金属污染的烃质原料的加氢处理方法 本发明涉及金属污染的烃质原料的加氢处理方法。
烃质原料例如由原油的常压或减压蒸馏所生产的渣油的特征是硫含量、康拉逊残碳(CCR)(形成焦碳的趋势的度量)含量、特别是金属含量比较高。主要的金属污染物是钒和镍,有时也存在铁和铜。渣油的高金属含量通常就妨碍它们有效的用作炼厂工艺过程例如催化裂化和加氢裂化的原料,因为金属污染物沉积在这些裂化过程所用的专用催化剂上,过早的使得催化剂老化和/或形成不合乎要求量的焦碳和气体产物。因此,金属污染物作为上述催化剂的毒物,在比所需要地时间周期更短的时间内就必须置换该催化剂。
现有技术中介绍了很多降低渣油中的金属含量的方法。例如,USP3,936,370公开了渣油多段脱金属的方法,每一段包括含有VI族和VIII族加氢金属组分载在氧化铝载体上的催化剂,第一段催化剂比最后一段催化剂含有较少量的加氢金属组分,第一段的氢压比最后一段的氢压高。
另外,USP 4,306,964公开了一种渣油脱金属的方法,该方法是使该油相继地与三段或多段具有相继减少的平均孔径和相继增加的表面积的催化剂接触,第一段催化剂具有至少60%的孔径为100-200A(10-20nm)的孔的孔体积,最高到5%的孔径大于500A(50nm)的孔的孔体积,表面积最高到120m2/g,第二段催化剂具有至少40%的孔径为50-100A(5-10nm)的孔的孔体积,表面积为120-180m2/g,最后一段催化剂具有至少60%的孔径为30-80A(3-8nm)的孔的孔体积,表面积至少200m2/g。
本发明就是基于这样的发现,即当与以特殊的次序排列的、选自宽孔和窄孔的催化剂床接触时,金属污染的烃质原料可以非常有效地加氢处理,特别是加氢脱金属。
因此,本发明提供一种加氢处理金属污染的烃质原料的方法,所说的烃质原料中至少60%(重)的沸点等于或≥370℃,该方法包括,在氢气的存在下,在升高的温度和升高的压力下,使该原料与第一催化剂、第二催化剂和第三催化剂中的一个或多个催化剂床接触,其中,(i)第一催化剂包括VI族和/或VIII族加氢金属组分载在无机氧化物载体上,其至少40%的孔体积在孔径17-25nm的范围内,表面积在100-160m2/g的范围内;(ii)第二催化剂包括VI族和/或VIII族加氢金属组分载在无机氧化物载体上,其至少40%的孔体积在孔径3-17nm的范围内,表面积在160-350m2/g的范围内;(iii)第三催化剂包括VI族和VIII族加氢金属组分载在无机氧化物载体上,其至少40%的孔体积在孔径17-25nm的范围内,表面积在100-160m2/g的范围内;在污染物金属沉积量少于5%(重)的情况下,第三催化剂的脱金属活性是第一催化剂的至少1.5倍。
当然,应该了解到,第一催化剂、第二催化剂和第三催化剂彼此是不同的。
在本发明的方法中所用的原料是其中至少约60%(重),优选至少约70%(重),特别优选至少约80%(重)的沸点等于或≥370℃的原料。可以在本发明中使用的原料的例子包括减压瓦斯油、(脱沥青的)常压渣油、(脱沥青的)减压渣油和页岩油。这些原料含有金属污染物例如钒和/或镍和/或铁,基于总的原料,按金属计算,其存在的总量可以最高到600ppmw(每百万重量份的份数),例如10-600ppmw,10-500ppmw,10-400ppmw,10-300ppmw,或20-200ppmw。通常,基于总的原料,按金属(镍+钒)计算,该原料将含有≤200ppmw的钒和镍污染物。所用的优选的原料是含有≤100ppmw钒污染物的原料。
该原料通常也含有硫和氮污染物。基于总的原料,按硫计算,硫污染物可能的存在量为0.2%-8%(重),一般为1%-6%(重),基于总的原料,按氮计算,氮污染物可能的存在量最高到5000ppmw,一般为250-2000ppmw。此外,该原料通常的CCR值最高到25%,一般12%-15%。
可以很方便地在300℃-500℃,优选300℃-450℃,更优选325℃-425℃的温度范围实现本发明的方法。
此外,总的压力(在反应器入口)优选为2×106-2.5×107Pa(20-250巴),更优选为2×106-2×107Pa(20-200巴),特别是3×106-1.8×107Pa(30-180巴)。
氢气分压(在反应器入口)优选为2×106-2.4×107Pa(20-240巴),更优选为2×106-1.9×107Pa(20-190巴),特别是3×106-1.7×107Pa(30-170巴)。
方便使用的重时空速(WHSV)为0.1-10kg原料每升催化剂每小时(kg/l/hr)。优选的空速是0.1-8,特别是0.1-5kg/l/hr。
在本发明的方法中,要加氢处理的原料按下面的顺序与第一催化剂、第二催化剂和第三催化剂接触。在一个或多个催化剂床中可以含有每种催化剂,这些催化剂可以装在一个或多个反应器中。在本发明的优选的实施方案中,原料是向下流的方向通过一个或多个含有固定催化剂床或移动催化剂床的立式排列的反应器。
第一催化剂含有VI族和/或VIII族加氢金属组分,例如仅仅VI族金属载在无机氧化物载体上,其至少40%,优选至少60%的孔体积在孔径17-25nm的范围内,表面积在100-160m2/g的范围内,有利的是115-150m2/g,其是通过公知的Brunauer-Emmett-Teller(BET)方法(S.Brunauer,P.Emmett和B.Teller,J.Am.Chm.Soc.,60,309(1938)),使用氮气作为吸附剂测定的。第一催化剂的活性应该主要是脱金属的活性。
第二催化剂包括VI族和/或VIII族加氢金属组分载在无机氧化物载体上,其至少40%,优选至少60%的孔体积在孔径3-17nm的范围内,BET表面积在160-350m2/g的范围内,有利的是170-280m2/g。第二催化剂可以具有脱金属和/或脱硫和/或脱氮和/或除去CCR的活性。
优选的是,第二催化剂包括一种无机氧化物载体,其或者具有至少40%的孔体积在孔径10-17nm的范围内,BET表面积在160-220m2/g的范围内,或者至少40%的孔体积在孔径3-10nm的范围内,BET表面积在220-350m2/g的范围内。
在本发明的另一个优选的实施方案中,使用许多第二催化剂的床,原料与一个或多个第二催化剂床接触,第二催化剂包括一种无机氧化物载体,其具有至少40%的孔体积在孔径10-17nm的范围内,BET表面积在160-220m2/g的范围内,接着与一个或多个第二催化剂床接触,第二催化剂包括一种无机氧化物载体,其具有至少40%的孔体积在孔径3-10nm的范围内,BET表面积在220-350m2/g的范围内。
第三催化剂包括VI族和/或VIII族加氢金属组分载在无机氧化物载体上,其至少40%的孔体积,优选至少60%的在孔径17-25nm的范围内,BET表面积在100-160m2/g的范围内,有利的是110-140m2/g。第三催化剂应该主要具有脱金属活性,并且在同样的条件下,污染物金属(例如钒)沉积量少于5%(重)的情况下,第三催化剂的脱金属活性应该是第一催化剂的脱金属活性的至少1.5倍、例如2或2.5倍。
本领域的技术人员可以很容易地测定相对脱金属活性。第一和第三催化剂可以单独地选择,或者一种可以是另一种的合适的改型。
优选的是,每一种单独的催化剂包括至少一种选自钼、钨、钴、镍、它们的氧化物和硫化物的VI族/VIII族加氢金属组分,和其两种或多种的混合物。如果使用多于一种加氢金属组分,镍/钨、镍/钼和钴/钼混合物是优选的。
第一催化剂优选含有VI族加氢金属组分,特别是钼组分,而第二催化剂和第三催化剂优选地分别独立地含有VI族和VIII族加氢金属组分,特别是钼组分与镍组分。
如果第一、第二和第三催化剂中的任意一种含有VI族加氢金属组分的话,那么基于总的催化剂,按金属计算,其优选的总含量是2%-20%(重),更优选是2%-10%(重)。
类似地,如果第一、第二和第三催化剂中的任意一种含有VIII族加氢金属组分的话,那么基于总的催化剂,按金属计算,其优选的总的含量是1%-15%(重),更优选是1%-10%(重)。
有益的是,第一催化剂含有VI族加氢金属组分,优选钼,其含量为2%-5%(重);第三催化剂含有VI族加氢金属组分,特别是钼,其含量为5%-10%(重),和含有VIII族加氢金属组分,特别是镍,其含量为1%-5%(重)。在系统中使用第一和第二催化剂这样的组合,其中第二催化剂包括两个催化剂床,其每一个催化剂床都含有包括VI族和VIII族加氢金属组分,特别是钼组分与镍组分,VI族金属组分的存在量为5%-15%(重),VIII族金属组分的存在量为1%-5%(重),就得到好的结果。
这些催化剂每一种都单独地包括无机氧化物载体,无机氧化物载体可以是例如氧化铝、氧化硅-氧化铝、氧化硅、磷酸铝、氧化镁、氧化钛、氧化锆、氧化硅-氧化锆、氧化硅-氧化硼或它们的两种或多种的混合物。优选的是这些催化剂每一种都单独地包括选自氧化铝、氧化硅-氧化铝和氧化硅的无机氧化物载体。氧化铝是最优选的。
如果需要的话,这些催化剂还可以包括少量的磷,例如0.2%-5%(重),特别是1%-3%(重)。
可以用现有技术中的常规的方法制备第一、第二和第三催化剂。因此,这些催化剂的每一种可以很方便地通过用VI/VIII族加氢金属组分、任选含有磷酸的溶液浸渍无机氧化物载体,例如氧化铝,接着干燥(例如在100℃-150℃的温度下)和在空气中焙烧(例如在350℃-500℃的温度下)来制备。
作为本发明方法的产品的加氢处理了的原料实际上是没有金属污染物的,其非常适合于通过催化裂化进一步加工。因此,本发明还提供一种转化该烃质原料成为较低沸点的物质的方法,该方法包括,在裂化催化剂的存在下,在升高的温度下接触该原料,其中该原料是由本发明的加氢处理方法得到的。
该裂化方法可以在固定催化剂床中进行,但是优选在向上或向下的移动催化剂床中进行,例如以常规的流化催化裂化(FCC)方法进行。该方法的条件优选地是,反应温度为400℃-900℃,更优选450℃-800℃,特别是500℃-650℃;总压力为1×105-1×106Pa(1-10巴),特别是1×105-7.5×105Pa(1-7.5巴);催化剂/原料重量比(kg/kg)为0.1-150,如果使用移动催化剂床的话,该比特别是20-100;催化剂与原料的接触时间为0.1秒-100秒,如果使用移动催化剂床的话,优选的接触时间是0.1秒-10秒。
所用的裂化催化剂可以是任意的现有技术通常所用的那些催化剂,例如1995年10月2日的“Oil and Gas Journal Special”38-44页所述的那些催化剂。
由下面的实施例将会进一步了解本发明,其中表面积是通过Brunauer-Emmett-Teller(BET)方法,使用氮气作为吸附剂测定的。基于催化剂/原料的总重量,加氢金属/钒组分的量按金属重量的百分数计。
实施例
在中型氢加工实验装置中,使用一系列的催化剂A(第一催化剂)、B(第二催化剂)、C(第三催化剂)和D(第四催化剂)加氢处理常压渣油(久沸残渣油)。
催化剂A是市场上买到的脱金属催化剂,其含有4%(重)的钼载在氧化铝载体上,其平均孔径为19.5nm,表面积为140m2/g,水孔体积为0.97ml/g。
催化剂B是市场上买到的脱金属/脱硫催化剂,其含有1.5%(重)的镍,8.2%(重)的钼,2%(重)的磷载在氧化铝载体上,其平均孔径为15nm,表面积为180m2/g,水孔体积为0.88ml/g。
催化剂C是市场上买到的脱硫催化剂,其含有2%(重)的镍,11.3(重)的钼,2%(重)的磷载在氧化铝载体上,其平均孔径为9nm,表面积为250m2/g,水孔体积为0.75ml/g。
催化剂A、B和C都是从Criterion Catalyst Company,Houston,U.S.A.买到的。
催化剂D含有2%(重)的镍,7.7%(重)的钼,1%(重)的磷载在氧化铝载体上,其平均孔径为19.5nm,表面积为140m2/g,水孔体积为0.97ml/g。
催化剂D是通过混合合适量的氧化镍、三氧化钼和85%的浓磷酸制备的。以提供95%载体孔体积的量加软化水。把混合物加热到90-95℃,以溶解所有的组分,直到得到透明的水溶液。冷却到室温之后,再加软化水,以便将溶液的体积增加到载体的孔体积。按下面现有的常规技术进行载体的浸渍,然后把该催化剂老化2小时,在125℃干燥几小时,最后在454℃焙烧2小时。
在污染物金属沉积量<5%(重)的情况下,对于脱金属活性来说,催化剂D是催化剂A的2.5倍多。
以常规的方法,用催化剂A加工起始钒含量为80ppmw、硫含量为4%(重)(基于原料)的原料,从而将钒含量降低到10-12ppmw。加工之后,发现该原料具有下面的表1所示的性能。
表 1
碳含量 :85.6%(重)
氢含量 :11.6%(重)
H/C原子比 :1.6
钒含量 :12ppmw
硫含量 :2.1%(重)
沸点低于250℃的馏分 :3.2%(重)
沸点250-370℃的馏分 :8.0%(重)
沸点370-520℃的馏分 :39.2%(重)
沸点高于520℃的馏分 :49.6%(重)
然后,在下面的工艺条件下,使该原料顺序通过一系列的含有催化剂B、C和D的催化剂床:重时空速(WHSV)为0.6kg/l/hr,氢分压为1.6×107Pa(160巴),总压力为1.62×107Pa(162巴)。控制反应温度,以便使硫含量降低到0.6%(重)。催化剂B、C和D分别占总催化剂体积的33%、50%和17%。
作为最终产品得到的加氢处理了的原料含有2ppmw的钒(钒含量降低了83%,从12减少到2ppmw)和0.6%(重)的硫。
为了进行比较,在下面的工艺条件下,该具有表1所示的性质的原料顺序通过一系列的含有催化剂B和C的催化剂床:重时空速(WHSV)为0.6kg/l/hr,氢分压为1.6×107Pa(160巴),总压力为1.62×107Pa(162巴)。控制反应温度,以便使硫含量降低到0.6%(重)。催化剂B和C分别占如上总催化剂体积的33%和67%。
作为最终产品得到的加氢处理了的原料含有4.5ppmw的钒(钒含量降低了62%,从12减少到4.5ppmw)和0.6%(重)的硫。