气相聚合烯烃的方法 本发明涉及在流化床和/或机械搅拌床反应器中连续气相聚合烯烃的方法,尤其包括排出聚合物阶段。
业已知道,例如按照EP-A-0381364,在包含正形成的固体聚合物、催化剂及含有要聚合的烯烃并向上通过反应器的反应气体混合物的流化床反应器中,在高于大气压的压力下连续气相聚合烯烃。也知道,例如按照Fr2599991,考虑到经济、效率和环境原因及安全问题,从反应器中排出床中形成的聚合物带有相当大量反应气体混合物,其中大部最好回收,再压缩并循环于反应器中。也已观察到,难以使排出的聚合物有效和迅速脱气,特别解吸存在在聚合物孔中的烯烃,这就难以添加上述步骤并产生的配料问题。
EP-A-0381364没有特别公开从流化床反应器排出聚合物的阶段,包括床的部分转移入气栓中,并从气栓中将所述床的部分卸料入接受器中。它没有建议隔离气栓中床的部分足够时间以致被隔离在气栓中的大量烯烃在聚合物卸料入接受器中之前聚合。
1976年9月注明日期的n°149研究公开关于包括两步烯烃聚合方法。在第一步中,在带有搅拌地容器中,在基本上无聚合惰性稀释剂存在下,在液体单体悬浮液中聚合至少一种液体烯烃单体,聚合继续进行直到基本上全部液体单体被聚合或蒸发以致得到固体干颗粒聚合物粉末。在第二步中,通过把粉末与气体单体在同一容器中或在带有搅拌的第二容器中接触继续进行聚合,或使用流化床技术继续进行聚合,其中终止聚合或使聚合继续进行一些时间如2高至25小时。从反应器的底部排出聚合物粉末。没有提及隔离在密封料斗中的部分聚合物粉末一段时间足以使聚合物卸料入脱气区之前聚合至少部分与聚合物如此隔离的烯烃。
现在已经发现气相聚合烯烃的新方法,其中,聚合物按这样的方式从反应器中排出,即伴随聚合物排出的并再循环的烯烃或反应气体混合物的量被大大降低同时很容易使排出的聚合物脱气。
更确切地说,本发明的主题涉及在含有包括固体聚合物、催化剂和含要聚合物的并通过反应器的烯烃反应气体混合物的流化和/或机械搅拌床反应器中并在高于大气压的压力下进行连续气相聚合烯烃的方法,该方法特征在于它包括使聚合物排出反应器的阶段,在所述阶段中,通过使反应器与密封料斗连通将流化和/或机械搅拌床的部分转移入密封料斗中,然后(例如)通过密封料斗中的阀使其与反应器隔离5-120秒,这样使存在在所述转移部分中的大量烯烃,在如此隔离在所述转移部分中的聚合物排出密封料斗前聚合。
图1表示示意装置,它可用来实现本发明的方法。
转移入密封封料斗的床部分包含聚合物、催化剂和反应气体混合物。当床的部分转移时,然后优选在初始条件,特别在压力和温度下使密封料斗与反应器隔离,该条件基本上相同于反应器的床的主要条件。转移入密封料斗可通过使反应器与密封料斗连通,最好在基本上相同于反应器床中主要的绝对压力P1的压力下实现。
来自反应器的床的部分与密封料斗的隔离期优选为7-90,特别优选10-60或15-40秒,它可以是这样的以致隔离结束时,床的部分或如此隔离在密封料斗中的聚合物温度高于反应器中床的温度T1并低于聚合物的最小烧结温度TS(如由P.compo.G.I.Tardos,D.Mazzone和R.pfe-ffer在Part.charact,I(1984,171-177页规定的)。通过在密封料斗中在隔离期间继续进行聚合反应所释放的热量使床部分特别是聚合物加热。尤其在密封料斗中隔离结束时,隔离的床的部分或聚合物的温度可以在T1+2℃至TS-5℃,优选T1+5℃至TS-10℃的范围内(全部温度用摄氏度表示)。隔离期间也可以是这样以致在隔离结束时,密封料斗中绝压相对于密封料斗开始隔离时的绝压,即优选相对于流化和/或机械搅拌床反应器的绝对压力P1稍降低至少1%,优选2-30%,更优选5-20%。
该方法优选可以包括下列阶段:(1)流化或/或机构搅拌床的部分通过使反应器与密封料斗连通从反应器转移入密封料斗,在密封料斗中确定的压力等于流化和/或机械搅拌床反应器在转移结束时的绝对压力P1,(2)接着所述床的部分于密封料斗中绝对压力P1时例如用阀与反应器隔离5-120,优选7-90,特别10-60或15-40秒,它足以聚合至少存在在所述部分中的大部分烯烃,例如降低密封料斗绝压至少1%,优选2-30%,特别5-20%。(3)在隔离结束时,例如当在上述床的部分中如此隔离的聚合物温度达到高于T1和低于TS温度,优选T1+2℃至TS-5℃,特别T1+5℃至TS-10℃时,将聚合物排出密封料斗。
从密封料斗排出的聚合物可以转入室和/或塔中,它们特别适合例如按照Fr2642429或法国专利申请94-06221所述方法脱气聚合物。
因此,根据本发明方法的阶段之一可以用来自反应器的硫化和/或机械搅拌床的部分转移入和隔离密封料斗组成,在特别温度和压力接近于反应器床的主要这些条件下,以便使对于确定的隔离期间内存在于转移部分要消耗的烯烃部分在密封料斗中继续进行聚合。优选地控制隔离条件并基本上绝热以便基本上借助于在一相当不平常长的期间中,在密封料斗中如此进行继续聚合反应所释放的热量来提高床和聚合物的部分的温度。
在实际中,确立密封料斗中隔离期可以是这样以致在整个隔离期间密封料斗中烯烃的分压减少5-40%,优选10-30%。在这些条件下,床部分和聚合物温度可以升高2-20℃,优选5-15℃,密封料斗中隔离期取决于绝对压力P1,烯烃的分压,反应器床的温度T1,所用催化剂的类型,在反应器床中聚合反应进展程度,催化剂浓度,在密封料斗中聚合物相对于反应气体混合物比例如聚合物的堆密度。隔离期为5-120秒,优选7-90秒,特别优选10-60秒。一般说,绝对压力P1可以在0.5-6MPa,优选1-4MPa范围内,烯烃的分压可以在0.2-2MPa,优选0.4-1.5MPa,特别优选0.5-1.2MPa范围内,温度T1可以在30-130℃,优选50-110℃,特别优选60-100℃范围内。
因此,借助于在密封料斗中隔离期相当大量消耗烯烃,即气体,特别是从密封料斗中要回收、要再压缩和再循环于反应器的烯烃的量减少。此外,由于离开密封料斗中的聚合物优选比离开流化和/或机械搅拌床反应器的聚合物热得很多,因此聚合物特别在随后阶段过程中脱气相当容易,此阶段既可在密封料斗中,又可优选在密封料斗外例如当聚合物从密封料斗转移到特别适合于脱气的,例如上述的室和/或塔中进行。
该方法非常特别适合乙烯本身或与至少一种C3-C8烯烃的混合物,或丙烯本身或与乙烯混合物,和/或至少一种C4-C8烯烃和/或与非共轭二烯的混合物聚合。
本发明的方法特别有利于当存在在密封料斗中与反应器隔离的床的部分中的聚合物的量是相当高(对每单位体积密封料斗)例如120-450,优选200-400,特别优选250-400kg/m3。
图1表示用实施例说明的示意装置图,使它有可能实现所述方法。因此,在绝对压力P1高于大气压时,含有要聚合的烯烃的反应气体混合物向上游通过流化床反应器(1),同时在催化剂存在下形成的固体聚合物保持流化状态。反应气体混合物通过在反应器(1)上面的减速室(3)(calming chamber),在反应器的顶部(2)溢出并通过包括压缩机(8)和至少一个热交换器(6.7)的外循环管线(5)在流化栅板(4)下回到反应器的底(9)。Ziegler-Natta型催化剂或含有金属茂或铬的氧化物型的过渡金属催化剂经过管线(11)连续导入或间歇导入反应器(1)。烯烃,例如乙烯、丙烯和C4-C8烯烃和反应气体混合物的其它可能组分,例如氢、非共轭二烯或惰性气体,例如氮或C1-C6,优选C2-C5烷烃通过至少一管线(10)连续导入外循环管线(5)中。通过至少一个连结于反应器(1)与回收密封料斗(14)的排出管线(12)间歇从反应器(1)排出聚合物。隔离阀(13)能使密封料斗(14)与反应器(1)隔离,卸料阀(16)能使要卸出密封料斗(14)的聚合物绝对压力P2低于P1时,间歇通过管线(15)进入降压和脱气室(19)。P1∶P2之比可以在5∶1至50∶1,优选10∶1至25∶1的范围内。绝对压力P2可以在0.11至0.2MPa,优选0.11至0.15MPa范围内。室(19)一般使它有可能使聚合物降压排出,从伴随聚合物的反应气体混合物中分离聚合物,经过管线(20)和阀(21)从室(19)排出聚合物,以及如此分离出的反应气体混合物管线(22)和压缩机(23),经中间外循环管线(5)循环到反应器(1)。装有阀(24)的管线(25)可以任意插入室(19)中已导入的有助于聚合物脱气的气体或气体混合物,例如惰性气体,如氮气或C1-C6,优选C2-C5烷烃,或反应气体混合物或一种或多种反应气体混合物的组分。装有阀(18)的管线(17)任意地通过清洗气体上游的阀(13)向管线(12)进料。并优选靠近阀(13),以避免阻碍管线(12)。清洗气体可以是惰性气体,例如氮或C1-C6,优选C2-C5烷烃,或反应气体混合物或至少其一个组成。
连续气相聚合烯烃的方法可以在流化和/或机械搅拌床反应器中,维持在绝对压力P1为0.5-6,优选为1-4MPa下进行。反应器床的温度可以保持在30-130℃,优选50-110℃值范围内。反应气体混合物可以以向上以速率为0.3-0.8m/s,优选0.4-0.7m/s通过反应器。反应气体混合物可以含有一种或多种C2-C8烯烃,例如乙烯或丙烯,或乙烯与至少一种C3-C8烯烃,例如丙烯、1-丁烯、1-己烯,4-甲基-1-戊烯或1-辛烯,和/或也与二烯,例如非共轭二烯的混合物。反应气体混合物也可以含有氢和/或惰性气体如氮,或例如C1-C6,优选C2-C5烷烃。聚合方法可以特别按PCT专利申请WO No.94/28032中叙述的方法进行。也可以在含有至少一和属于元素周期分类4,5或6族的过渡金属的催化剂存在下进行(由NomenclatureCommittee of the″American chemical Society″批准的,见″Encyclopedia of Inorganic chemistry”编辑R.Bruce King,由John wiley & Sons(1994)出版)。特别是,可以使用Ziegler-Natta型催化剂体系,它包含含有如上所述这些过渡金属化合物的固体催化剂和含有元素周期表的1,2或3族的金属的有机金属化合物的助催化剂,例如有机铝化合物。高活性催化剂体系已经知道许多年,并在相当短的时间内,能生产大量聚合物,结果有可能避免除去存在在聚合物中的催化剂残渣,这些高活性催化剂体系一般包括基本上含有过渡金属、镁和卤素原子的固体催化剂。也有可能应用基本上含有由热处理活化的铬的氧化物和与基于高熔点氧化物颗粒载体并用的高活性催化剂。聚合方法非常特别适合使用金属茂催化剂,例如锆茂,铪茂、钛茂或铬茂或用基于例如镁,钛和/或钒的二氧化硅载体的Ziegler催化剂。当上述催化剂或催化剂体系可以直接应用于流化和/或机械搅拌床反应器中,或特别在预聚合过程中,使催化剂或催化剂体系在液体烃介质或在气相中,按照如间歇或连续方法与一种或多种诸如上述这些烯烃接触,可以预先转变成烯烃预聚物。
本方法非常特别适合制造粉末形式的聚烯烃,特别是密度范围0.87-0.97g/cm3线型低密度聚乙烯或高密度聚乙烯,或聚丙烯或丙烯与乙烯和/或C4-C8烯烃的共聚物,或丙烯与乙烯和任意非共轭二烯的弹性体共聚物,其密度范围例如0.85-0.87g/cm3。
下列实施例说明本发明。
实施例
气相共聚合乙烯与1-丁烯是在相同于图1所表示的设备中进行。带有垂直侧壁圆筒反应器(1)的内径是3米和高10米。反应器有在其上的减速室(3)。流化床包括18吨密度0.96g/cm3粒状乙烯和1-丁烯共聚物,颗粒物料平均直径750μm,流化床具有流化密度300kg/m3。
在绝对压力P12MPa下,按向上流速率0.6m/s,于温度90℃,将含有30%(体积)乙烯,1%(体积)1-丁烯,25%(体积)氢和44%(体积)氮的反应气体混合物通过流化床。
使用含有Ti,Mg和Cl的Ziegler-Natta型催化剂,如在Fr2405961的实施例1中以预聚物形式精确制备此催化剂。
内径0.05m和长1m的排出管线(12),离反应器的侧壁相对于水平面下向成60°角,通过中间阀(13),基本上与带有内容积105升的密封料斗(14)上垂直连接。按照下列操作周期从反应器(1)中排出共聚物。
-关闭阀(13),密封料斗(14),在绝对压力P2为0.12MPa下没有共聚物,该压力与室(19)中主要的一样,打开阀(16)。
-关闭阀(16),并打开阀(13),密封料斗中绝压升至0.12-2MPa,密封料斗填满共聚物,对于每米3内容积密封料斗,填满305kg聚合物程度。
-通过关闭阀(13),使密封料斗与反应器(1)隔离并使密封料斗如此保持隔离40秒期间,在隔离期结束时,密封料斗中绝压已下降到1.88MPa,在密封料斗中如此隔离的共聚物温度已达到大约100℃。
-打开阀(16),共聚物流过管线(15)进入室(19),并且密封料斗中的绝对压力下降到0.12MPa。约每60秒重复操作周期。上述排放装置在聚合设备中是双套。两套装置的每一操作周期都相同,其时间偏差30秒。两套装置每套有放料管线(15),它排出入室(19),相反,对于循环气体和排放共聚物,其体系只有一个。按这种方法,过程连续几天而没有阻塞排出装置,在室(19)中共聚物的脱气阶段得到非常显著改进。由于共聚物到达室(19)温度大约100℃。