力,单位MPA;PS为钻井液漏失的压力损耗,说明书CN104500054A7/8页11单位MPA。0066基于同一发明构思,本发明实施例中还提供了一种地层孔隙压力的确定装置,如下面的实施例所述。由于地层孔隙压力的确定装置解决问题的原理与地层孔隙压力的确定方法相似,因此地层孔隙压力的确定装置的实施可以参见地层孔隙压力的确定方法的实施,重复之处不再赘述。以下所使用的,术语“单元”或者“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。0067图2是本发明实施例的地层孔隙压力的确定装置的一种结。

33、构框图,如图2所示,包括采集模块201、大小关系计算模块202、压力差计算模块203和地层孔隙压力计算模块204。下面对该结构进行说明。0068采集模块201,用于实时采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量;0069大小关系计算模块202,与采集模块201连接,用于根据采集的所述泥浆泵入口的钻井液流量参数、所述回压泵入口的钻井液流量参数和所述钻井液返出流量,计算井下钻井液入口流量与返出流量之间的大小关系;0070压力差计算模块203,与大小关系计算模块202连接,用于根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息,实时计算出地层孔隙压力与井底钻。

34、井液液柱压力之差;0071地层孔隙压力计算模块204,与压力差计算模块203连接,用于根据所述地层孔隙压力与井底钻井液液柱压力之差和已知的井底钻井液柱压力,实时计算得出地层孔隙压力。0072在一个实施例中,当钻井液入口流量等于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力0073PPPBHPPAFP10074其中,PP是地层孔隙压力,PBHP是井底钻井液液柱压力,P1是静液柱压力,PAF是环空摩阻。0075在一个实施例中,当钻井液入口流量小于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力00760077其中,PBHP是井底钻井液液柱压力,PP为地。

35、层孔隙压力,Q为地层流体流速,K为地层孔隙率,S为表皮系数,T为溢流发生后测量时间间隔,H为地层厚度,为地层孔隙度,C为地层流体可压缩度,RW为钻井半径,为欧拉常数,是流体粘度,E是常数。0078在一个实施例中,当钻井液入口流量大于钻井液返出流量时,所述地层孔隙压力计算模块通过以下公式计算地层孔隙压力00790080其中,PBHP是井底钻井液液柱压力,PP为地层孔隙压力,Q为漏失量,K为地层渗透说明书CN104500054A8/8页12率,H为地层厚度,B为水体积系数,为流体粘度,RE为供给半径,RW为钻井半径,S为表皮效应系数。0081在一个实施例中,还包括筛选模块,用于实时计算得出地层孔隙。

36、压力后,从计算得出的地层孔隙压力数据中去掉大于第一预设值或小于第二设置值的数值,所述第一预设值大于所述第二设置值。0082在一个实施例中,还包括地层破裂压力计算模块,用于实时计算得到地层孔隙压力后,根据计算得出的地层孔隙压力实时计算地层破裂压力。0083在本发明实施例中,通过采集泥浆泵入口的钻井液流量参数、回压泵入口的钻井液流量参数和钻井液返出流量,来确定井下钻井液入口流量与返出流量之间的大小关系并根据井下钻井液入口流量与返出流量之间的大小关系和地层条件信息实时计算出地层孔隙压力与井底钻井液液柱压力之差,最后,根据已知的井底钻井液柱压力和地层孔隙压力与井底钻井液液柱压力之差,实时计算得出地层孔。

37、隙压力。即通过井下钻井液入口流量与返出流量之间的大小关系,来推导地层孔隙压力与井底钻井液液柱压力之差,进而得出地层孔隙压力,与现有技术中通过DC指数法来确定地层孔隙压力相比,避免了钻井条件、岩性变化等因素对地层孔隙压力计算结果的影响,且通过水力学公式来计算井底钻井液液柱压力,考虑了钻头类型和钻头磨损和水力学等因素的影响,从而可以提高地层孔隙压力计算结果的准确度。0084显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。0085以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明实施例可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。说明书CN104500054A1/1页13图1图2说明书附图CN104500054A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 固定建筑物 > 土层或岩石的钻进;采矿


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1