自适应频率跟踪电流检测方法.pdf

上传人:zhu****69 文档编号:5873716 上传时间:2019-03-27 格式:PDF 页数:6 大小:359.13KB
返回 下载 相关 举报
摘要
申请专利号:

CN201010122017.6

申请日:

2010.03.11

公开号:

CN102193016A

公开日:

2011.09.21

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):G01R 19/00申请公布日:20110921|||实质审查的生效IPC(主分类):G01R 19/00申请日:20100311|||公开

IPC分类号:

G01R19/00; G01R25/00

主分类号:

G01R19/00

申请人:

长沙理工大学

发明人:

夏向阳

地址:

410004 湖南省长沙市雨花区万家丽南路二段960号长沙理工大学云塘校区

优先权:

专利代理机构:

代理人:

PDF下载: PDF下载
内容摘要

本发明公开了一种基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法。根据扩展普罗尼谱估计法把负载电流用具有幅值Bk、相位θk和频率fk的N个指数组合来逼近一组等间隔长度为L的采样数据序列{in};采用自适应调整算法中LMS算法在线优化扩展普罗尼谱估计中电导矩阵的频率fk,求出在该条件下最佳解xk,得到基波和各次谐波的幅值和相位,从而使期望输出与自适应调整结果之间误差的均方误差值ε(n)最小。本检测方法不仅在频率变化和基波电流突变的情况下能迅速、准确的求取出其中的待检测成份,而且还能应用到单次谐波快速检测中,误差小,实时性强,满足了实际应用需要。

权利要求书

1.一种基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法,其特征在于:用具有幅值、相位和频率的N个指数组合来逼近一个等间隔长度为L的采样数据序列;通过跟踪误差方式的自适应调整算法,采取LMS算法准则在线优化校下电网电压频率,从而求出基波和各次谐波的幅值和相位。2.根据权利要求1所述的自适应频率跟踪电流分频检测方法,其特征在于:改进扩展普罗尼谱估计法计算量很小,在一定程度上实现了在小于一个基波周期的时间内跟踪负载变化情况;而自适应频率跟踪电流分频检测法不仅在频率变化和基波电流突变的情况下能迅速、准确的求取出其中的待测成份,而且还能应用到单次谐波快速检测中,具有精度高,实时性强的特点。3.一种基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法,包括以下步骤:用期望输出的谐波电流信号I减去采用改进扩展普罗尼谱估计的自适应调整计算结果从而求出跟踪误差E;通过跟踪误差信号,采用LMS算法准则在线优化校正电网电压频率,求出在该条件下最佳的解X;利用X就可得出A,进而求出基波和各次谐波的幅值和相位;然后就可以得到根据改进扩展普罗尼谱估计法用具有幅值、相位和频率的N个指数组合来逼近一个等间隔长度为L的采样数据序列的近似值

说明书

自适应频率跟踪电流检测方法

技术领域

本发明涉及一种基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法。

背景技术

电力系统谐波治理首要解决的问题就是谐波检测。有源电力滤波器补偿电流的检测方法一般不需要分解出各次谐波分量,而只需检测出除基波有功电流之外的总的高次谐波和无功畸变电流,准确、实时地检测出电网中瞬态变化的畸变电流,为有源电力滤波器控制系统进行精确补偿提供参考信号。

现有的有源电力滤波器的电流检测方法主要有带阻选频法、Fryze时域分析法、基于快速傅里叶分析法、基于瞬时无功理论方法、基于小波理论方法等。但它们都存在着难以克服的问题:检测系统是开环的,并且是固定频率的,所以对元件参数变化和电网频率变化比较敏感;检测精度不高,特别是没有自适应能力,不能较好地跟踪检测。而现今采用较多的基于瞬时无功功率谐波检测方法可用模拟电路实现,实时性较好,但存在电路复杂,需采用大量乘法器,不易调整,计算量大,矢量变换复杂,低通滤波算法的设计性能直接影响有源电力滤波器的谐波补偿性能和对标准正余弦信号(实际产生很困难)的依赖性很强等不足;另外现有的检测算法也很少考虑到实际情况下基波电流是远大于谐波电流的,基波电流波动对谐波电流检测的影响;以及在企业配电网中的发电机出力、负荷和系统结构发生变化,会导致被测电压信号初相角发生突变和频率偏差等情况,为此根据参考谐波电流信号获取过程实时性、准确性的要求以及处理器部分希望检测算法具有计算量小、容易实现的特点,同时结合应用于谐波有效治理的大功率单独注入式有源电力滤波器的结构与工作原理,在满足检测精度和检测的快速响应性能这两者之间进行折衷,本发明提出了一种基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法,不仅在频率变化和基波电流突变的情况下能迅速、准确求取出其中的待检测成份,而且还能应用到单次谐波的快速检测中。该检测算法采用数字信号处理器和高速接口器件,通过简单的软件程序来实现,具有误差小,实时性强,满足了实际应用需要。

发明内容

本发明的目的是提供一种基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法。

本发明的另一目的是通过这种检测方法来准确、实时地检测出电网中瞬态变化的畸变电流,为有源滤波器控制系统进行精确补偿提供参考信号。

为实现上述的目的,本发明所采用的技术方案是:

用期望输出的谐波电流信号I减去采用改进扩展普罗尼谱估计的自适应调整计算结果,得到跟踪误差E;

通过跟踪误差信号,采用LMS算法准则在线优化校正电网电压频率,求出在该条件下最佳的解X;

利用X就可得出A,进而求出基波和各次谐波的幅值和相位;然后就可以求得根据改进扩展普罗尼谱估计法用具有幅值、相位和频率的N个指数组合来逼近一个等间隔长度为L的采样数据序列的近似值

本发明的有益效果是:

(1)基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法能够在一个工频周期以内准确地跟踪负载电流的变化;

(2)在频率发生变化和负载电流发生突变的情况下,该方法也能实时、有效的检测出特征次数谐波电流,为有源电力滤波器控制系统进行精确补偿提供参考信号,与传统控制方法相比电流的跟踪精度更高,补偿效果更理想。

下面结合附图对本发明作进一步说明。

附图说明

图1为本发明的原理框图。

具体实施方式

如图1所示,i(n)为期望输出,为自适应调整计算结果,e(n)为期望输出与自适应调整计算结果之间的误差,即

e(n)=i(n)-i^(n)---(1)]]>

该自适应调整算法就是跟踪误差信号,采取LMS算法准则在线优化校正电网电压频率。

根据扩展普罗尼谱估计法把负载电流用具有幅值Bk、相位θk和频率fk的N个指数组合来逼近一等间隔长度为L的采样数据序列{in},in的近似值为:

in=Σk=1makejωknΔT,]]>n=0,1......N-1        (2)

式中:ΔT=T/N,ωk=2πfk,ak=Bkejθk.]]>

由式(2),并考虑系数的优化,有

i(n)=Σk=1mxk(n)a(n)=XN(n).AN(n)---(3)]]>

式中,XN(n)=[x1(n),x2(n),…,xm(n)]n×m为频率向量;

AN(n)=[a1(n),a2(n),...,am(n)]n×m为电流向量;

所以:

ϵ(n)=E{e2(n)}=E{[i(n)-i^(n)]2}=E{[i(n)-XNAN(n)]2}---(4)]]>

=E{i2(n)}-2XNE{i(n)AN(n)}+XNE{AN(n)AN(n)}XN]]>

基于LMS准则的自适应算法就是求出一组xk(k=1,2,...,m),使得ε(n)最小。为了做到这点,可由微分置0法得到N个方程并解,即可求得其解:

XN*=RNN-1pN---(5)]]>

其中,pN为i(n)和A(n)的互相关量,是一个时变向量,RNN为A(n)的自相关阵。

为进一步减少求解XN*每次迭代所需的计算量,有:

E^{e(n)A(n)}=e(n)A(n)---(6)]]>

并导出了最陡梯度法的近似实现:

XN(n+1)=XN(n)+2μe(n)A(n)            (7)

这就是著名的Widrow-HoffLMS算法(以下简称为LMS算法)。

因此根据公式(7)确定fk后,X就变成一个常系数矩阵,谐波的幅值和相位就很容易通过软件程序来实现,当用实际采样的电流来计算时,可以求出在该条件下最佳向量A。当A存在时,由于电流采样序列为实数,因此实际应用采用余弦序列组合而不是复指数组合,即

in=Σk=1mBkcos(ωknΔT+θk)]]>n=0,1......N-1            (8)

因为cos(x)=(ejx+e-jx)/2,所以

x=ejω10e20...em0e-jω10e-20...e-jωm0e1Δte2Δt...emΔte-1Δte-2Δt...e-mΔt..................e1(N-1)Δte2(N-1)Δt...em(N-1)Δte-1(N-1)Δte-2(N-1)Δt...em(N-1)Δt]]>

A=(a1 a2 … am a1 a2 … am)T

则有

A=(XIIX)-1XIII        (9)

其中

ak=12Bkek,]]>ak=12Bke-jθk---(10)]]>

根据式(10)就可以求出基波和各次谐波的幅值和相位。这结果对于在控制器设计中的用到分频控制是非常重要的。

基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测控制过程如下:

(1)将期望输出的谐波电流信号I与自适应调整计算结果相减作为跟综误差E;

(2)通过跟踪误差信号,采用LMS算法准则在线优化校正电网电压频率,求出在该条件下最佳的解X;

(3)由公式A=(XHX)-1XHI,进而求出基波和各次谐波的幅值和相位;然后得到基于扩展普罗尼谱估计法把负载电流用具有幅值、相位和频率的N个指数组合来逼近一个等间隔长度为L的采样数据序列

自适应频率跟踪电流检测方法.pdf_第1页
第1页 / 共6页
自适应频率跟踪电流检测方法.pdf_第2页
第2页 / 共6页
自适应频率跟踪电流检测方法.pdf_第3页
第3页 / 共6页
点击查看更多>>
资源描述

《自适应频率跟踪电流检测方法.pdf》由会员分享,可在线阅读,更多相关《自适应频率跟踪电流检测方法.pdf(6页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102193016 A (43)申请公布日 2011.09.21 CN 102193016 A *CN102193016A* (21)申请号 201010122017.6 (22)申请日 2010.03.11 G01R 19/00(2006.01) G01R 25/00(2006.01) (71)申请人 长沙理工大学 地址 410004 湖南省长沙市雨花区万家丽南 路二段 960 号长沙理工大学云塘校区 (72)发明人 夏向阳 (54) 发明名称 自适应频率跟踪电流检测方法 (57) 摘要 本发明公开了一种基于改进扩展普罗尼谱估 计的自适应频率跟踪电流分频检测方法。根。

2、据扩 展普罗尼谱估计法把负载电流用具有幅值 Bk、 相 位 k和频率 fk的 N 个指数组合来逼近一组等间 隔长度为 L 的采样数据序列 in ; 采用自适应调 整算法中 LMS 算法在线优化扩展普罗尼谱估计中 电导矩阵的频率 fk, 求出在该条件下最佳解 xk, 得到基波和各次谐波的幅值和相位, 从而使期望 输出与自适应调整结果之间误差的均方误差值 (n) 最小。本检测方法不仅在频率变化和基波 电流突变的情况下能迅速、 准确的求取出其中的 待检测成份, 而且还能应用到单次谐波快速检测 中, 误差小, 实时性强, 满足了实际应用需要。 (51)Int.Cl. (19)中华人民共和国国家知识产权。

3、局 (12)发明专利申请 权利要求书 1 页 说明书 3 页 附图 1 页 CN 102193023 A1/1 页 2 1. 一种基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法, 其特征在 于 : 用具有幅值、 相位和频率的 N 个指数组合来逼近一个等间隔长度为 L 的采样数据序列 ; 通过跟踪误差方式的自适应调整算法, 采取 LMS 算法准则在线优化校下电网电压频率, 从 而求出基波和各次谐波的幅值和相位。 2. 根据权利要求 1 所述的自适应频率跟踪电流分频检测方法, 其特征在于 : 改进扩展 普罗尼谱估计法计算量很小, 在一定程度上实现了在小于一个基波周期的时间内跟踪负载 变化。

4、情况 ; 而自适应频率跟踪电流分频检测法不仅在频率变化和基波电流突变的情况下能 迅速、 准确的求取出其中的待测成份, 而且还能应用到单次谐波快速检测中, 具有精度高, 实时性强的特点。 3. 一种基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法, 包括以下步 骤 : 用期望输出的谐波电流信号 I 减去采用改进扩展普罗尼谱估计的自适应调整计算结 果从而求出跟踪误差 E ; 通过跟踪误差信号, 采用 LMS 算法准则在线优化校正电网电压频率, 求出在该条件下 最佳的解 X ; 利用 X 就可得出 A, 进而求出基波和各次谐波的幅值和相位 ; 然后就可以得到根据改进 扩展普罗尼谱估计法用具有。

5、幅值、 相位和频率的 N 个指数组合来逼近一个等间隔长度为 L 的采样数据序列的近似值 权 利 要 求 书 CN 102193016 A CN 102193023 A1/3 页 3 自适应频率跟踪电流检测方法 技术领域 0001 本发明涉及一种基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方 法。 背景技术 0002 电力系统谐波治理首要解决的问题就是谐波检测。 有源电力滤波器补偿电流的检 测方法一般不需要分解出各次谐波分量, 而只需检测出除基波有功电流之外的总的高次谐 波和无功畸变电流, 准确、 实时地检测出电网中瞬态变化的畸变电流, 为有源电力滤波器控 制系统进行精确补偿提供参考信号。

6、。 0003 现有的有源电力滤波器的电流检测方法主要有带阻选频法、 Fryze 时域分析法、 基 于快速傅里叶分析法、 基于瞬时无功理论方法、 基于小波理论方法等。 但它们都存在着难以 克服的问题 : 检测系统是开环的, 并且是固定频率的, 所以对元件参数变化和电网频率变化 比较敏感 ; 检测精度不高, 特别是没有自适应能力, 不能较好地跟踪检测。而现今采用较多 的基于瞬时无功功率谐波检测方法可用模拟电路实现, 实时性较好, 但存在电路复杂, 需采 用大量乘法器, 不易调整, 计算量大, 矢量变换复杂, 低通滤波算法的设计性能直接影响有 源电力滤波器的谐波补偿性能和对标准正余弦信号(实际产生很。

7、困难)的依赖性很强等不 足 ; 另外现有的检测算法也很少考虑到实际情况下基波电流是远大于谐波电流的, 基波电 流波动对谐波电流检测的影响 ; 以及在企业配电网中的发电机出力、 负荷和系统结构发生 变化, 会导致被测电压信号初相角发生突变和频率偏差等情况, 为此根据参考谐波电流信 号获取过程实时性、 准确性的要求以及处理器部分希望检测算法具有计算量小、 容易实现 的特点, 同时结合应用于谐波有效治理的大功率单独注入式有源电力滤波器的结构与工作 原理, 在满足检测精度和检测的快速响应性能这两者之间进行折衷, 本发明提出了一种基 于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法, 不仅在频率变。

8、化和基波电 流突变的情况下能迅速、 准确求取出其中的待检测成份, 而且还能应用到单次谐波的快速 检测中。 该检测算法采用数字信号处理器和高速接口器件, 通过简单的软件程序来实现, 具 有误差小, 实时性强, 满足了实际应用需要。 发明内容 0004 本发明的目的是提供一种基于改进扩展普罗尼谱估计的自适应频率跟踪电流分 频检测方法。 0005 本发明的另一目的是通过这种检测方法来准确、 实时地检测出电网中瞬态变化的 畸变电流, 为有源滤波器控制系统进行精确补偿提供参考信号。 0006 为实现上述的目的, 本发明所采用的技术方案是 : 0007 用期望输出的谐波电流信号 I 减去采用改进扩展普罗尼。

9、谱估计的自适应调整计 算结果 , 得到跟踪误差 E ; 0008 通过跟踪误差信号, 采用 LMS 算法准则在线优化校正电网电压频率, 求出在该条 说 明 书 CN 102193016 A CN 102193023 A2/3 页 4 件下最佳的解 X ; 0009 利用 X 就可得出 A, 进而求出基波和各次谐波的幅值和相位 ; 然后就可以求得根据 改进扩展普罗尼谱估计法用具有幅值、 相位和频率的 N 个指数组合来逼近一个等间隔长度 为 L 的采样数据序列的近似值 0010 本发明的有益效果是 : 0011 (1) 基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测方法能够在一个 工频周期以。

10、内准确地跟踪负载电流的变化 ; 0012 (2) 在频率发生变化和负载电流发生突变的情况下, 该方法也能实时、 有效的检测 出特征次数谐波电流, 为有源电力滤波器控制系统进行精确补偿提供参考信号, 与传统控 制方法相比电流的跟踪精度更高, 补偿效果更理想。 0013 下面结合附图对本发明作进一步说明。 附图说明 0014 图 1 为本发明的原理框图。 具体实施方式 0015 如图 1 所示, i(n) 为期望输出,为自适应调整计算结果, e(n) 为期望输出与自 适应调整计算结果之间的误差, 即 0016 0017 该自适应调整算法就是跟踪误差信号, 采取 LMS 算法准则在线优化校正电网电压。

11、 频率。 0018 根据扩展普罗尼谱估计法把负载电流用具有幅值 Bk、 相位 k和频率 fk的 N 个指 数组合来逼近一等间隔长度为 L 的采样数据序列 in, in的近似值为 : 0019 n 0, 1N-1 (2) 0020 式中 : T T/N, k 2fk, 0021 由式 (2), 并考虑系数的优化, 有 0022 0023 式中, XN(n) x1(n), x2(n), xm(n)nm为频率向量 ; 0024 AN(n) a1(n), a2(n), ., am(n)nm为电流向量 ; 0025 所以 : 0026 0027 0028 基于 LMS 准则的自适应算法就是求出一组 xk。

12、(k 1, 2, ., m), 使得 (n) 最小。 为了做到这点, 可由微分置 0 法得到 N 个方程并解, 即可求得其解 : 说 明 书 CN 102193016 A CN 102193023 A3/3 页 5 0029 0030 其中, pN为 i(n) 和 A(n) 的互相关量, 是一个时变向量, RNN为 A(n) 的自相关阵。 0031 为进一步减少求解 XN*每次迭代所需的计算量, 有 : 0032 0033 并导出了最陡梯度法的近似实现 : 0034 XN(n+1) XN(n)+2e(n)A(n) (7) 0035 这就是著名的 Widrow-HoffLMS 算法 ( 以下简称。

13、为 LMS 算法 )。 0036 因此根据公式(7)确定fk后, X就变成一个常系数矩阵, 谐波的幅值和相位就很容 易通过软件程序来实现, 当用实际采样的电流来计算时, 可以求出在该条件下最佳向量 A。 当 A 存在时, 由于电流采样序列为实数, 因此实际应用采用余弦序列组合而不是复指数组 合, 即 0037 n 0, 1N-1 (8) 0038 因为 cos(x) (ejx+e-jx)/2, 所以 0039 0040 A (a1 a2 am a1 a2 am)T 0041 则有 0042 A (XIIX)-1XIII (9) 0043 其中 0044 0045 根据式 (10) 就可以求出基。

14、波和各次谐波的幅值和相位。这结果对于在控制器设 计中的用到分频控制是非常重要的。 0046 基于改进扩展普罗尼谱估计的自适应频率跟踪电流分频检测控制过程如下 : 0047 (1) 将期望输出的谐波电流信号 I 与自适应调整计算结果 相减作为跟综误差 E ; 0048 (2) 通过跟踪误差信号, 采用 LMS 算法准则在线优化校正电网电压频率, 求出在该 条件下最佳的解 X ; 0049 (3) 由公式 A (XHX)-1XHI, 进而求出基波和各次谐波的幅值和相位 ; 然后得到基 于扩展普罗尼谱估计法把负载电流用具有幅值、 相位和频率的 N 个指数组合来逼近一个等 间隔长度为 L 的采样数据序列 说 明 书 CN 102193016 A CN 102193023 A1/1 页 6 说 明 书 附 图 CN 102193016 A 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 测量;测试


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1