对半导体基片进行电镀和抛光的方法及装置 【技术领域】
本发明涉及一种在半导体基片上电镀和抛光导电材料的方法及装置。具体地说,本发明涉及的是一种使用同一装置在半导体基片上先电镀然后抛光导电材料的方法及装置。另外,本发明涉及一种间断地在半导体基片上施加导电材料并当不再向基片施加导电材料时间断地抛光该基片的方法及装置。本发明还涉及一种使用一个新型衬垫组件在基片表面上电镀/沉积和/或抛光导电材料的方法及装置。
背景技术
制造集成电路及设备的常规工艺包括用一个电镀装置在半导体晶片表面上电镀一金属层。通常晶片表面已经被事先蚀刻并具有许多孔和/或沟槽。晶片电镀的一个目的是用导电材料均匀填充这些孔和沟槽。但是,很难将这些孔和沟槽均匀填充得没有空隙存在。众所周知,这些空隙的存在将导致较差的性能和有缺陷的设备。在电镀步骤后,通常利用一个抛光装置进行抛光步骤以得到晶片的平坦表面。
在晶片表面的晶种金属层上电镀导电材料在半导体工业具有重要和广泛的应用。通常,电镀的是铝或其他金属,其形成为组成半导体芯片的许多金属层中的一层。但是,近来用铜沉积来互连半导体芯片引起了人们很大的兴趣,这是因为与铝相比,铜地电阻较低从而允许在产生更少热量的情况下使半导体芯片运行得更快,结果是芯片在容量和效率方面都有显著改善。此外,铜还是比铝更好的导体,这一点是公知的。
在ULSI芯片的加工中,铜进入亚微米孔和沟槽中的薄膜电镀是非常困难的,尤其是当特征尺寸小于0.25μm、纵横比大于5比1时则变得更加困难。可以使用普通的化学气相沉积填充这些孔和沟槽以形成硅基片。但是,这种加工方法使得ULSI技术的发展和集成互连的费用非常高。
因此,需要一种更加精确、费用经济和可靠的将导电材料施加到半导体基片上的方式。
【发明内容】
本发明的一个目的是提供一种在半导体工件的表面上电镀/沉积导电材料然后抛光该工件表面的方法和装置。
本发明的另一个目的是提供一种利用刷镀或电化学机械沉积在半导体工件的表面上电镀/沉积导电材料然后利用电解抛光或化学机械抛光来抛光该工件表面的方法和装置。
本发明的目的还在于提供一种在同一装置上具有用于电镀/沉积导电材料和抛光工件表面的多个腔的方法和装置。
本发明的目的还在于提供一种具有用于电镀/沉积导电材料和抛光工件表面的新型衬垫组件的方法和装置。
本发明的目的还在于提供一种在衬垫或其他固定部件不直接与工件表面接触的情况下在工件表面上电镀/沉积导电材料的方法和装置。
本发明的这些和其他目的可以通过在同一装置中提供邻接的、独立的电镀和抛光步骤来实现。第一腔用于将来自于电解质溶液中的导电材料电镀/沉积到工件表面。这是通过将一个衬垫安装在柱状阳极上,并利用处于该衬垫上或通过该衬垫的电解质溶液将导电材料施加到工件表面来完成的。
进行该电镀操作的装置包括一个阳极和一个阴极、一个工件或一个与阳极隔开的工件。一个安装在柱状阳极上的衬垫绕着第一轴转动,工件绕着第二轴转动,当在工件和阳极之间形成电势差时,电解质溶液中的金属就被沉积在工件上。
该电镀腔也可以包括一个与阴极或工件隔开的阳极板。根据供给到阳极板和阴极上的能量,盛放在电镀腔中的电解质溶液被用来将导电材料沉积在工件表面上。
在抛光腔中,在另一个阳极或一个柱状辊子上也安装有一个用于抛光工件表面的衬垫。抛光既可以利用电解抛光完成,也可以利用化学机械抛光来完成。工件表面的抛光防止了导电材料在工件的一定区域内的沉积,从而提供一个基本上平坦的表面。
本发明还描述了一种新型的衬垫组件,该衬垫组件具有可以用于电镀和/或抛光工件表面的独特的阳极衬垫结构。
附图概述
本发明的这些和其他目的、优点将通过下面结合附图详细描述最佳实施例的方式变得更加清楚明了,其中:
图1显示了根据本发明的导体中要被填充的一种典型通路;
图2是本发明第一最佳实施例的透视图;
图3是本发明第一最佳实施例的横截面图;
图4是本发明第二最佳实施例的透视图;
图5是本发明第二最佳实施例的横截面图;
图6是根据本发明最佳实施例的第一新型阳极组件的透视图;
图7是根据本发明最佳实施例的第一新型阳极组件的横截面图;
图8是根据本发明最佳实施例的第二新型阳极组件的透视图;
图9是根据本发明最佳实施例的第二新型阳极组件的横截面图;
图10是根据本发明最佳实施例的“邻近电镀”装置和方法的横截面图;
图11是一个具有多层并在其上沉积有微粒的基片的横截面图;
图12A-12B是根据本发明最佳实施例有利地影响导电材料纹理的方法的横截面图。
最佳实施例的详细描述
现在参照附图1-12描述本发明的最佳实施例。如上所述,常规的加工方法需要在不同的时段使用不同的设备,以使导电物质位于孔和沟槽内或者位于半导体晶片的表面上其他希望的位置处,其中半导体晶片包括许多不同的半导体芯片。因此,制造一个高质量的半导体集成电路设备所需的装置费用是非常高的。
本发明包括不同的实施例,其可以使用同一装置将导电材料电镀/沉积到表面上并进入触点、通孔和沟槽及抛光该晶片表面。本发明可以使用任何导电材料,尤其适用于将铜作为导体,以及尤其适用于具有大的纵横比的亚微米特征的ULSI集成电路的制造。
另外,尽管在本发明最佳实施例的描述中使用的是半导体晶片,但是,本发明也可以使用其他的半导体工件,如平面平台或磁性薄膜头等。
图1显示了晶片2的一部分,在晶片2中形成有一个通路。正如半导体领域公知的,这些通路是与不同电路层电连接的导电材料。如图1中所示,该通路包括一个连接下部导电层4和上部导电层6的导体8,在导体8旁边设置有绝缘材料10。应该理解到,本发明可以用于多层集成电路芯片中的任何金属层。
图2和图3分别显示了本发明第一最佳实施例的透视图和横截面图。参见图2-3,利用来自于第一腔100的电解质溶液11,将最好是铜的导电材料施加到通路、沟槽和/或晶片的其他希望区域,而在第二腔200中,由于在晶片表面而不是在触点、通孔和沟槽处进行电解抛光或化学机械抛光,使得导电材料在不希望区域的积聚被消除或至少被最小化。第一腔100和第二腔200被一个中部隔离物60隔开。
第一腔100和第二腔200分别各一个阳极组件12、14,这两个阳极组件具有安装在柱状阳极20、22上的圆形或方形机械衬垫16、18,其中柱状电极20、22绕着第一轴24转动,具有晶片2的一个晶片头组件26绕着第二轴28转动。整个晶片头组件26还能沿着箭头30所示的方向侧向移动以便电镀和抛光晶片2的中部区域。柱状阳极20、22分别与轴32、34连接,从而可以绕着轴24旋转。如上所述,晶片2在机械衬垫16、18覆盖的区域内转动,这将在下面详细描述,该区域位于盛放有电解质溶液11的腔100,200内。尽管显示的是对一个晶片进行操作,但是可以理解到本发明也可以使用多个晶片头组件26。
如图3所示,晶片头组件26可以包括一个不导电的,最好是圆形的卡盘36,该卡盘36具有一个空腔,该空腔中部的深度为几个毫米,并且该空腔可以容纳有一个静止衬垫(未显示)。晶片2位于该空腔中,其后部利用一个常规形式的传送器或真空装置抵靠在静止衬垫上,以确保在使用时晶片相对于晶片头组件26静止。一个位于晶片头组件26的周缘的诸如O形环的不导电保持环40或其他橡胶类型的密封件和阴极触点电极38都压靠在晶片2的边缘上,并将晶片2保持在其位置处。晶片2的整个后侧都抵靠在位于保持环40下面的卡盘36上,从而不与任何包含电解质的溶液接触。本发明也可以使用其他常规的晶片头组件。
除了使用如上所述的阴极接触点38,也可以用环形导体给晶片施加电势。另外,本发明还可以使用给晶片施加电势的其他方法。例如,可以使用一个液体导体或一个涂覆有导电材料的可膨胀管。使用液体导体或导电管来提供必要的电势的一个例子在未审结的申请号为09/283,024,Atty.Dkt.#42496/0253036,名称为“形成与半导体基片电接触的方法和装置”、所有者为本发明的受让人的美国专利申请中已经公开、其内容作为参考文献在这里被结合地描述。
根据本发明,第一腔100可以用于电镀,第二腔200可以用于抛光。这两个腔100,200也可以互换,即第一腔100用于抛光,而第二腔200用于电镀。如上所述,第一腔100包括用于电镀的第一阳极组件12,第二腔200包括用于电解抛光的第二阳极组件14。在阳极20、阳极22和晶片上施加有电势。给两个柱状阳极提供电势的任何已知的方法都可以用于本发明。如现有技术中已知的,施加到两个柱状阳极20、22上的电势之间的差值决定了哪个阳极组件用于电镀,哪个阳极组件用于电解抛光。
电解质溶液11从两个腔100、200的底部开口50流出,直到该溶液与衬垫16、18接触。该电解质溶液还通过侧部开口52、通道54和底部开口50构成循环。电解质溶液11初始是利用一个贮存器(未显示)通过一个内部通道(未显示)引入第一和第二腔100、200的。
在第一腔100中,柱状阳极20和阴极晶片2之间的第一电势差使得电解质溶液11中的金属通过衬垫8电镀到晶片表面上。在第二腔200中,利用柱状阳极22和阴极晶片2之间的第二电势差进行晶片的抛光。
本发明的电镀过程可以用刷镀方法或“电化学机械沉积”方法来完成。关于“电化学机械沉积”方法的详细描述,已经在未审结的申请号为09/201,929、名称为“用于电化学机械沉积的方法和装置”、所有者为本发明的受让人的美国专利申请中公开,其内容作为参考文献在这里被结合地描述。
本发明的抛光可以利用下面将要详细描述的电解抛光或化学机械抛光来完成。可以理解到,辊子状的机械衬垫18抛光晶片的方式与辊子砂磨机从墙上去除涂料的方式类似。
在抛光腔200中,机械衬垫18具有在任何给定的时间内抛光晶片2的一部分的尺寸。还包括一个或多个驱动组件(未显示),这些驱动组件用于转动柱状阳极20、22,从而转动机械衬垫16、18以便它们与晶片上需要电镀和抛光的部分接触。机械衬垫16、18最好用不导电的多孔材料,诸如聚氨酯构成。而且,机械衬垫16、18最好为圆形,但是也可以是能有效地电镀和/或抛光晶片的其他任何形状。
图4和图5分别是本发明的第二最佳实施例的透视图和横截面图。该第二实施例也用第一腔300进行晶片2的电镀,第二腔400进行晶片2的抛光。第一腔300和第二腔400用一个中部隔离物/壁460所分隔。
参见图5,第一腔300包括一个位于该腔300底部的阳极板306。可以使用任何已知的方法将阳极板306固定到腔300的底部。电解质溶液11通过一个抽吸通路302、底部开口304或者通过阳极板306循环。
第二腔400包括一个安装到柱状辊子404上的机械衬垫402,该衬垫用于对晶片2进行化学机械抛光(CMP)。轴406用于使辊子绕着轴线408转动。CMP是一种结合化学去除半导体的绝缘层或金属层和机械摩擦基片表面的材料平面化过程。CMP可以提供晶片表面的整体平面化。例如,在晶片的制造过程中,CMP经常用于抛光组成多级金属互连装置的外形。
在根据本发明第二实施例的操作中,该装置利用一个能源为阴极触点38施加一个负电势,而为阳极板306施加一个正电势。当两个电极之间产生了电流时,电解质中的金属就沉积在晶片2的表面上。
在上述沉积过程之后,用机械衬垫组件412进行晶片2的机械化学抛光。抛光浆料通过浆液通道410供给到抛光衬垫402,来抛光晶片2。分隔第二腔400和第一腔300的中部壁420应当足够高以使浆料不会进入第一腔300。本发明也可以使用其他防止浆料进入电镀腔300的常用方法。由于机械衬垫402的抛光或研磨作用,机械衬垫组件412基本上防止了不希望的金属在晶片2的表面上的永久沉积。因此,金属即铜沉积在通路、沟槽或其他类似的希望处,并基本上防止了其沉积在晶片表面等不希望处。
晶片头组件26面朝机械衬垫组件412,并被一个控制力向下推动。与图2和图3中类似,晶片头组件26利用一个机动主轴(未显示)绕着轴线28转动。晶片头组件26还可以沿着箭头30所示的方向侧向移动,以便电镀和抛光晶片2的中部区域。
本发明还减少了对能够产生脉冲的电源的需要,这是因为衬垫移动产生的机械脉冲就可以得到足够的脉冲。该机械脉冲是由于当衬垫相对于晶片移动时,晶片与衬垫接触产生的。该机械脉冲的优点在于其改进了颗粒尺寸和铜薄膜的完整性,而不再需要具有脉冲能力的电源。
值得注意的是,本发明的第一和第二最佳实施例中的电镀方法和抛光方法可以互相交换。例如,第二最佳实施例中CMP方法可以与第一最佳实施例中的电解抛光方法互换。类似地,第一实施例中的电镀方法可以与第二实施例中的电镀方法互换。
尽管仅详细描述了本发明的两个实施例,但是本发明也可以利用使用多种电镀和抛光方法的多个容器来完成。例如,在本发明中可以使用三个腔,中间的腔用于抛光,左侧和右侧的腔用于电镀/沉积。
如图6-9所示,本发明还描述了一种间断地给半导体基片施加导电材料并当不再给基片施加导电材料时间断地抛光基片的方法和装置。当间断地施加导电材料时,本发明施加在工件和阴极间具有电势的电流,使得当施加该电流时导电材料可以施加到工件上。此外,反向的电流脉冲也可以施加在工件间。
图6和图7分别显示了根据本发明的第一阳极组件的透视图和横截面图。阳极组件500包括一个独特的既用于电镀又用于抛光工件802的阳极衬垫装置。多个衬垫条502固定、粘接或机加工到一个柱状阳极504上,使得这些衬垫502从阳极504的外表面突出。为柱状阳极504和阴极工件提供电源。柱状阳极504绕着第一轴510转动,而工件802绕着第二轴512转动时,当阳极504与工件(阴极)802相对并在两者间没有衬垫时,工件802被电镀,当衬垫502与工件802机械接触时,工件802被抛光。如果需要,工件802还可以通过工件头组件(未显示)在箭头520所示的侧向移动。由于衬垫502抵靠在工件表面上的刷擦作用导致的机械抛光作用以及来自于阳极、电解质和工件结构的金属电镀,产生了阳极组件502的这种独特的电镀和抛光过程。
图8和图9分别显示了根据本发明的第二阳极组件的透视图和横截面图。阳极组件600包括一个独特的既用于电镀又用于抛光工件802的阳极衬垫组件600。该阳极组件600形成为中部具有孔606的环形或圆形。多个衬垫条602固定到阳极604上,使得这些衬垫602从阳极604的表面突出。当为柱状阳极604和阴极工件802提供电能时,阳极604绕着第一轴610转动,而工件802绕着第二轴612转动,当阳极604与工件(阴极)802相对并在两者间没有衬垫时,工件802被电镀,当衬垫602与工件802机械接触时,工件802被抛光。如上所述,由于衬垫602抵靠在工件表面上的刷擦作用导致的机械抛光作用产生了阳极组件502的这种电镀和抛光过程。阳极组件600的直径或尺寸小于工件802的直径或尺寸。
当操作图6-9中的阳极组件时,电解质溶液或其他溶液可以从位于阳极504、604附近的容器(未显示)引到机械衬垫502、602上。在一个实施例中,阳极504、604具有一个内部槽道,该内部槽道包括位于阳极504、604中部的通道和制作在阳极504、604上的孔,它们一起形成了用于将溶液引导到阳极504和604之间的间隙的通道。电解质溶液也可以通过前面所述方法中的其他通道直接供给到阳极组件504、604。
此外,如图7所示,电解质溶液可以盛放在围绕着工件的不导电腔530中。在该实施例中,可以使用如上所述O形环或其他常用结构将溶液保持在腔530中。
根据本发明,在任何一个实施例中,由于利用机械作用防止了导体在晶片表面的不希望区域的积聚,从而可以减少对均化剂的需求,或者需要的百分比比通常使用的要少。
在另一实施例中,图6-9中所示的新型阳极组件可以用于在工件表面初始地电镀/沉积导电材料而不抛光该表面。这是通过当衬垫或其他固定部件仅在工件表面附近来改善电解物质的转移来完成的。
例如,图10是根据本发明的“邻近电镀”装置和方法的横截面图。图10显示了一个在其中盛放有电解质溶液11的不导电腔700。该腔700包括阳极组件500,该阳极组件500具有安装或机加工到柱状阳极504上的多个衬垫条502或其他固定部件。在操作过程中,当衬垫502绕着轴线510转动并与工件802隔开(衬垫条502不直接与工件802接触)时,利用电解质溶液11来对工件802进行电镀。阳极510和衬垫条502最好以使电解质溶液11连续地飞溅到工件802上从而在阳极组件500、电解质和工件(阴极)802间形成一个封闭的电循环的速率转动。当间隙800大约为0-5mm并盛有电解质的凸液面溶液时,可以得到非常高的物质传送,从而在工件表面上沉积一高质量的金属薄膜。根据安装到柱状阳极504上的衬垫或其他固定部件的形式、形状和结构,间隙800也可以大于5mm。
在上述实施例中,衬垫或部件的硬度与衬垫和工件间的相对运行速度相适应。该衬垫最好是有孔及坚硬的以具有理想的性能。
本发明可以减少对能够产生脉冲的电源的需求,这是因为衬垫相对于工件表面的运动产生的机械脉冲就可以得到足够的脉冲。该机械脉冲是由于晶片设置在衬垫附近并当其相对于工件运动产生的。该机械脉冲的优点在于其改善了颗粒的尺寸,触点孔、通路和沟槽的填充效率以及铜薄膜的完成性,而不再需要具有脉冲能力的能源。
现在参照附图11和12A-12B描述本发明的改进效果。已经发现,本发明可以有利地影响通过电镀过程施加的导电材料的纹理。图11显示了一个普通的基片900,其上沉积有一封闭层902和一外延的晶种层904。如图所示,晶种层904由以诸如<111>晶体取向等预定方式取向的各颗粒906构成。在普通的电镀过程之后,组成导电的电镀层908的原子被施加,经过一段时间,集合成束形成颗粒910,该颗粒910保持下侧沉积的晶种层904的原晶体取向。因此,如果晶种层904具有<111>晶体取向,导电的电镀层908也将具有<111>晶体取向。
相反地,本发明发现通过如上所述的电镀和抛光,抛光改变了施加的导电电镀层的晶体取向,使其变得更加随意。如图12A所示,根据电镀层958中的第一层958A原子的需求,用诸如如上所述的衬垫402的抛光器抛光该第一层原子,使在该第一层原子中产生不饱和键。这样,如图12B所示,施加的下一层原子不会以与已经形成的第一层原子同样的方式形成。抛光作用使得原子以这种方式形成:经过一段时间当原子集合成束时会自然形成趋向于不同取向的颗粒。特别地,该纹理本身具有更大的随意性。如图12B中的颗粒960所示。结果是电镀层958不具有与晶种层相同的晶体取向。
当重复上述过程,连续进行电镀和抛光施加的颗粒时,使得电镀层968在颗粒层具有更大程度的随意性,因此,电镀层具有更加均匀的特性。
已经知道,施加到晶种层904上的第一层原子可以被抛光,从而有效地改变得到的颗粒排列。也可以在整个电镀过程中连续地抛光原子,从而连续地增加该作用。
尽管仅详细描述了上述实施例,但是本领域的技术人员可以理解到,在不脱离该发明启示的范围内,可以进行多种变形。