复合材料、其制造方法及用途.pdf

上传人:000****221 文档编号:166412 上传时间:2018-01-31 格式:PDF 页数:10 大小:581.85KB
返回 下载 相关 举报
摘要
申请专利号:

CN03807721.3

申请日:

2003.03.28

公开号:

CN1646310A

公开日:

2005.07.27

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

B32B9/00; C08J5/06; C08J5/08; C08K9/08

主分类号:

B32B9/00; C08J5/06; C08J5/08; C08K9/08

申请人:

泰纳克斯纤维制品有限公司;

发明人:

K·P·施武恩; B·沃尔曼

地址:

德国伍珀塔尔

优先权:

2002.04.03 EP 02007534.7

专利代理机构:

北京市中咨律师事务所

代理人:

林柏楠;刘金辉

PDF下载: PDF下载
内容摘要

本发明涉及一种含有增强树脂和增强纤维的复合材料,其中该增强纤维具有含聚苯硫醚涂层并且聚苯硫醚相对于未涂覆的增强纤维的比例为0.001到小于0.01重量%。与同种类的但没有被提供上述百分比范围的PPS涂层的复合材料相比,该复合材料具有更高的表观层间剪切强度值和抗弯强度。

权利要求书

1: 一种含有增强树脂和增强纤维的复合材料,该增强纤维具有含聚 苯硫醚的涂层,其特征在于聚苯硫醚相对于未涂覆的增强纤维的比例为 0.001到小于0.01重量%。
2: 根据权利要求1的复合材料,其特征在于聚苯硫醚相对于未涂覆 的增强纤维的比例为0.002到0.009重量%。
3: 根据权利要求1或2的复合材料,其特征在于涂层由聚苯硫醚和 热塑性塑料或硬质塑料组成。
4: 根据权利要求1到3一项或多项的复合材料,其特征在于增强树 脂是热塑性塑料或热塑性塑料的混合物。
5: 根据权利要求1到4一项或多项的复合材料,其特征在于增强纤 维是沥青的碳纤维、聚丙烯腈或人造纤维前体、或芳族聚酰胺、玻璃纤 维、陶瓷纤维、硼纤维、合成纤维或天然纤维、或这些纤维的组合。
6: 一种生产复合材料的方法,包括如下步骤: a)提供必要时已经过预处理的增强纤维, b)在步骤a)中的增强纤维上施用含有聚苯硫醚的涂层,使该涂层含有 相对于增强纤维为0.001到小于0.01重量%的聚苯硫醚,结果制成涂覆的 增强纤维,并且 c)使用增强树脂将步骤b)中的涂覆增强纤维加工成复合材料。
7: 根据权利要求6的方法,其特征在于步骤a)中的增强纤维是沥青 的碳纤维、聚丙烯腈或人造纤维前体、或芳族聚酰胺、玻璃纤维、陶瓷 纤维、硼纤维、合成纤维或天然纤维、或这些纤维的复合纤维。
8: 根据权利要求6或7的方法,其特征在于步骤a)中的碳增强纤维 已经经电化学氧化预处理。
9: 根据权利要求6到8一项或多项的方法,其特征在于步骤a)中的 增强纤维被引导通过含有聚苯硫醚的悬浮液的池,在步骤b)中被干燥和 卷拢。
10: 根据权利要求9的方法,其特征在于所述池还含有热塑性塑料的 溶液。
11: 根据权利要求6到10一项或多项的方法,其特征在于在步骤c) 中的涂覆的增强纤维以长丝、短纤维、纺织织物、编织织物、针织织物 或钩织织物、无纺的、或单向或多向稀松布的形式加工成复合材料。
12: 根据权利要求1到5一项或多项的复合材料或根据权利要求6到 11一项或多项制造的复合材料的用途,用于制造航空器构件、机动车构 件、机械构件或设备构件和用于制造医疗用品。

说明书


复合材料、其制造方法及用途

    本发明涉及一种复合材料、制造该材料的方法及其用途。

    增强纤维及其与复合树脂一起用于制造复合材料的用途是已知的。美国专利US 5 641 572公开了由短碳纤维制造的增强纤维,该短碳纤维包含例如聚苯硫醚(PPS)作为上浆剂。美国专利US 5 641 572教导,上浆剂相对于短碳纤维的总重量的比例必须至少为0.01重量%,因为对于小于0.01重量%的比例,其保护作用不能令人满意。美国专利US 5 641 572还教导了上浆的短碳纤维在400到1500℃下在惰性气体中的碳化。按照这种方法,该短碳纤维仅仅包含上浆剂的碳化产物。最后,美国专利US 5641 572公开了由碳化的短碳纤维和热塑性树脂制造的增强材料。美国专利US 5 641572没有给出如何提高含有增强纤维的复合材料的表观层间剪切强度(ILSS)和抗弯强度的启示。然而,日益迫切的需要正是建立在这些性能之上的。

    因此,本发明的目地是提高含有增强纤维的复合材料的表观层间剪切强度和抗弯强度。

    这一目的可以通过含有增强树脂和增强纤维的复合材料实现,该增强纤维具有含聚苯硫醚的涂层,其特征在于聚苯硫醚相对于未涂覆增强纤维的比例为0.001到小于0.01重量%。

    如果以这种方法涂覆的增强纤维通过本身已知的方法加工成复合材料,则发现表观层间剪切强度和抗弯强度比使用未按本发明涂覆的增强纤维时的更高。这一结果令人惊讶,因为根本不能预见如此少量的PPS会对复合材料性能产生影响,更不用说重量如此小的PPS会提高表观层间剪切强度和抗弯强度。更令人惊讶的是,发现本发明复合材料的表观层间剪切强度和抗弯强度在PPS相对于增强纤维的0.001到小于0.01重量%时显示出最大值。本发明含有PPS涂覆碳增强纤维并且已经与聚醚醚酮一起被加工成复合材料的复合材料例如在PPS含量相对于该碳纤维约为0.006重量%时显示出该最大值。

    在本发明复合材料的优选实施方案中,聚苯硫醚相对于未涂覆的增强纤维的比例为0.002到0.009重量%。

    在本发明复合材料的另一个优选实施方案中,涂层由聚苯硫醚和热塑性塑料或硬质塑料组成,该热塑性塑料优选为聚醚酰亚胺、聚酮醚、聚醚醚酮、聚醚砜、聚醚醚砜或聚砜,并且该硬质塑料优选为环氧树脂。

    在本发明复合材料中使用的增强树脂优选为热塑性塑料,例如如聚醚酰亚胺、聚醚酮、聚醚醚酮、聚醚砜、聚醚醚砜或聚砜,或这些热塑性塑料的混合物。

    用于本发明复合材料的增强纤维原则上可以是任何具有所需增强纤维性能的天然或合成纤维,当该增强纤维是沥青的碳纤维、聚丙烯腈或人造纤维前体、或芳族聚酰胺、玻璃、陶瓷、硼、合成或天然纤维、或这些纤维的结合时,这些所需的性能是特别易于开发的。合成纤维特别优选的是聚酯纤维,天然纤维特别优选的是亚麻纤维或剑麻纤维。

    特别优选用于本发明复合材料的碳增强纤维可以从德国Wuppertal的Tenax Fibers GmbH获得,名称为Tenax HTS。在本发明复合材料中,纤维可以以短切纤维或以由数千根、并优选3,000到24,000根细丝组成的长丝的形式存在。在本发明复合材料中的纤维还可以以织物形式存在,如纺织的、无纺的、编织或钩织织物、或单方向或多方向稀松布。

    本发明的目的进一步通过用于制造复合材料的方法实现,该方法包括下列步骤:

    a)提供在必要时已经经预先处理的增强纤维,

    b)在步骤a)中的增强纤维上施用含有聚苯硫醚的涂层,使该涂层含有相对于增强纤维为0.001到小于0.01重量%的聚苯硫醚,结果制成涂覆的增强纤维,并且

    c)使用增强树脂将步骤b)中的涂覆增强纤维加工成复合材料。

    在步骤a)中,任何提供增强纤维、使整个纤维表面可以为步骤b)中施用的涂层使用的方法均是合适的。例如,可以将新纺的并且干燥的增强纤维在卷拢之前单独地或以纱布片直接送入本生产方法中。或者,该增强纤维可以以由数千根、优选约3,000到24,000根细丝组成的长丝的形式使用。

    用于本发明方法的步骤a)中的增强纤维原则上可以是任何具有所需增强纤维性能的天然或合成纤维,当该增强纤维是沥青的碳纤维、聚丙烯腈或人造纤维前体、或芳族聚酰胺、玻璃、陶瓷、硼、合成或天然纤维、或这些纤维的结合时,这些所需的性能是特别易于开发的。合成纤维特别优选的是聚酯纤维,天然纤维特别优选的是亚麻纤维或剑麻纤维。从德国Wuppertal的Tenax Fibers GmbH公司获得的名称为Tenax HTS的碳纤维特别优选用作本发明方法步骤a)中的碳增强纤维。

    如果预处理是用步骤b)中施用的涂层充分润湿增强纤维和使该涂层粘附到增强纤维上所必需的,则对本发明方法步骤a)中提供的增强纤维进行预处理。如果没有在步骤b)中的增强纤维的整个表面上提供本发明的涂层,增强纤维的预处理还可以提高涂层纤维对步骤c)中使用的增强树脂的粘附力。如果需要,用来预处理的方法可以是浸渍法,其中将增强纤维浸在疏水性或亲水性液态介质中并且干燥。还可以采用如在电化学氧化中那样将反应性的官能团引入纤维表面的预处理方法,这种方法可以为增强纤维的表面提供例如羟基和羧基。

    至于本发明方法步骤b)的运用,原则上任何能够在增强纤维上施用相对于增强纤维重量的0.001到小于0.01重量%的聚苯硫醚的方法均是合适的。

    例如,可以在步骤b)将增强纤维引导通过PPS熔体,可选择在此之前将其引导通过诸如聚醚酰亚胺的热塑性塑料的熔体。还可以制备PPS及诸如聚醚酰亚胺的热塑性塑料的熔体,并将增强纤维引导通过含有这两种聚合物的熔体。

    或者,可以将PPS粉末引入等离子体中,PPS颗粒由此在增强纤维的方向上被加速,并且熔化。PPS颗粒遇到增强纤维时,就在增强纤维上固化并且形成需要的层。在进行PPS等离子喷涂之前可以进行诸如聚醚酰亚胺的热塑性塑料等离子喷涂。还可在等离子喷涂中同时使用PPS和诸如聚醚酰亚胺的热塑性塑料。

    而且,PPS的施用可以合并到增强纤维在卷拢之前的制造过程中,在这种情况下可以使用已知的施用修饰剂的设备。在施用PPS以前,可以选择施用诸如聚醚酰亚胺的热塑性塑料。或者,可以用PPS和诸如聚醚酰亚胺的热塑性塑料制备上浆剂,并且将该上浆剂施用于增强纤维。

    在本发明方法的优选实施方案中,在例如步骤b)中将PPS微晶施用到增强纤维上,在步骤b)中,将来自步骤a)的增强纤维引导通过含有PPS悬浮液的池,干燥并且卷拢。对该池的温度没有特殊要求,只要在所选择的温度下,在悬浮液中存在尽可能最细微的PPS微晶即可。在本发明方法的许多实施方案中,甚至在室温下,在相当程度上也的确如此,因此室温是优选的池温。重要的是在干燥过程中防止涂层的分解,同时还要保证除去粘附在涂覆增强纤维上的水汽。在许多情况下,350到400℃范围的干燥器温度是合适的。温度是根据干燥时间选择的。可以选择首先将增强纤维引导通过含有诸如聚醚酰亚胺的热塑性塑料溶液的池,并且然后将已被该溶液润湿的纤维引导通过含有PPS悬浮液的池,接着如上所述将该纤维卷拢并干燥。

    特别优选将增强纤维引导通过一个池,该增强纤维可以例如以具有3,000到24,000根细丝的长丝的形式存在,该池的内容物由PPS的悬浮液、诸如聚醚酰亚胺的热塑性塑料的溶液、溶剂和乳化剂(如果需要)组成,接着如上所述将该纤维干燥并且卷拢。应选择溶剂使其能够溶解热塑性塑料而不溶解PPS。当热塑性塑料是聚醚酰亚胺时,合适的溶剂是例如1-甲基-2-吡咯烷酮(NMP)。合适的乳化剂的实例是癸二醇油基醚。在这种情况下,在使用池中PPS悬浮液的所有本发明方法的实施方案中,通过例如泵送循环或搅拌使池的内容物保持不断的移动,由此保持悬浮。当将增强纤维引导通过池时,纱线张力优选为0.3到1.5cN/tex,特别优选为0.5到1.0cN/tex。引导该增强纤维通过悬浮液的速度优选为60到600米/小时,特别优选为120到480米/小时。悬浮在池中的PPS浓度优选为0.2到5重量%、特别优选0.5到1.5重量%的PPS,分别对应于池内容物中聚醚酰亚胺组分的比例处于例如0.5到1.0重量%的范围,并且特别优选在0.5到0.7重量%的范围。调节上述参数的方式是可形成0.5到1.0重量%、并且特别优选0.5到0.7重量%的涂层。

    当热塑性塑料和PPS以上述重量比置于挤出机中并且熔融获得颗粒时,可获得含有被分得特别精细的PPS微晶的悬浮液。然后将这些颗粒引入上述溶剂中。如果需要,该溶剂可含有乳化剂。热塑性塑料溶解并且PPS形成细颗粒悬浮液。根据本发明,通过调节增强纤维以所述速度通过的池中的PPS浓度,可以调节PPS在增强纤维中的比例,从而使涂覆的增强纤维含有0.001到小于0.01重量%的PPS。

    增强纤维上涂层的重量比例可根据DIN EN ISO 10548的方法B测定。如果该纤维的涂层除了PPS之外还含有热塑性塑料,则在该涂覆增强纤维中PPS的重量比例由用于涂层的热塑性塑料和PPS的重量比来计算。

    在本发明方法的步骤c)中,用增强树脂(优选热塑性塑料或热塑性塑料的混合物)处理涂覆的增强纤维,从而形成复合材料。特别合适的热塑性塑料包括聚醚酰亚胺、聚醚酮、聚醚醚酮、聚醚砜、聚醚醚砜或聚砜或这些热塑性塑料的混合物。将通过本发明方法涂覆的增强纤维处理成复合材料的方法本身是已知。它们包括,例如:

    -将通过本发明方法涂覆的增强纤维与复合树脂的纤维或粉末或薄膜混合并且随后热压,

    -用复合树脂的熔体或溶液浸渍通过本发明方法涂覆的增强纤维,并

    -将通过本发明方法涂覆的增强纤维复合并且切成短纤维。

    可以以增强纤维在本发明方法的步骤b)之后呈现的那种形式(例如长丝)进一步将通过本发明方法涂覆的增强纤维加工成复合材料。

    或者,可以先将由本发明方法的步骤b)制成的涂覆增强纤维制成织物状并且以这种形式加工成复合材料。例如,可以先将由本发明方法的步骤b)制成的涂覆增强纤维加工成无纺布或切成短纤维。通过本发明方法涂覆的增强纤维还可以首先被制成纺织、编织、针织或钩织物、或单方向或多方向纱布的形式。

    在步骤c)的复合材料的生产中,通过本发明方法涂覆的增强纤维与聚醚醚酮一起热压时,在聚醚醚酮渗入长丝以及润湿单根涂覆细丝方面显示出优异的浸渍特性。本发明复合材料的纤维比例为40到70体积%,用于单向预浸渍层压材料的纤维比例优选为55到65体积%,用于纤维预浸渍层压材料的纤维比例为45到55体积%,用于卷拢或拉挤体的纤维比例为55到70体积%。

    本发明复合材料的表观层间剪切强度按照DIN EN 2563中的方法测量,而抗弯强度(在纤维方向0°和垂直于纤维方向90°)按照DIN EN 2562中的方法测量。

    本发明的复合材料和通过本发明方法制造的复合材料适宜用于制造航空器构件,诸如壳体和着陆襟翼;用于机动车构件,诸如发动机零件、泵和密封件;用于机械构件和设备构件,诸如密封件、轴承和贮槽;以及用于制造医疗用品,诸如外科手术器械。

    现在结合以下实施例对本发明进行更为详细的说明。

    实施例1

    将98重量份的聚醚酰亚胺(GE Plastics公司的Ultem)和2重量份的PPS(Ticona公司的Fortron)置于挤出机中并熔融,制造颗粒。将39克颗粒搅拌加入590克热1-甲基-2-吡咯烷酮(NMP)中,直至聚醚酰亚胺溶解。PPS不溶解,并形成悬浮液。将由200克NMP、60克水和20克乳化剂癸二醇油基醚组成的混合物在搅拌下逐滴添加到已经冷却到70℃的聚醚酰亚胺溶液和PPS悬浮液中。将生成的混合物搅拌加入600ml的50℃温水中,形成一种乳液,通过泵送循环维持乳液不停地移动。用水将获得的溶液稀释至所生成的溶液由0.6重量%的聚醚酰亚胺,0.006重量%的PPS、0.3重量%的癸二醇油基醚、12.2重量%的NMP和86.894重量%的水组成。

    线密度为800特克斯、由碳纤维制造的长丝以1.0cN/特克斯的纱线张力、180米/小时的速度通过上述乳液,在350℃干燥并且卷拢。该长丝可从Tenax Fibers GmbH公司得到,名称为Tenax HTS。PPS相对于碳纤维的比例为0.006重量%(见表,实施例1)。

    将该长丝与聚醚醚酮一起加工成复合材料。该聚醚醚酮可从Victrex获得,名称为PEEK151G。聚醚醚酮以薄膜的形式使用。将这种薄膜和涂覆的Tenax HTS纤维排列为交替层,然后在约9巴的压力、刚刚高于400℃的温度将它们层压。层压之后,将复合材料的温度在24小时内降到室温。

    表观层间剪切强度为143MPa,抗弯强度(0°)为3380.4MPa,并且抗弯强度(90°)为187MPa(见表,实施例1)。

    实施例2

    重复进行实施例1,不同的是乳液由0.597重量%的聚醚酰亚胺、0.009重量%的PPS、0.3重量%的癸二醇油基醚、12.2重量%的NMP和86.894重量%的水组成。PPS相对于碳纤维的比例为0.009重量%(见表,实施例2)。

    表观层间剪切强度为125MPa,抗弯强度(0°)为2972.1MPa,并且抗弯强度(90°)为153MPa(见表,实施例2)。

    对比例

    重复进行实施例1,不同的是乳液不包含PPS,并由0.606重量%的聚醚酰亚胺、0.3重量%的癸二醇油基醚、12.2重量%的NMP和86.894重量%的水组成以外(见表,对比例V)。

    表观表观层间剪切强度为121MPa,抗弯强度(0°)为2473.3MPa,并且抗弯强度(90°)为152MPa(见表,对比例V)。

    下表显示了PPS相对于碳纤维的重量百分比(重量%PPS)、层间剪切强度(ILSS)、抗弯强度(0°)BS(0°)和抗弯强度(90°)BS(90°)。 实施例  重量%PPS  ILSS MPa  BS(0°)MPa BS(90°)MPa    1    0.006    143    3380.4    187    2    0.009    125    2972.1    153    V    0.000    121    2473.3    152

    从该表可以看出,PPS相对于碳纤维的比例为0.006重量%时,ILSS和0°、90°的BS最大。

复合材料、其制造方法及用途.pdf_第1页
第1页 / 共10页
复合材料、其制造方法及用途.pdf_第2页
第2页 / 共10页
复合材料、其制造方法及用途.pdf_第3页
第3页 / 共10页
点击查看更多>>
资源描述

《复合材料、其制造方法及用途.pdf》由会员分享,可在线阅读,更多相关《复合材料、其制造方法及用途.pdf(10页珍藏版)》请在专利查询网上搜索。

本发明涉及一种含有增强树脂和增强纤维的复合材料,其中该增强纤维具有含聚苯硫醚涂层并且聚苯硫醚相对于未涂覆的增强纤维的比例为0.001到小于0.01重量。与同种类的但没有被提供上述百分比范围的PPS涂层的复合材料相比,该复合材料具有更高的表观层间剪切强度值和抗弯强度。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 层状产品


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1