使用加工酶合成多核苷酸的方法 【发明领域】
本发明涉及一种用于多核苷酸合成的方法。发明背景
目前对合成的多核苷酸的需求是很大的,大部分原因是由于对聚合酶链反应(PCR)或多核苷酸测序策略中用作引物的已知序列的寡核苷酸的需求所导致的。近来,随着多核苷酸杂交排列的出现这种需求甚至已经进一步增加。结合在固体支持物(或嵌片)上的这些排列带有寡核苷酸探针,这些探针与测试样品杂交或标记的寡核苷酸探针可以与样品杂交(Lysov,Dovl.Akad.Naul SSSR(1988)303:1508-1511;Bain等《生物学原理杂志》(J.Thero.Biol.)135:303-307;Dramanac等《基因组》(Genomics)4:114-128)。然后将杂交模式用于重新构建靶多核苷酸序列。已经通过应用光产生的寡核苷酸排列进一步提高了这项技术(Fador等《美国国家科学院院报》(Proc.Natl.Acad.Sci.USA)(1994)91:5022-5026)
目前所有的技术在可以产生的合成多核苷酸长度方面受到限制且附带产率较低的难题。它们还应用了大量操作技术且由此需要大量时间期限来完成。
因此,存在对一种合成多核苷酸的改进方法的需求,该方法能够显著增加所合成的多核苷酸的最大长度并提高合成这类多核苷酸的速率。这类方法优选通过自动过程来进行,从而降低了涉及现存方法的复杂性和成本。发明概括
本发明以实现下列情况为基础:可以将电磁辐射用于在多核苷酸加工酶内产生构象改变,使得通过对施用于这类酶上的辐射进行控制可以预先测定产生的多核苷酸链的序列。这样能够通过操纵正常体内多核苷酸装配过程而以实时产生“合成的”多核苷酸。
本发明提供了一种用于合成多核苷酸的方法,该方法包括下列步骤:
(i)在合适地条件下使多核苷酸加工酶与核苷酸底物发生反应;和
(ii)使所述酶暴露于可控环境(包括辐射)以便影响该酶的三维构象且由此测定/影响产生的多核苷酸的序列。发明描述
如果将辐射用于控制加工酶的构象,那么可以使用许多技术将它施加于样品上。这些技术包括渐消波光谱技术,特别是表面胞质基因共振(SPR)光谱法。
通过应用激光技术将照射施用于加工酶上(通过射线受激发射进行的光增强)特别适用于本发明,这是由于这类装置产生的射线的单色和可控特性所造成的。
对加工酶构象结构的控制可以通过控制它们起作用的环境来完成。已经证实诸如反应介质的pH和盐含量/浓度这样的条件的改变可以对三维结构产生影响且由此对这类酶系统的活性产生影响(Wong等《生物化学》(Biochemistry)(1991)30:526-537)。
添加指定的核苷酸和由此产生的合成反应可以通过直接使加工酶产生进行对添加特定核苷酸具有IS特异性的构象改变的能力来完成,这取决于所输送的辐射形式。该过程可以通过下列步骤来实现:工程(通过现有技术的遗传操作技术)加工分子(或与之相关的分子),使得它含有化学/部分/肽基团或基团组,它们能够使所述分子将辐射转化或转换成构象改变。可以对这些化学/部分基团或基团组进行定位以便选择欲添加到伸长的多核苷酸链上的核苷酸。该方法由此可以以“实时”为基础进行以便获得高速率的度核苷酸合成。
如上所述,用于合成多核苷酸的本方法包括控制多核苷酸加工酶所置于的环境和由此控制所述酶的三维构象。这种三维构象反过来可选择是否将底物核苷酸和/或将哪一种底物核苷酸添加到伸长的多核苷酸链上。
术语“多核苷酸”在本文中用作广义上解释且包括DNA和RNA(包括修饰的DNA和RNA)以及其它杂交核酸样分子,例如肽核酸(PNA)。
术语“多核苷酸加工/聚合酶”在本文中用作广义上解释且涉及可以使一种核苷酸与另一种核苷酸连接以便生成多核苷酸的遍在蛋白质。当然,这类酶组包括所有的聚合酶,既包括DNA-和RNA-依赖性聚合酶也包括诸如末端脱氧核苷酸转移酶这样的酶组(Kato等《生物化学杂志》(J.Biol.Chem.)(1967)242:2780;&Frohman等《美国国家科学院院报》(Proc.Natl.Acad.Sci.USA)(1988)85:8998)。
使用多核苷酸加工酶来控制多核苷酸的合成对本方法的成功提供了几个优点。首先,因有机分子的高效催化特性而克服了固相合成中反应产率的难题。其次,合成的速度和多核苷酸链的长度大于现有技术几个数量级,这还是由于对酶系统在其天然环境中的要求所造成的。
本发明的另一个重要方面在于实现了下列情况:尽管大量多核苷酸加工酶需要现存的多核苷酸模板以便在其天然环境/形式下引发多核苷酸合成,但是情况并不总是这样。当核苷酸(Crick-Watson)碱基配对和由此产生的互补链构建的有效性最终依赖于加工酶的三维构象(和所得的动力学参数)时,这种系统可以被破坏并应用以便在外部控制所聚合的核苷酸的序列。因此,在本发明聚合酶应用的特定情况中,所产生的“合成”多核苷酸链可以不是(且在大多数情况下将不是)模板多核苷酸链的互补拷贝。通过活性位点突变对聚合酶功能的破坏在本领域中是公知的(Freemont等《蛋白质》(Proteins)(1986)1:66-73),但关键在于它们不会在构象上/空间上得到调整。如在本发明中的情况,这类破坏/突变可以采取降低聚合酶的天然保真性以使它不歧视双脱氧核苷酸的形式。这会使突变的聚合酶将溶解状态的任意核苷酸插入独立于多核苷酸模板的核苷酸序列之外的伸长的多核苷酸链。具有在分子克隆时固定的这类结合位点修饰的性质(即不能够进行外部实时构象调整)在本领域中是公知的(Ollis等《自然》(Nature)(1985)313:762-766 & Freemont等《蛋白质》(Proteins)(1986)1:66-73)且定向于聚合酶活性位点。例如,已经证实大肠杆菌聚合酶I的Phe762是直接与底物核苷酸发生相互作用的氨基酸之一(Joyce等《生物化学年鉴》(Ann.Rev.Biochem.)(1994)63:777-822 & Astake等J.Niol.Chem.(1995)270:1945-54)。将这种氨基酸转化成Try可产生不歧视双脱氧核苷酸的突变体DNA聚合酶。参见US-A-5614365和Deb K.Chatterjee于1995年9月8日提交的标题为“突变体DNA聚合酶及其应用”的共同待审美国申请号08/525,087,特别将这些文献引入本文作为参考。
后来已经将这些修饰进一步特征化而以降低的误差率限定了聚合酶,即,在核酸合成过程中的核苷酸错掺得到降低和/或聚合的保真性得到增加。参见WO-A-99/10366,特别将该文献引入本文作为参考。该申请涉及一种这类高保真性聚合酶的制备方法,该方法通过修饰聚合酶的核苷酸结合结构域(例如O-螺旋)或使其发生突变来进行。
本发明方法的一个重要方面在于具有能够通过与光子和/或来源于光子的能量的相互作用得到调整的结构/构象的蛋白质/肽/化学基团/部分的应用。这类基团包括但不限于转换光子能量的生物分子、合成染料化合物和吸收能量的化学基团。本发明优选的实施方案包括光子生物换能器在调整聚合酶活性位点(例如O-螺旋)构象和由此调整聚合酶活性中的应用。这组生物换能器包括但不限于集光(LH)复合体/分子和涉及光合成的系统(例如诸如LH1和LH2这样的细菌复合体;参见Papiz等《植物科学趋势》(Trends Plant Sci.)(1996)1:198-206)、直接光子驱动的质子泵复合体/亚单位(例如来自盐沼盐杆菌紫膜的紫膜质(BR);参见Oka等《生物物理学杂志》(Biophy.J.)(1999)76:1018-1023)、感觉色素(例如视黄醛和相关蛋白质复合物)和天然荧光蛋白质及工程衍生物(例如绿色荧光蛋白(GFP);Heim等《美国国家科学院院报》(Proc.Natl.Acad.Sci.USA)(1994)91:12501-12504)。
影响总体功能和为本发明中可控构象调整靶向的聚合酶分子活性位点包括但不限于O-螺旋、K-螺旋和Taq DNA聚合酶的内O-P环或其它聚合酶中类似的位置;参见WO-A-98/40496。
一般“融合”序列和由此“融合”两种或多种肽/蛋白质的结构的方法在本领域中是众所周知的且就绿色荧光蛋白(GFP)而言已经广泛用于构建融合突变体或“变色”(chameleon)蛋白质以便生成诸如Ca2+这样的特异性底物的荧光标记并调节光谱反应(Heim等《美国国家科学院院报》(Proc.Natl.Acad.Sci.USA)(1997)388:882-887)。
在一个优选的实施方案中,使T7聚合酶的O-螺旋与GFP的荧光突变体融合。这可产生融合蛋白,其核苷酸底物亲和力可以得到调制作为对暴露于不同波长的光和所选GFP突变亚型的反应。
在另一个优选的实施方案中,分别克隆光子换能蛋白质和聚合酶并将能够参与交联反应的反应侧基以位点选择性方式引入各蛋白质结构的所需位置(例如聚合酶中的O-螺旋)。
可以将许多策略用于使反应基团与蛋白质结合。策略包括但不限于应用定点诱变和非天然氨基酸诱变(Anthony-Cahil等(1989)《生化科学趋势》(Trends Biochem.Sci.)14:400)以便引入半胱氨酸和起发生交联的位点作用的酮柄。然后可以将含有两个反应基团的交联试剂用于共价连接选择的侧基(Haugland《荧光探针和研究用化学物质手册》(Handbook of Fluorescent Probes and ResearchChemicals)第6版-分子探针(Molecular Probes)p94-106)。这类交联反应的实例包括硫(来源于半胱氨酸)-硫醇交联、胺-胺交联、胺-硫醇交联、胺-羧酸交联、胺-碳水化合物交联和硫醇-碳水化合物交联。
如上所述,据推定在某些情况下现存的多核苷酸链的存在对发生模板定向合成来说可能并不是必要的。例如,使用已经通过现有技术的重组遗传技术克隆而“设计”的广泛修饰的聚合酶是可行的。如上所述,这些聚合酶的构象处于外部控制(优选辐射源)下且这种对酶的核苷酸底物特异性的外部操纵决定着伸长的多核苷酸的聚合序列。此外,多核苷酸合成酶的某些部分不需要合成用的起始多核苷酸模板,甚至在其“天然”环境下也是如此。这类部分是酶的末端脱氧核苷酸转移酶部分。末端脱氧核苷酸转移酶(TdT)催化单核苷酸从脱氧核苷三磷酸到DNA起始密码子的末端3’-羟基的反复添加,同时释放无机磷酸。这种酶需要含有至少三个磷酸基和一个游离3’-OH的寡脱氧核苷酸用作起始密码子。
因此,在本发明的另一个实施方案中,从固体支持物伸展的游离3’OH起TdT的起始密码子的作用且工程酶将通过添加底物核苷酸和对施用于所述酶的辐射的控制来合成多核苷酸。在本系统的一个更为简便但较为缓慢的实施方案中,可以制备所述酶(通过遗传工程或反应条件的控制)以便聚合可用作底物的任意核苷酸且由此对存在于溶液中的核苷酸的控制将决定所合成的多核苷酸的序列。
在本发明的另一个实施方案中,TdT或聚合酶(或任意其它多核苷酸聚合酶)与固体支持物结合并使核苷酸和/或辐射可用于该结合状态的酶。该实施方案要求使用者确定辐射和/或底物的位置并使新的多核苷酸链在溶液中伸长。本发明的这种构象具有附加的优点,即一旦已经合成了所需的多核苷酸,它便可以从结合酶中释放出来且该过程再次启动(即它是一种再生过程)。
本发明的优选实施方案包括多核苷酸加工/聚合酶系统在空间中的定位。这种定位可能采取但不限于在固体支持物上固定的形式。聚合酶在空间中的定位为该方法的成功提供了几个重要优点。首先,当聚合酶在空间中的确切位置是已知的且由此可以通过局部环境调制(例如激光脉冲)更为便利地选择性控制它们时,对施用的辐射/可控环境的不需要的弱化的难题得到了减少。其次,酶系统与并不直接涉及聚合酶的局部环境/底物(例如核苷酸)的不需要/无控制的相互作用(或随机能量减弱)得到了相当程度的减少。正如在本发明范围内所展望的,如果将辐射(例如光子辐射)用于控制/减弱聚合酶的构象形式,那么上述情况具有特别的关联性。
可以使用本领域中公知的标准程序进行固定化。特别地,可以使用应用标准胺偶联程序的固定化,同时使配体相关的胺类与,比如说,葡聚糖或N-羟基琥珀酰亚胺酯激活的表面结合。在本发明的一个优选的实施方案中,将聚合酶固定在SPR传感器嵌片表面上,其中可以测定折射率的改变。用于使生物分子与光学传感器固定的方法的实例公开在EP-A-0589867和Lfas等《生物传感器与生物电子学》(Biosens.Bioelectron.)(1995)10:813-822中。
还可以通过应用激光镊或光学捕捉系统(Sheetz编辑,《细胞生物学方法》(Methods in Cell Biology)第55卷中的“细胞生物学中的激光镊”(Laser Tweezers in Cell Biology)(Academic Press,New York,1997))进行空间内的定位且它是本发明的另一个实施方案。光学镊利用光对物质施加力的事实。诸如均匀珠或细菌细胞这样的介电粒子被吸引到已经通过显微镜物镜聚焦的激光束束腰附近并被捕捉。所施用的力将以对力的线性相依性转移迫使捕捉的珠离开捕捉中心。如在本发明实施方案内的情况,可以使诸如聚合酶这样的生物分子与通常约为1μm直径的聚苯乙烯或二氧化硅珠结合。然后可以用诱捕器将固定化聚合酶引入反应流动池内的所需的实验几何/可控环境中。
本发明所用的多核苷酸聚合酶可以是任意公知的类型。例如,聚合酶可以是任意的DNA依赖性DNA聚合酶,例如T7基因5聚合酶或Taq聚合酶。如果靶多核苷酸是一种RNA分子,那么聚合酶可以是RNA依赖性DNA聚合酶,即逆转录酶或RNA依赖性RNA聚合酶,即RNA复制酶。优选TdT。
核磁共振(NMR)光谱法(Bradley等《分子生物学杂志》(J.Mol.Biol.)(1990)215:607-622)和电子顺磁共振(EPR)光谱法(Todd等《生物化学》(Biochemistry)(1991)30:5515-5523)是使多核苷酸聚合酶经历特定类型的辐射以便通过构象控制来控制特定核苷酸添加并且同时使结构/构象数据反馈的其它优选方法。使用这项技术还能够测定酶分子的反应。NMR光谱法可测定化合物的磁性。通过将外加的磁场与射频辐射联用可以在能量方面定向化合物的核心。当对核心施加的能量等于自旋态之间的能量差(平行或反向平行取向与外加场的方向之间的差)时,达到称作共振的条件。通过射频接受器检测与从一种自旋态向另一种自旋态的变化相关的能量吸收和随后的发射。
在本发明的另一个实施方案中,起始3’OH与珠连接(例如可以将生物素的一端生物素化并与链霉抗生物素包被的聚苯乙烯球连接;Chu等《美国光学协会》(Optical Society of America),Washington,DC(1990),8:202)并固定在流动池(如上所述)内的光学捕捉器(Ashkin等《光学通讯》(Opt.Lett.)(1986)11:288)中。当多核苷酸加工酶(在外部控制下)合成新的多核苷酸时,可以通过光学捕捉器(或也称作光学镊)将这种新的多核苷酸在空间中移动且由此使加工酶保持在检测场内。另外可以设想的是这种系统可以在带有由光学捕捉器固定的结合的多核苷酸加工酶的反向装置内起作用。
下列实施例解释本发明。实施例
下列分析在改进的带有传感器嵌片CM5(研究级,BIAcore AB)作为光学传感器/控制/反应表面的BIAcore2000系统(Biacore AB,Uppsala,Sweden)上进行。该仪器安装有可以通过单一样品注射在4个池内进行分析的综合μ-射流筒(IFC)。半胱氨酸标记的紫膜质的制备
紫膜质(BR)是盐沼盐杆菌紫膜中光驱动的质子泵。BR的光循环通过吸收由视黄醛发色团产生的光子来启动。将位点特异性突变IIe222→Cys(半胱氨酸突变)引入(Erlanson等《四面体》(Tetrahedron)(1997)53:12041)bop基因。根据紫膜质目前的结构模型(Lanyi等《科学》(Science)(1999)286:255-260),IIe222位于螺旋G的胞质末端。X射线衍射研究(Lanyi等《科学》(Science)(1999)286:255-260)和重原子标记(Lanyl等《生物物理学杂志》(Biophys.J.)(1999)76:1018-1023)表明了与光子吸收相关的螺旋G内的结构/构象改变。通过将改变的bop基因插入非整合载体、使用新生霉素抗性作为选择标记来构建该基因。如Ni等在《基因》(Gene)(1990)90:169-172 & Needleman等在《生物化学杂志》(J.Biol.Chem.)(1991)266:11478-11484中所述转化盐沼盐杆菌。按照Oesterhelt和Stoeckenius在《酶学方法》(Methods Enzymol.)(1974)31:667-678中所述的标准方法从作为紫膜(PM)片的盐沼盐杆菌纯化突变的蛋白质。半胱氨酸标记的T7聚合酶的制备
构建含有T7聚合酶编码序列的表达载体。以Arg518→Cys518将位点特异性突变引入(Erlanson等《四面体》(Tetrahedron)(1997)53:12041)O-螺旋编码区。用弗氏压碎器裂解细胞沉淀并通过Ni-次氮基三乙酸亲和层析法,随后通过阳离子交换层析法(磺丙基琼脂糖高流速)且最后通过大小排阻层析步骤(Superdex 200)来纯化所述酶。硫醇-硫醇交联反应
将10μM的突变T7和10μM的突变紫膜质加入到含有2mM β-巯基乙醇(加入以增加交联的特异性)的Hepes(10mM Hepes、150mM NaCl、0.05%表面活性剂P20(BIAcore AB,Uppsala,Sweden),pH7.4)缓冲溶液中。在25℃下培养2小时后,通过加入硫醇封端试剂甲硫醇磺酸甲酯(20mM)使交联反应骤停并通过非还原条件下的SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)来证实产物。然后通过Mono-Q上的阴离子交换层析纯化紫膜质-聚合酶复合物并将其重新悬浮于Hepes缓冲液中(8mg/ml复合物)。紫膜质-聚合酶复合物的固定化
按照Jnsson等在《生物技术》(Biotechniques)(1991);11:620-627中所述将紫膜质-聚合酶固定化于传感器嵌片上。简单地说,将传感器嵌片环境用Hepes缓冲液(10mM Hepes、150mM NaCl、0.05%表面活性剂P20(BIAcore AB,Uppsala,Sweden),pH7.4)平衡。将等体积的N-羟基琥珀酰亚胺(0.1M水溶液)和N-乙基-N’-(二甲氨基丙基)碳化二亚胺(EDC)(0.1M水溶液)一起混合并注射过嵌片(CM5)表面而激活羧甲基化的葡聚糖。将紫膜质-聚合酶与10mM乙酸钠(100μl,pH5)混合并注射过激活的表面。最后,使传感器嵌片表面上残留的N-羟基琥珀酰亚胺酯类与乙醇胺(35μl,1M水溶液;pH8.5)反应并从表面洗涤掉未结合的紫膜质-聚合酶。在25℃的温度下使用连续流动的Hepes缓冲液来进行固定化程序。寡核苷酸
使用在WO-A-99/05315中定义为SEQ ID No.1和SEQ ID No.2的非活性靶和引物寡核苷酸。在杂交条件下使两种寡核苷酸反应而生成靶-引物复合物。
然后将引导的DNA悬浮于含有60mM羰基二磷酸酯(以便维持复合物的完整性)和80mM硫氧还蛋白的缓冲液(20mM Tris-HCl,pH7.5,8mM MgCl2,4%(v/v)甘油,5mM二硫苏糖醇(DDT),40mg牛血清白蛋白)中并注射过嵌片表面且通过形成紫膜质/聚合酶/硫氧还蛋白/DNA复合物而使之与紫膜质-聚合酶结合。DNA合成
该步骤使用WO-A-99/05315的附图1中所示的仪器进行,但仅使用一种用于将单色光脉冲入细胞的聚焦组件(5)。
在25℃的温度下以30μl/分钟的流速和10Hz的数据采集速率将作为部分新合成的多核苷酸的第一个所需核苷酸引入流池(6)。当核苷酸通过聚焦组件(5)时,在300-600nm的整个波长带中调谐单色光(通过固态二极管可调谐激光),同时监测SPR信号。一旦SPR信号指示构象核苷酸添加已经发生,便维持外加激光脉冲的波长。然后仅使Hepes缓冲液以30μl/分钟流过嵌片表面10秒以除去未反应的核苷酸。随后,加入下一个所需的核苷酸并为所需的多核苷酸长度重复此循环。
另一方面,可以以30μl/分钟的流速将全部核苷酸一次注射到流动池中且入射的单色激光在300-600nm的整个波长范围中减弱以便将所需核苷酸加入到所需序列中。