岩石和集料及其制造和使用方法.pdf

上传人:1*** 文档编号:933121 上传时间:2018-03-19 格式:PDF 页数:86 大小:1.56MB
返回 下载 相关 举报
摘要
申请专利号:

CN200980101586.8

申请日:

2009.05.29

公开号:

CN101952012A

公开日:

2011.01.19

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):B01D 53/14申请公布日:20110119|||实质审查的生效IPC(主分类):B01D 53/14申请日:20090529|||公开

IPC分类号:

B01D53/14

主分类号:

B01D53/14

申请人:

卡勒拉公司

发明人:

A·杨斯; B·康斯坦茨; J·奥奈尔; K·法萨; J·帕特森; J·斯塔纳罗; R·撒切尔; C·凯米尔

地址:

美国加利福尼亚州

优先权:

2008.05.29 US 61/057173; 2008.05.29 US 61/056972; 2008.06.17 US 61/073326; 2008.06.17 US 61/073319; 2008.06.27 US 12/163205; 2008.07.16 US 61/081299; 2008.07.22 US 61/082766; 2008.08.12 US 61/088340; 2008.08.13 US 61/088347; 2008.09.11 US 61/096035; 2008.09.30 US 6

专利代理机构:

中国专利代理(香港)有限公司 72001

代理人:

段晓玲;李连涛

PDF下载: PDF下载
内容摘要

提供包含合成岩石,例如集料的组合物及其制造和使用方法。该岩石,例如集料含有CO2和/或工业废物流的其它组分。该CO2可以是二价阳离子碳酸盐,例如碳酸镁和碳酸钙形式。本发明的方法包括使含CO2的气流与水接触以溶解CO2和将该水置于足以制造含碳酸盐的沉淀产物,例如二价阳离子碳酸盐的沉淀条件下。

权利要求书

1: 包含 CO2- 封存组分的集料。
2: 权利要求 1 的集料, 其中该 CO2- 封存组分包含一种或多种碳酸盐化合物。
3: 权利要求 2 的集料, 其中所述一种或多种碳酸盐化合物构成该集料的至少 50% w/w。
4: 权利要求 2 的集料, 其中所述一种或多种碳酸盐化合物构成该集料的至少 90% w/w。
5: 权利要求 2 的集料, 其中所述一种或多种碳酸盐化合物构成该集料的至少 98% w/w。
6: 权利要求 2 的集料, 其中该碳酸盐化合物包含碳酸镁、 碳酸钙、 碳酸镁钙或其组合。
7: 权利要求 6 的集料, 其中该集料中钙与镁的摩尔比为 1/1Ca/Mg 至 1/10Ca/Mg。
8: 权利要求 6 的集料, 其中该集料中钙与镁的摩尔比为 150/1Ca/Mg 至 10/1Ca/Mg。
9: 权利要求 6 的集料, 其中该集料中钙与镁的摩尔比为 2/1Ca/Mg 至 1/2Ca/Mg。
10: 权利要求 1 的集料, 具有比 -10‰更负的碳同位素分馏 (δ13C) 值。
11: 权利要求 1 的集料, 具有比 -20‰更负的碳同位素分馏 (δ13C) 值。
12: 权利要求 1 的集料, 具有 75lb/ft3 至 125lb/lb/ft3 的堆积密度。
13: 权利要求 1 的集料, 具有 90lb/ft3 至 115lb/lb/ft3 的堆积密度。
14: 权利要求 2 的集料, 还包含硫酸盐和 / 或亚硫酸盐。
15: 权利要求 14 的集料, 其中合并的硫酸盐和 / 或亚硫酸盐构成该集料的至少 0.1% w/w。
16: 包含权利要求 1 的集料的结构。
17: 权利要求 16 的结构, 其是建筑物、 道路或水坝。
18: 权利要求 17 的结构, 其是道路。
19: 权利要求 18 的道路, 其中该道路封存至少 1 吨 CO2/ 每车道英里的道路。
20: 权利要求 18 的道路, 其中该道路封存至少 100 吨 CO2/ 每车道英里的道路。
21: 权利要求 18 的道路, 其中该道路封存至少 1000 吨 CO2/ 每车道英里的道路。
22: 包含碳的集料, 其中该碳具有比 -10‰更负的碳同位素分馏 (δ13C) 值。
23: 权利要求 22 的集料, 其中该碳具有比 -20‰更负的 δ13C 值。
24: 权利要求 22 的集料, 其中该碳具有比 -30‰更负的 δ13C 值。
25: 权利要求 22 的集料, 其中该集料包含碳酸盐。
26: 权利要求 25 的集料, 其中该集料的碳酸盐含量为至少 10% w/w。
27: 权利要求 25 的集料, 其中该集料的碳酸盐含量为至少 50% w/w。
28: 权利要求 26 的集料, 还包含硫酸盐和 / 或亚硫酸盐。
29: 权利要求 28 的集料, 其中合并的硫酸盐和亚硫酸盐构成该集料的至少 0.1% w/w。
30: 权利要求 25 的集料, 其中该碳酸盐包含碳酸钙、 碳酸镁、 碳酸钙镁或其组合。
31: 权利要求 30 的集料, 其中钙∶镁摩尔比为 200 ∶ 1 至 1 ∶ 2。
32: 权利要求 22 的集料, 其具有 75lb/ft3 至 125lb/lb/ft3 的堆积密度。
33: 权利要求 22 的集料, 其具有 90lb/ft3 至 115lb/lb/ft3 的堆积密度。
34: 包含权利要求 22 的集料的结构。
35: 权利要求 34 的结构, 其是建筑物、 道路或水坝。
36: 权利要求 35 的结构, 其是道路。
37: 包含 90-99.9%碳酸盐、 0.1 至 10%硫酸盐和 / 或亚硫酸盐的集料。
38: 权利要求 37 的集料, 进一步含有 0.00000001 至 0.000001%汞或含汞化合物。 2
39: 权利要求 37 的集料, 具有比 -10‰更负的碳同位素分馏 (δ13C) 值。
40: 权利要求 37 的集料, 具有 75lb/ft3 至 125lb/lb/ft3 的堆积密度。
41: 权利要求 40 的集料, 具有 90lb/ft3 至 115lb/lb/ft3 的堆积密度。
42: 包含权利要求 37 的集料的结构。
43: 权利要求 42 的结构, 其是建筑物、 道路或水坝。
44: 权利要求 43 的结构, 其是道路。
45: 封存 CO2 的方法, 包括 (i) 由含二价阳离子的水沉淀封存 CO2 的碳酸盐化合物组合物以形成沉淀物 ; 和 (ii) 制造包含该封存 CO2 的碳酸盐化合物组合物的集料 ;
46: 权利要求 45 的方法, 其中该集料的制造包括对权利要求 45 的沉淀物施以升高的温 度、 升高的压力或其组合。
47: 权利要求 46 的方法, 其中所述升高的温度、 升高的压力或其组合由挤出机产生。
48: 权利要求 45 的方法, 进一步包括使含二价阳离子的水与来自工业废气流的 CO2 接 触。
49: 权利要求 45 的方法, 进一步包括使含二价阳离子的水与来自化石燃料燃烧的 CO2 接触。
50: 权利要求 48 的方法, 其中该工业废气流是发电厂或水泥厂的烟道气。
51: 权利要求 50 的方法, 其中该烟道气是来自发电厂的烟道气。
52: 权利要求 51 的方法, 其中该发电厂是燃煤发电厂。
53: 权利要求 45 的方法, 其中该含二价阳离子的水的二价阳离子至少部分来自咸水。
54: 权利要求 53 的方法, 其中该咸水包含海水或盐水。
55: 权利要求 53 的方法, 其中该咸水包含海水。
56: 权利要求 45 的方法, 其中该集料的制造包括制造预定尺寸和形状的集料。
57: 制造集料的方法, 包括由含二价阳离子的水沉淀碳酸盐化合物和加工该沉淀物以 产生集料。
58: 权利要求 57 的方法, 进一步包括使含二价阳离子的水与来自工业废气流的 CO2 接 触。
59: 权利要求 58 的方法, 其中该工业废气流是发电厂或水泥厂的烟道气。
60: 权利要求 59 的方法, 其中该烟道气是来自发电厂的烟道气。
61: 权利要求 60 的方法, 其中该发电厂是燃煤发电厂。
62: 权利要求 57 的方法, 进一步包括使含二价阳离子的水与来自化石燃料燃烧的 CO2 接触。
63: 权利要求 62 的方法, 其中该化石燃料包含天然气或煤。
64: 权利要求 63 的方法, 其中该化石燃料包含煤。
65: 权利要求 57 的方法, 其中该沉淀物的加工包括用升高的温度、 升高的压力或其组 合处理该沉淀物。
66: 权利要求 57 的方法, 其中该沉淀物的加工包括将该沉淀物与粘结材料和水混合, 使该混合物凝固以提供固化材料。
67: 权利要求 66 的方法, 进一步包含打碎该固化材料。 3
68: 制造集料的系统, 包括 (i) 含二价阳离子的水的输入端 ; (ii) 对该水施以碳酸盐化合物沉淀条件和制造沉淀碳酸盐化合物组合物的碳酸盐化 合物沉淀站 ; 和 (iii) 由该沉淀碳酸盐化合物组合物制造集料的集料制造器。

说明书


岩石和集料及其制造和使用方法

    对相关申请的交叉引用
     依据 35U.S.C.§119(e), 本申请要求下列申请的提交日优先权 : 2008 年 5 月 29 日提交的美国临时专利申请序号 No.61/056,972 ; 2008 年 9 月 30 日提交的美国临时专利 申请序号 No.61/101,626 ; 2008 年 9 月 30 日提交的美国临时专利申请美国临时专利申请 61/101,629 ; 2008 年 9 月 30 日提交的美国临时专利申请美国临时专利申请 61/101,631 ; 2008 年 6 月 17 日提交的美国临时专利申请序号 No.61/073,319 ; 2008 年 7 月 16 日提交的 美国临时专利申请序号 No.61/081,299 ; 2008 年 11 月 24 日提交的美国临时专利申请序号 No.61/117,541 ; 2008 年 11 月 24 日提交的美国临时专利申请序号 No.61/117,543 ; 和 2008 年 10 月 22 日提交的美国临时专利申请 No.61/107,645 ; 和 2009 年 2 月 3 日提交的美国临 时专利申请 No.61/149,633, 和 2009 年 3 月 10 日提交的美国临时专利申请 No.61/158,992, 和 2009 年 5 月 26 日提交的美国临时专利申请 61/181,250, 这些申请的公开内容经此引用 并入本文。本申请也是 2008 年 12 月 24 日提交的序号 No.12/344,019 的部分继续申请案, 其全文经此引用并入本文, 我们依据 35U.S.C.§120 要求该申请的优先权。
     背景
     二氧化碳 (CO2) 排放已被确认为是全球变暖和海洋酸化现象的主要成因。CO2 是 燃烧副产物, 其造成操作、 经济和环境问题。CO2 和其它温室气体的提高的大气浓度预计促 进大气内的更高储热, 造成提高的地表温度和迅速气候变化。气候变化的影响可能是经济 上昂贵和环境上危险的。降低气候变化的潜在危险要求封存大气 CO2。
     概述
     一方面, 本发明提供组合物。 在一些实施方案中, 本发明提供含有 CO2- 封存组分的 集料。该 CO2- 封存组分可含有一种或多种碳酸盐化合物 ; 在一些实施方案中, 碳酸盐化合 物构成该集料的至少 50% w/w, 或该集料的至少 90% w/w, 或该集料的至少 98% w/w ; 任选 地, 该集料还可能含有硫酸盐和 / 或亚硫酸盐, 例如其中该硫酸盐 / 亚硫酸盐总共构成该集 料的至少 0.1% w/w。在一些实施方案中, 该碳酸盐化合物包含碳酸镁、 碳酸钙、 碳酸镁钙或 其组合 ; 在这些实施方案的一些中, 该集料中钙与镁的摩尔比为 1/1Ca/Mg 至 1/10Ca/Mg, 或 150/1Ca/Mg 至 10/1Ca/Mg, 或 2/1Ca/Mg 至 1/2Ca/Mg。在一些实施方案中, 本发明提供含有 CO2- 封存组分的集料, 其中该集料具有比 -10‰更负 ( 更小 ) 或比 -20‰更负的碳同位素分 13 馏 (δ C) 值。在一些实施方案中, 本发明提供含有 CO2- 封存组分的集料, 其中该集料具有 3 3 3 3 75lb/ft 至 125lb/lb/ft , 或 90lb/ft 至 115lb/lb/ft 的堆积密度。在一些实施方案中, 本发明提供含有含 CO2- 封存组分的集料例如本段中所述的集料之一的结构。本发明的一 些示例性结构包括建筑物、 道路或水坝。在一些实施方案中, 该结构是道路, 例如每车道英 里的道路封存至少 1 吨 CO2 的道路、 或每车道英里的道路封存至少 100 吨 CO2 的道路, 或每 车道英里的道路封存至少 1000 吨 CO2 的道路。
     在一些实施方案中, 本发明提供含碳的集料, 其中该碳具有比 -10‰更负 ( 更小 ), 13 或比 -20‰更负, 或比 -30‰更负的碳同位素分馏 (δ C) 值。在这些实施方案的一些中, 该 集料含有碳酸盐, 例如, 至少 10% w/w 碳酸盐, 或至少 50% w/w 碳酸盐 ; 该集料可任选进一
     步含有硫酸盐和 / 或亚硫酸盐, 如钙或镁的硫酸盐或亚硫酸盐, 在一些情况中, 合并的硫酸 盐和亚硫酸盐构成该集料的至少 0.1% w/w。在含有碳酸盐的一些实施方案中, 该碳酸盐包 括碳酸钙、 碳酸镁、 碳酸钙镁或其组合 ; 例如, 钙和镁可以以 200 ∶ 1 至 1 ∶ 2 的钙∶镁摩尔 比存在。在一些实施方案中, 本发明提供含碳的集料, 其中该碳具有比 -10‰更负 ( 更小 ), 或比 -20‰更负, 或比 -30‰更负的碳同位素分馏 (δ13C) 值, 其中该集料具有 75lb/ft3 至 125lb/lb/ft3, 例如 90lb/ft3 至 115lb/lb/ft3 的堆积密度。 在一些实施方案中, 本发明提供 含有含碳的集料的结构, 其中该碳具有比 -10‰更负 ( 更小 ), 或比 -20‰更负, 或比 -30‰ 13 更负的碳同位素分馏 (δ C) 值 ; 在一些实施方案中, 该结构是建筑物、 道路或水坝。 在一些 实施方案中, 该结构是道路。
     在一些实施方案中, 本发明提供含有 90-99.9%碳酸盐、 0.1 至 10%硫酸盐和 / 或 亚硫酸盐的集料, 在一些实施方案中, 该集料进一步含有 0.00000001 至 0.000001%汞或含 汞化合物。在一些实施方案中, 该集料具有比 -10‰更负的碳同位素分馏 (δ13C) 值。在一 些实施方案中, 该集料具有 75lb/ft3 至 125lb/lb/ft3, 例如 90lb/ft3 至 115lb/lb/ft3 的堆 积密度。 在一些实施方案中, 本发明提供含有含 90-99.9%碳酸盐、 0.1 至 10%硫酸盐和 / 或 亚硫酸盐的集料的结构, 在一些实施方案中, 该集料进一步含有 0.00000001 至 0.000001% 汞或含汞化合物 ; 示例性结构包括建筑物、 道路或水坝。 在一些实施方案中, 该结构是道路。 另一方面, 本发明提供方法。 在一些实施方案中, 本发明提供封存 CO2 的方法, 包括 (i) 由含二价阳离子的水沉淀封存 CO2 的碳酸盐化合物组合物以形成沉淀物 ; 和 (ii) 制造 含有该封存 CO2 的碳酸盐化合物组合物的集料 ; 在一些实施方案中, 该方法进一步包括使 含二价阳离子的水与来自工业废气流, 如发电厂或水泥厂的烟道气, 例如燃煤发电厂的烟 道气的 CO2 接触 ; 在一些实施方案中, 该方法包括使含二价阳离子的水与来自化石燃料燃烧 的 CO2 接触。在一些实施方案中, 该集料的制造包括对该沉淀物施以升高的温度、 升高的压 力或其组合, 如由挤出机产生的升高的温度、 升高的压力或其组合。在一些实施方案中, 该 含二价阳离子的水的二价阳离子至少部分来自咸水, 如海水或盐水, 例如海水。 在一些实施 方案中, 该集料的制造包括制造预定尺寸和形状的集料。
     在一些实施方案中, 本发明提供通过包括由含二价阳离子的水沉淀碳酸盐化合物 和加工该沉淀物以产生集料的方法制造集料的方法 ; 在一些实施方案中, 该方法进一步包 括使含二价阳离子的水与来自工业废气流, 如发电厂或水泥厂的烟道气, 例如燃煤发电厂 的烟道气的 CO2 接触。在一些实施方案中, 该方法包括使含二价阳离子的水与来自化石燃 料, 如天然气或煤, 例如煤的燃烧的 CO2 接触。在一些实施方案中, 该沉淀物的加工包括用 升高的温度、 升高的压力或其组合处理该沉淀物。 在一些实施方案中, 该沉淀物的加工包括 将该沉淀物与粘结材料和水混合, 使该混合物凝固 (set) 以提供固化材料并可进一步包括 打碎该固化材料。
     在一些实施方案中, 本发明提供制造集料的系统, 其包括 (i) 含二价阳离子的水 的输入端 (input) ; (ii) 对该水施以碳酸盐化合物沉淀条件和制造沉淀碳酸盐化合物组合 物的碳酸盐化合物沉淀站 ; 和 (iii) 由该沉淀碳酸盐化合物组合物制造集料的集料制造 器。
     附图简述
     图 1 提供根据本发明的一个实施方案的沉淀法的流程图。
     图 2 提供根据本发明的一个实施方案的系统的示意图。
     图 3 显示根据本发明的方面的示例性集料结构和集料混合物。3A : 圆柱体 ; 3B : 三 棱柱 ; 3C : 球体和桥状物的混合物 ; 3D : 间隔分级 (gap-graded) 的球体 ; 3E : 棱柱的混合物 ; 3F-3H : 具有管状空隙的中空集料 ; 3I-3L : 具有集料的不同组合的集料混合物。
     图 4 提供实施例 1 中制成的沉淀材料的 X- 射线衍射 (XRD) 光谱。
     图 5 提供实施例 1 中制成的湿沉淀材料的热解重量分析 (TGA)。
     图 6 提供实施例 1 中制成的干沉淀材料的 TGA。
     图 7 提供实施例 1 中制成的沉淀材料的傅里叶变换 - 红外 (FT-IR) 光谱。
     图 8 提供实施例 1 中制成的沉淀材料的扫描电子显微 (SEM) 图像。
     图 9 提供实施例 2 中制成的集料的 XRD 光谱。
     图 10 提供实施例 2 中制成的集料的 FT-IR 光谱。
     图 11 提供实施例 2 中制成的集料的 TGA。
     图 12 提供实施例 2 中制成的集料的 SEM 图像。
     图 13 提供实施例 3 中的集料和相关材料的 XRD 光谱。
     图 14 提供实施例 3 中制成的集料的 TGA。
     图 15 提供实施例 3 中的集料和相关材料的 SEM 图像。 图 16 提供实施例 4 中的集料和相关材料的 XRD 光谱。 图 17 提供实施例 4 中的集料和相关材料的 TGA。 图 18 提供实施例 4 的集料的 SEM 图像。 图 19 提供实施例 6 中制成的沉淀材料的 XRD 光谱。 图 20 提供实施例 6 中制成的沉淀材料的 TGA。 图 21 提供实施例 6 中制成的沉淀材料的 FT-IR 光谱。 图 22 提供实施例 6 中制成的沉淀材料的 SEM 图像。 图 23 提供实施例 6 中的集料和相关材料的 XRD 光谱。 图 24 提供实施例 6 中的集料和相关材料的 FT-IR 光谱。 图 25 提供实施例 6 中的集料和相关材料的 TGA。 图 26 提供实施例 6 的集料的 SEM 图像。 图 27 显示制备样品和测量样品中的碳同位素值的步骤的图示。 详述 Ⅰ . 引言 Ⅱ . 组合物 A. 合成岩石和集料 1. 集料和岩石组合物 2. 制造本发明的组合物 B. 可凝固组合物 C. 结构 1. 道路 Ⅲ . 方法 A. 制造集料的方法B. 其它方法
     Ⅳ . 系统
     Ⅴ . 用途
     Ⅰ . 引言
     本发明提供包含合成岩石、 集料和其它材料的组合物, 以及结构, 和存在于人为环 境中的其它材料, 以及制造和使用合成岩石、 集料、 结构和其它人造材料的方法 ; 本发明还 提供营业系统和方法。
     在更详细描述本发明之前, 要理解的是, 本发明不限于所述具体实施方案, 因此当 然可变。 还要理解的是, 本文所用的术语仅用于描述具体实施方案并且不是限制性的, 因为 本发明的范围仅受所附权利要求书的限制。
     在提供数值范围时, 要理解的是, 在该范围的上限和下限之间的各居间值 ( 除非 文中明确地另行指明, 以下限的单位的 1/10 为间隔 ) 以及在该指定范围内的任何其它指定 值或居间值之间包含在本发明内。除在该指定范围内明确排除的任何界限值外, 这些较小 范围的上限和下限可独立地包括在这些较小范围内并且也包含在本发明内。如果该指定 范围包括界限值之一或两者, 排除这些包括的界限值的任一或两者的范围也包括在本发明 中。 对于本文中的某些范围, 数值前用术语 “大约” 修饰。术语 “大约” 在本文中用于 为其后的确切数值以及与该术语后的数值接近或近似的数值提供字面支持。 在确定一数值 是否接近或近似明确列举的数值时, 接近或近似的未列举的数值可以是在其陈述背景中与 明确列举的数值基本等效的数值。
     除非另行指明, 本文所用的所有技术和科技术语具有与本发明所属领域的普通技 术人员的通常理解相同的含义。除非另行指明或从文中显而易见, 本文给出的百分比是 w/ w。尽管在本发明的实践或测试中也可以使用与本文描述的那些类似或等效的任何方法和 材料, 但现在描述代表性的示例方法和材料。
     本说明书中引用的所有公开文献和专利都经此引用并入本文, 就像各个公开文献 或专利明确并逐一被指明经此引用并入本文, 和为了公开和描述与引用的公开文献相关的 方法和 / 或材料而经此引用并入本文。任何公开文献的引用是针对其在提交日前的公开内 容, 并且不应该被视为承认本发明无权利用优先发明先于该公开文献。 此外, 所提供的公开 日可能不同于实际公开日, 这可能需要逐一确认。
     要指出的是, 除非文中明确地另行指明, 本文和所附权利要求中所用的单数形式 “a” 、 “an” 和 “the” 包括复数对象。要进一步指出的是, 权利要求书可以起草成排除任何任 选要素。因此, 这种声明旨在充当与权利要求要素的列举联用的如 “只” 、 “仅” 之类的排他 性术语的使用或 “否定性” 限制的使用的先行基础。
     本领域技术人员在阅读本公开后会看出, 本文描述和例举的各独立实施方案具有 分立的组分和特征, 它们可以在不背离本发明的范围或精神的情况下容易地与任何其它几 个实施方案的特征分开或联合。 任何列举的方法可以以所列举的事件次序进行或以逻辑上 可行的任何其它次序进行。
     Ⅱ . 组合物
     A. 合成岩石和集料
     在一些实施方案中, 本发明提供无化学粘合剂条件下制成的合成岩石。在一些实 施方案中, 本发明提供集料, 例如含有从气态工业废物流中封存的 CO2 的集料和 / 或具有特 定组成的集料, 如含有碳酸盐和 / 或碳酸氢盐矿物的集料、 具有特定同位素组成 ( 通常表明 化石燃料来源 ) 的集料、 具有特定化学组成的集料、 含有新型矿物的集料、 具有特定断裂特 性的集料、 轻型集料和定制的集料组合 (customizedaggregate sets)。本发明进一步提供 含有本发明的合成岩石或集料的可凝固组合物和结构, 如道路、 建筑物、 水坝和其它人造结 构。
     术语集料在本文中以其业内公认的方式使用以包括可用在混凝土、 灰浆和其它材 料, 例如路基、 沥青和其它结构中的微粒组合物并适用在这类结构中。 本发明的集料是在一 些实施方案中可分级为细或粗的微粒组合物。 根据本发明的实施方案的细集料是几乎完全 通过 4 号筛 (ASTM C 125 和 ASTM C 33) 的微粒组合物。根据本发明的实施方案的细集料 组合物具有 0.001 英寸 (in) 至 0.25in, 如 0.05in 至 0.125in, 和包括 0.01in 至 0.08in 的 平均粒度。本发明的粗集料是大部分留在 4 号筛上 (ASTM C 125 和 ASTM C 33) 的组合物。 根据本发明的实施方案的粗集料组合物是具有 0.125in 至 6in, 如 0.187in 至 3.0in, 和包 括 0.25in 至 1.0in 的平均粒度的组合物。本文所用的 “集料” 在一些实施方案中还可以包 括更大尺寸, 如 3in 至 12in 或甚至 3in 至 24in, 或更大, 如 12in 至 48in, 或大于 48in, 例如 乱石基 (riprap) 等中所用的尺寸。在一些实施方案中, 如制造海洋防波浪结构, 尺寸甚至 可以更大, 如超过 48in, 例如超过 60in, 或超过 72in。
     1. 集料和岩石组合物
     可以通过本文所述的合成方法制造本发明的组合物, 该方法能够很好地控制该组 合物的性质。如本文中更充分描述的那样, 该组合物的重要性质包括硬度、 抗磨性、 密度、 孔隙率、 化学组成、 矿物组成、 同位素组成、 粒度、 形状、 耐酸性、 耐碱性、 可浸出氯化物含量、 CO2 的留存、 反应性 ( 或其缺乏 ) 中的一种或多种。在一些实施方案中, 可以为本发明的组 合物, 例如集料, 专门设计这些性质中的一种或多种, 如两种或更多种, 三种或更多种, 或甚 至四种或更多种, 或五种或更多种。
     本发明的集料具有可变密度, 只要该集料提供其用途所需的性质, 例如使用其的 建筑材料所需的性质。在某些情况中, 集料粒子的密度为 1.1 至 5 克 / 立方厘米, 如 1.3 克 / 立方厘米至 3.15 克 / 立方厘米, 包括 1.8 克 / 立方厘米至 2.7 克 / 立方厘米。本发明的 实施方案中的其它粒子密度, 例如轻型集料的粒子密度, 可以为 1.1 至 2.2 克 / 立方厘米, 例如 1.2 至 2.0g/cc 或 1.4 至 1.8g/cc。在一些实施方案中, 本发明提供堆积密度 ( 单位 3 3 3 3 重 量 ) 为 50lb/ft 至 200lb/ft , 或 75lb/ft 至 175lb/ft , 或 50lb/ft3 至 100lb/ft3, 或 3 3 3 3 3 3 75lb/ft 至 125lb/ft , 或 90lb/ft 至 115lb/ft , 或 100lb/ft 至 200lb/ft , 或 125lb/ft3 至 175lb/ft3, 或 140lb/ft3 至 160lb/ft3, 或 50lb/ft3 至 200lb/ft3 的集料。本发明的一些 实施方案提供轻型集料, 例如堆积密度 ( 单位重量 ) 为 75lb/ft3 至 125lb/ft3 的集料。本 发明的一些实施方案提供轻型集料, 例如堆积密度 ( 单位重量 ) 为 90lb/ft3 至 115lb/ft3 的集料。
     构成本发明的集料组合物的集料粒子的硬度也可变, 在某些情况中, 以莫氏硬度 标表示的硬度为 1.0 至 9, 如 1 至 7, 包括 1 至 6 或 1 至 5。在一些实施方案中, 本发明的集 料的莫氏硬度为 2-5, 或 2-4。在一些实施方案中, 该莫氏硬度为 2-6。也可以使用其它硬度标表征集料, 如 Rockwell、 Vickers 或 Brinell 硬度标, 并可以使用与莫氏硬度标对等的值 表征本发明的集料 ; 例如 250 的 Vickers 硬度级相当于 3 的莫氏硬度级 ; 硬度标之间的转换 是本领域已知的。
     集料的抗磨性也可能重要, 例如用于道路表面, 其中具有高抗磨性的集料可用于 防止表面磨光。 抗磨性与硬度有关联, 但不相同。 如通过业内公认的方法, 如 ASTM C131-03 测量, 本发明的集料包括抗磨性与天然石灰石类似的集料, 或抗磨性优于天然石灰石的集 料, 以及抗磨性低于天然石灰石的集料。在一些实施方案中, 在通过 ASTMC131-03 测量时, 本发明的集料具有低于 50%, 或低于 40%, 或低于 35%, 或低于 30%, 或低于 25%, 或低于 20%, 或低于 15%, 或低于 10%的抗磨性。
     本发明的集料也可以具有在特定范围内的孔隙率。本领域技术人员会认识到, 在一些情况中, 需要非常多孔的集料, 在另一些情况中, 需要具有中等孔隙率的集料, 而在 另一些情况下, 需要具有低孔隙率或无孔隙率的集料。通过在烘箱干燥接着完全浸渍 60 分钟后的水吸收测得的以%干重量表示的本发明的一些实施方案的集料的孔隙率可以为 1-40%, 如 2-20%, 或 2-15%, 包括 2-10%或甚至 3-9%。
     本发明的集料的化学、 矿物和 / 或同位素组成随制造方法、 原材料等而变。在一些 实施方案中, 一些或所有的碳酸盐化合物是如下文更详细描述的那样从水如盐水中沉淀的 亚稳碳酸盐化合物 ; 在一些实施方案中, 进一步加工这些亚稳化合物以提供本发明的集料 中的稳定化合物。 该碳酸盐化合物在本发明的实施方案中包括沉淀的结晶和 / 或非晶碳酸盐化 合物, 和在一些实施方案中碳酸氢盐化合物。可用的具体碳酸盐矿物包括, 但不限于 : 碳酸钙矿物、 碳酸镁矿物和碳酸钙镁矿物。可用的碳酸钙矿物包括, 但不限于 : 方解石 (CaCO3)、 文石 (CaCO3)、 球霰石 (vaterite)(CaCO3)、 六水方解石 (ikaite)(CaCO3·6H2O) 和 非晶碳酸钙 (CaCO3·nH2O)。可用的碳酸镁矿物包括, 但不限于 : 球碳镁石 (dypingite) (Mg5(CO3)4(OH)2·5(H2O) ; 术语球碳镁石在本文中用于包括该公式的球碳镁石矿物 )、 菱 镁 矿 (MgCO3)、 二 菱 镁 矿 (barringtonite)(MgCO3·2H2O)、 三 水 菱 镁 矿 (MgCO3·3H2O)、 五 水菱镁矿 (lanfordite)(MgCO3·5H2O) 和非晶碳酸镁钙 (MgCO3·nH2O)。可用的碳酸钙镁 矿物包括但不限于白云石 (CaMgCO3)、 高镁白云石 (huntitte)(CaMg(CO3)4) 和水碳钙镁石 (sergeevite)(Ca2Mg11(CO3)13·H2O)。在某些实施方案中, 也可以与上列矿物一起形成非碳 酸盐化合物, 如水镁石 Mg(OH)2。如上所述, 该碳酸盐化合物的化合物可以是在咸水中比在 淡水中更稳定的亚稳碳酸盐化合物 ( 并可以包括一种或多种亚稳氢氧化物化合物 ), 以致 在与淡水接触时, 它们溶解并再沉淀成其它淡水稳定的化合物, 例如矿物, 如低 Mg 方解石。
     在一些实施方案中, 本发明的集料完全或部分由本文所述的亚稳化合物形成, 该 亚稳化合物暴露在淡水中并硬化成稳定化合物, 如果必要, 其随后进一步加工以使粒子适 当地形成所需类型的集料。在一些实施方案中, 本发明的集料由暴露在将它们转化成稳定 化合物的温度和 / 或压力条件下的亚稳化合物形成。
     在一些实施方案中, 二氧化硅矿物可能与碳酸盐化合物共存, 从而形成碳酸盐硅 酸盐化合物。这些化合物在性质上可以是非晶或结晶的。在某些实施方案中, 该二氧化硅 可能是燧石中常见的蛋白石 -A( 非晶二氧化硅 ) 形式。可能在上列碳酸盐矿物的结晶区 内形成碳酸硅酸钙镁非晶化合物。也可能形成非碳酸盐的硅酸盐矿物。海泡石是粘土矿
     物——复合硅酸镁, 其典型化学式是 Mg4SiO15(OH)2·6H2O。其可以以纤维、 细粒和固体形式 存在。也可能形成硅酸盐碳酸盐矿物。在这些条件下可形成碳硅碱钙石 (carletonite), KNa4Ca4(CO3)4Si8O18(F, OH)-H2O——水合碳酸硅酸钾钠钙。类似页硅酸盐子类的任何成员, 碳硅碱钙石的结构以交替的硅酸盐层和钾、 钠和钙层成层。 与其它页硅酸盐不同, 碳硅碱钙 石的硅酸盐层由互连的四元和八元环构成。 这些层可以被认为像具有交替的八边形和正方 形孔的铁丝网 (chicken wire)。八边形和正方形都具有四重对称, 正是这赋予碳硅碱钙石 正方对称 (tetragonal symmetry) ; 4/m 2/m 2/m。只有碳硅碱钙石和鱼眼石族的其它成员 具有这种独特的互连四元和八元环结构。
     本发明的集料的碳酸盐和 / 或碳酸氢盐化合物通常由二价阳离子的水溶液 ( 如下 文更详细描述 ) 生成, 例如沉淀。 由于该集料的碳酸盐和 / 或碳酸氢盐化合物组合物由二价 阳离子的水溶液沉淀, 它们会包括该溶液 ( 它们从中生成 ) 中存在的一种或多种组分。例 如, 如果该二价阳离子的水溶液是咸水, 该碳酸盐和 / 或碳酸氢盐化合物和包括它们的集 料可包括该阳离子水溶液源中存在的一种或多种化合物。 这些化合物与源于该阳离子水溶 液源的组分相互关联, 其中这些鉴别组分及其量在本文中统称为阳离子溶液源鉴别剂。例 如, 如果该阳离子溶液源是海水, 沉淀的矿物组合物中可能存在的鉴别化合物包括, 但不限 于: 氯化物、 钠、 硫、 钾、 溴化物、 硅、 锶等。 任何这样的源鉴别或 “标识” 成分通常以小量存在, 例如以百万分之 20,000 份 (ppm) 或更低的量, 如 2000ppm 或更低的量。 在某些实施方案中, 该 “标识” 化合物是锶, 其可能存在于包含碳酸盐和 / 或碳酸氢盐的沉淀组合物中。锶可并 入文石 ( 碳酸钙 ) 晶格并构成 10,000ppm 或更低, 在某些实施方案中为 3 至 10,000ppm, 如 5 至 5000ppm, 包括 5 至 1000ppm, 例如 5 至 500ppm, 包括 5 至 100ppm。另一 “标识” 化合物 是镁, 其可能以取代碳酸盐化合物中最多 20 摩尔%的钙的量存在 (present inamounts of up to 20% mole substitution for calcium in carbonatecompunds)。该组合物的阳离 子水溶液源鉴别剂可以随用于制造咸水衍生的包含碳酸盐和 / 或碳酸氢盐的沉淀物组合 物的特定阳离子水性溶液源而变。在某些实施方案中, 该集料的碳酸钙含量为 5%、 10%、 15%、 20%或 25% w/w 或更高, 如 30% w/w 或更高, 包括 40% w/w 或更高, 例如 50% w/w 或 甚至 60% w/w 或更高、 70% w/w 或更高、 80% w/w 或更高、 90% w/w 或更高, 或 95% w/w 或更 高。在某些实施方案中, 该集料的碳酸镁含量为 5%、 10%、 15%、 20%或 25% w/w 或更高, 如 30% w/w 或更高, 包括 40% w/w 或更高, 例如 50% w/w 或甚至 60% w/w 或更高、 70% w/ w 或更高、 80% w/w 或更高、 90% w/w 或更高, 或 95% w/w 或更高。
     该集料在某些实施方案中具有受其从中沉淀的水源, 例如海水 ( 其所含的镁多于 钙 ) 或例如某些盐水 ( 其钙含量通常为海水的 100 倍 ) 影响并因此反映该水源的钙 / 镁 比; 该钙 / 镁比也反映如下因素 : 含钙和 / 或镁的物质在生产过程中的添加, 例如飞灰、 红 泥、 矿渣, 或其它含钙和 / 或镁的工业废料的使用, 或如本文进一步描述的含钙和 / 或镁的 矿物, 如镁铁质矿物和超镁铁质矿物, 如蛇纹石、 橄榄石等, 或硅灰石的使用。由于原材料 以及在生产过程中添加的材料的大变化, 该钙 / 镁摩尔比在本发明的组合物和方法的各种 实施方案中可广泛变化, 在某些实施方案中, 确实可根据该集料的预期用途调节该比率。 因 此, 在某些实施方案中, 该集料中的钙 / 镁摩尔比为 200/1Ca/Mg 至 1/200Ca/Mg。在一些实 施方案中, 该钙镁摩尔比为 150/1Ca/Mg 至 1/100Ca/Mg。在一些实施方案中, 该钙镁摩尔比 为 150/1Ca/Mg 至 1/50Ca/Mg。在一些实施方案中, 该钙镁摩尔比为 150/1Ca/Mg 至 1/10Ca/Mg。在一些实施方案中, 该钙镁摩尔比为 150/1Ca/Mg 至 1/5Ca/Mg。在一些实施方案中, 该 钙镁摩尔比为 150/1Ca/Mg 至 1/1Ca/Mg。在一些实施方案中, 该钙镁摩尔比为 150/1Ca/Mg 至 5/1Ca/Mg。在一些实施方案中, 该钙镁摩尔比为 150/1Ca/Mg 至 10/1Ca/Mg。在一些实 施方案中, 该钙镁摩尔比为 100/1Ca/Mg 至 10/1Ca/Mg. 在一些实施方案中, 该钙镁摩尔比为 1/1Ca/Mg 至 1/100Ca/Mg。在一些实施方案中, 该钙镁摩尔比为 1/1Ca/Mg 至 1/50Ca/Mg。在 一些实施方案中, 该钙镁摩尔比为 1/1Ca/Mg 至 1/25Ca/Mg。 在一些实施方案中, 该钙镁摩尔 比为 1/1Ca/Mg 至 1/10Ca/Mg。在一些实施方案中, 该钙镁摩尔比为 1/1Ca/Mg 至 1/8Ca/Mg。 在一些实施方案中, 该钙镁摩尔比为 1/1Ca/Mg 至 1/5Ca/Mg。在一些实施方案中, 该钙镁摩 尔比为 10/1Ca/Mg 至 1/10Ca/Mg。在一些实施方案中, 该钙镁摩尔比为 8/1Ca/Mg 至 1/8Ca/ Mg。 在一些实施方案中, 该钙镁摩尔比为 6/1Ca/Mg 至 1/6Ca/Mg。 在一些实施方案中, 该钙镁 摩尔比为 4/1Ca/Mg 至 1/4Ca/Mg。在一些实施方案中, 该钙镁摩尔比为 2/1Ca/Mg 至 1/2Ca/ Mg。在一些实施方案中, 该钙 / 镁摩尔比为 20/1 或更大, 如 50/1 或更大, 例如 100/1 或更 大, 或甚至 150/1 或更大。在一些实施方案中, 该钙 / 镁摩尔比为 1/10 或更低, 如 1/25 或 更低, 例如 1/50 或更低, 或甚至 1/100 或更低。在一些实施方案中, Ca/Mg 比范围为 2/1 至 1/2, 3/2 至 2/3, 或 5/4 至 4/5。在一些实施方案中, Ca/Mg 比范围为 1/7 至 200/1、 1/15 至 12/10、 1/10 至 5/1、 1/7 至 1/2, 或 1/9 至 2/5。 在一些实施方案中, Ca/Mg 比范围为 1/200 至 1/7、 1/70 至 1/7, 或 1/65 至 1/40。在一些实施方案中, Ca/Mg 范围为 1/10 至 50/1、 1/5 至 45/1、 1/6 至 6/1、 6/5 至 45/1、 1/4 至 11/3, 或 13/2 至 19/2。 在一些实施方案中, Ca/Mg 范围 为 1/3 至 3/1 或 1/2 至 2/1。在一些实施方案中, Ca/Mg 范围为 2/1 至全钙、 3/1 至 200/1、 5/1 至 200/1, 或 10/1 至 200/1。
     在一些实施方案中, 提供集料, 其中该组合物含有例如二价阳离子, 如钙或镁的碳 酸盐和碳酸氢盐 ; 在一些情况中, 该集料基本完全含有碳酸盐, 或基本完全含有碳酸氢盐, 或含有一定比率的碳酸盐与碳酸氢盐。碳酸盐与碳酸氢盐的摩尔比可以为任何合适的比 率, 如 100/1 至 1/100, 或 50/1 至 1/50, 或 25/1 至 1/25, 或 10/1 至 1/10, 或 2/1 至 1/2, 或 大约 1/1, 或基本全是碳酸盐或基本全是碳酸氢盐。在一些实施方案中, 本发明提供含有钙 或镁或其组合的碳酸盐和 / 或碳酸氢盐的集料。在一些实施方案中, 本发明提供仅含钙或 镁或其组合的碳酸盐而不含碳酸氢盐或仅含痕量碳酸氢盐的集料。 另一些实施方案提供仅 由钙或镁或其组合的碳酸氢盐构成的集料。
     在某些实施方案中, 集料的特征在于具有一定的碳酸盐 / 氢氧化物比率, 其中在 某些实施方案中该比率为 100 比 1, 如 10 比 1, 包括 1 比 1。
     在存在二氧化硅时, 钙 / 镁与二氧化硅的比率可以为 100 ∶ 1 至 1 ∶ 1, 如 50 ∶ 1 至 10 ∶ 1。
     此外, 本发明的集料可进一步包括或不包括如氯化物之类的物质。这些物质在一 些用途中被认为不合意 ; 例如, 由于其腐蚀钢筋的趋势, 氯化物在要用于混凝土的集料中不 合意。但是, 在一些用途, 如道路基层中, 含氯化物的集料可能是可接受的。如果氯化物是 原材料的组分, 制造本发明的集料的方法可包括一个或多个使该集料的氯化物和 / 或钠含 量最小化的步骤 ; 在一些实施方案中, 当集料的预期最终用途对这些材料的含量相对不敏 感时, 这种步骤不必要。因此, 在一些实施方案中, 本发明的集料的可浸出氯化物含量低于 5%。在一些实施方案中, 该集料的可浸出氯化物含量为 0.0001%至 0.05%。在一些实施方案中, 该可浸出氯化物含量低于 0.05 %, 在一些实施方案中, 该可浸出氯化物含量低于 0.1%, 在一些实施方案中, 该可浸出氯化物含量低于 0.5%。
     在一些实施方案中, 本发明的集料由 CO2, 和在一些情况中, 具有特定同位素组成, 例如如本文进一步描述与化石燃料中的来源相符的同位素组成的其它元素或化合物形成。
     如本文进一步描述, 本发明的集料可具有适用于特定用途的任何尺寸和形状。由 于该集料是合成的, 尺寸和形状都几乎完全可控, 以致如下所述的多种具体集料以及集料 混合物可供使用。在一些实施方案中, 本发明提供粗集料, 例如大部分留在 4 号筛上 (ASTM C 125 和 ASTM C 33) 的组合物。 根据本发明的实施方案的粗集料组合物是具有 0.125in 至 6in, 如 0.187in 至 3.0in, 包括 0.25in 至 1.0in 的平均粒度的组合物。根据本发明的实施 方案的细集料具有 0.001inch(in) 至 0.25in, 如 0.05in 至 0.125in, 包括 0.01in 至 0.08in 的平均粒度。
     本发明的集料可以是反应性或非反应性的。反应性集料是用物质 ( 例如水 ) 引发 时与其它集料粒子中的成分 ( 例如化合物 ) 发生反应以形成反应产物的那些集料粒子。在 一些情况下, 该反应产物可以是集料粒子之间的基质以形成稳定化结构。 在另一些情况下, 所形成的基质可能是膨胀凝胶, 其根据环境, 可能使物料 (mass) 失稳 ; 在一些情况中, 其中 该膨胀凝胶有膨胀空间, 例如在存在空隙的情况下作为路基的一部分铺设的集料中, 这种 类型的反应性集料是可接受的。本发明的集料也可以是非反应性的。
     此外, 在一些情况下, 本发明提供耐酸、 耐碱或既耐酸又耐碱的集料。 例如, 在一些 情况下, 本发明提供根据所需试验暴露在 2、 3、 4 或 5 的 pH 值 ( 例如已稀释至 pH 2、 3、 4或5 的 H2SO4 溶液 ) 下时在 48 小时期间内, 或 1 周期间内, 或 5 周期间内或 25 周期间内释放出 该集料中所含的 CO2 的少于 1、 0.1、 0.01 或 0.001%, 同时仍保持完整和保持一部分或基本 全部的其硬度、 抗磨性等的集料。 耐碱的本发明的集料可获得类似结果, 例如暴露在 12、 11、 10 或 9 的 pH 值下时在 48 小时、 1 周、 5 周或 25 周期间内释放出其 CO2 的少于 1、 0.1、 0.01 或 0.001%, 同时仍保持完整和保持一部分或基本全部的其硬度、 抗磨性等。可以通过例如 库仑法或任何其它合适的方法监测该材料的 CO2 含量。
     在一些实施方案中, 本发明提供如下进一步描述在 CO2 释放方面稳定的集料。
     在一些实施方案中, 本发明的集料是封存包括 ( 尽管不限于 ) 气态组分的人造废 物流, 通常工业废物流的一种或多种组分的集料。 通常, 该集料封存的所述一种或多种组分 是不适合释放到大气中或笼统而言释放到环境中的组分。例如, 对烟道气废物流而言, 不 合意的组分包括 CO2、 CO、 硫氧化物 (SOx, 如 SO2 和 SO3)、 氮氧化物 (NOx, 如 NO 和 NO2)、 重金 属如汞、 镉、 铅和 / 或本领域中公知的其它, 微粒、 放射性物质、 有机化合物和其它不合意组 分, 例如政府机关或其它管理机构管制的任何组分。
     在具体实施方案中, 本发明包括 CO2 封存集料。本文所用的术语 “CO2 封存集料” 是 指, 该集料含有来自人类使用的燃料的碳, 例如源于化石燃料的碳。例如, 根据本发明的实 施方案的 CO2 封存集料含有以 CO2 形式由燃料燃烧释放的碳。 在某些实施方案中, 封存在 CO2 封存集料中的碳含有碳酸盐化合物。 因此, 根据本发明的实施方案的 CO2 封存集料含有碳酸 盐化合物, 其中该碳酸盐化合物中的至少一部分碳来自人类使用的燃料, 例如化石燃料。 因 此, 本发明的集料的生产使 CO2 进入储存稳定的形式 ( 例如可以以各种方式用在建筑环境, 即人造结构, 如建筑物、 墙壁、 道路等中或甚至运输到化石燃料源, 例如煤矿, 并储存在此的构件 ) 中。因此, 本发明的 CO2 封存集料的生产防止 CO2 气体进入大气。
     本发明的 CO2- 封存集料以将 CO2 封存 ( 即固定 ) 在集料中的方式提供 CO2 的长期 储存, 其中封存的 CO2 不会变成大气的一部分。 “长期储存” 是指本发明的集料长期固定其 封存的 CO2( 当该集料存在于其预期用途的常规条件下时 ) 而没有从该集料中明显 ( 如果有 的话 ) 释放 CO2。在本发明中, 根据该集料的特定性质和下游用途, 长期可以是 1 年或更长、 5 年或更长、 10 年或更长、 25 年或更长、 50 年或更长、 100 年或更长、 250 年或更长、 1000 年 或更长、 10,000 年或更长、 1,000,000 年或更长、 或甚至 100,000,000 年或更长。关于该 CO2 封存集料, 当用于其预期用途时和在其使用寿命中, 以该产品的 CO2 气体释放测得的降解量 ( 如果有的话 ) 不超过 10% / 年, 例如, 不超过 5% / 年, 和在某些实施方案中不超过 1% / 年或甚至不超过 0.5% / 年或甚至 0.1% / 年。
     集料试验可用于代为指示该集料的长期储存能力。可以使用业内公认的任何试 验, 或可以使用合理地被认为预测材料在其预期使用条件下的长期储存的任何试验, 例如 合理地被认为预测该组合物使其相当大部分、 或基本全部的 CO2 保持固定达一定时间量的 任何试验。例如, 如果当在 10%至 50%相对湿度下在 50、 75、 90、 100、 120 或 150℃下暴露 1、 2、 5、 25、 50、 100、 200, 或 500 天时其损失少于 1%、 2%、 3%、 4%、 5%、 10%、 20%、 30%或 50%的碳, 则该集料可以被视为封存的 CO2 的长期储存集料。根据该材料的预期用途和环 境选择试验条件。可以通过任何合适的方法, 例如库仑法监测该材料的 CO2 含量。
     为了证实一材料是 CO2- 封存材料, 例如含有源自化石燃料燃烧的二氧化碳的材 13 料, 可以使用如同位素测量 ( 例如 δ C 值的测量 ) 和碳库仑法之类的试验 ; 也可以使用任 何其它合适的测量法证实例如该组合物含有碳酸盐和 / 或碳酸盐以该组合物的指定百分 比存在。
     因此, 在一些实施方案中, 本发明提供包含 CO2- 封存集料的组合物。该集料可以 从含二价阳离子的水, 例如含碱土金属离子的水, 如咸水, 例如海水或地质盐水, 或源自海 水或地质盐水的水中沉淀。该含二价阳离子的水可含有来自工业过程, 例如来自工业废气 流的 CO2, 其随后转化成包含在该集料中的碳酸盐。 因此, 在一些实施方案中, 该集料具有如 13 下所述反映化石燃料来源的 δ C 值。该 CO2- 封存集料可含有碳酸钙、 碳酸镁、 碳酸钙镁或 它们的任何组合。在一些实施方案中, 该集料含有至少大约 10、 20、 30、 40、 50、 60、 70、 80 或 90%碳酸盐。 在一些实施方案中, 该集料含有至少大约 50%碳酸盐。 Ca/Mg 摩尔比在一些实 施方案中可以为 1/10 至 1/3, 或 1/3 至 3/1, 或 10/1 至 100/1, 或大约 1/1。该 CO2- 封存集 料可以以给定百分比含有本文列出的任何矿物形式, 例如方解石、 三水菱镁矿、 文石、 球碳 镁石。这类集料可具有如本文所述的其它性质, 例如尺寸、 形状、 密度、 反应性等。例如, 在 一些实施方案中, 这类集料可具有在莫氏硬度标上至少 2 或至少 3 或同等的硬度。在一些 实施方案中, 这类集料可具有 50lb/ft3 至 200lb/ft3, 或 75lb/ft3 至 175lb/ft3, 或 50lb/ft3 至 100lb/ft3, 或 75lb/ft3 至 125lb/ft3, 或 90lb/ft3 至 115lb/ft3, 或 100lb/ft3 至 200lb/ ft3, 或 125lb/ft3 至 175lb/ft3, 或 140lb/ft3 至 160lb/ft3, 或 50lb/ft3 至 200lb/ft3 的堆 积密度。在一些实施方案中, 这类集料是具有 75lb/ft3 至 125lb/ft3 的堆积密度 ( 单位重 量 ) 的集料。 在一些实施方案中, 这类集料是具有 90lb/ft3 至 115lb/ft3 的堆积密度 ( 单位 重量 ) 的集料。在一些实施方案中, 这类集料是粗集料。在一些实施方案中, 这类集料是细 集料。这类集料也可以具有如本文进一步描述的 Ca/Mg 比、 晶体结构和多晶型物、 孔隙率、反应性或其缺乏、 防 CO2 释放的稳定性和 / 或其它特性。
     在某些实施方案中, 本发明的集料含有来自化石燃料的碳 ; 由于其化石燃料来源, 13 这类集料的碳同位素分馏 (δ C) 值不同于例如石灰石。 如本领域中已知, 化石燃料的来源 12 13 工厂优先利用 C 而非 C, 因此分馏碳同位素以使它们的比率值不同于一般而言大气中的 值; 该值在与标准值 (PeeDee Belemnite, 或 PDB 标准 ) 比较时被称作碳同位素分馏 (δ13C) 值。煤的 δ13C 值通常为 -30 至 -20‰, 甲烷的 δ13C 值可低至 -20‰至 -40‰或甚至 -40‰ 至 -80‰。大气 CO2 的 δ13C 值为 -10‰至 -7‰, 石灰石集料的 δ13C 值为为 +3‰至 -3‰, 且 13 海洋碳酸氢盐的 δ C 值为为 0‰。 即使该集料含有一些天然石灰石或具有不如化石燃料负 13 13 的 δ C 值的其它 C 源, 其 δ C 值大体上仍是负的并且是比石灰石或大气 CO2 更负 ( 更小 ) 的值。 本发明的集料因此包括 δ13C 比 -10‰更负 ( 更小 ), 如比 -12‰、 -14‰、 -16‰、 -18‰ 、 -20‰、 -22‰、 -24‰、 -26‰、 -28‰更负 ( 更小 ), 或比 -30‰更负 ( 更小 ) 的集料。在一些 13 实施方案中, 本发明提供 δ C 比 -10‰更负 ( 更小 ) 的集料。 在一些实施方案中, 本发明提 13 13 供 δ C 比 -14‰更负 ( 更小 ) 的集料。在一些实施方案中, 本发明提供 δ C 比 -18‰更负 13 ( 更小 ) 的集料。在一些实施方案中, 本发明提供 δ C 比 -20‰更负 ( 更小 ) 的集料。在 13 一些实施方案中, 本发明提供 δ C 比 -24‰更负 ( 更小 ) 的集料。 在一些实施方案中, 本发 13 13 明提供 δ C 比 -28‰更负 ( 更小 ) 的集料。在一些实施方案中, 本发明提供 δ C 比 -30‰ 更负 ( 更小 ) 的集料。在一些实施方案中, 本发明提供 δ13C 比 -32‰ 更负 ( 更小 ) 的集 料。在一些实施方案中, 本发明提供 δ13C 比 -34‰更负 ( 更小 ) 的集料。这类集料可能是 如上所述的含碳酸盐的集料, 例如含有至少 10、 20、 30、 40、 50、 60、 70、 80 或 90%碳酸盐, 例 如至少 50%碳酸盐 w/w 的集料。这类集料可具有如本文所述的其它性质, 例如尺寸、 形状、 密度、 反应性等。 例如, 在一些实施方案中, 这类集料可具有在莫氏硬度标上至少 2 或至少 3 或同等的硬度。在一些实施方案中, 这类集料可具有 50lb/ft3 至 200lb/ft3, 或 75lb/ft3 至 175lb/ft3, 或 50lb/ft3 至 100lb/ft3, 或 75lb/ft3 至 125lb/ft3, 或 90lb/ft3 至 115lb/ft3, 或 100lb/ft3 至 200lb/ft3, 或 125lb/ft3 至 175lb/ft3, 或 140lb/ft3 至 160lb/ft3, 或 50lb/ 3 3 3 ft 至 200lb/ft 的堆积密度。在一些实施方案中, 这类集料是具有 75lb/ft 至 125lb/ft3 的堆积密度 ( 单位重量 ) 的集料。在一些实施方案中, 这类集料是具有 90lb/ft3 至 115lb/ ft3 的堆积密度 ( 单位重量 ) 的集料。在一些实施方案中, 这类集料是粗集料。在一些实施 方案中, 这类集料是细集料。这类集料也可以具有如本文进一步描述的 Ca/Mg 比、 晶体结构 和多晶型物、 孔隙率、 反应性或其缺乏、 防 CO2 释放的稳定性和 / 或其它特性。
     在一些实施方案中, 本发明的集料是负碳集料, 且该集料生产方法是负碳法。 本文 所用的术语 “负碳” 是指通过实施该方法封存的 ( 例如通过将 CO2 转化成碳酸盐 )CO2 或该 方法制成的组合物中的 CO2 的按重量计的量大于为实施该方法或为制造最终备用形式的产 品而生成的 ( 例如通过动力生成、 反应物如碱的生产或开采、 会产生 CO2 的该产品的运输和 其它制造部分等 )CO2 量, 其可以如下列方程式中所示以百分比表示 :
     ((CO2 捕集量 - 捕集中消耗的 CO2 量 )/CO2 捕集量 )×100 =负碳%
     因此, 在捕集过程中不消耗二氧化碳的同时捕集二氧化碳的产品是 100%负碳的。 在一些情况下, 本发明的产品或方法是 1 至 100%负碳, 如 5 至 100%, 包括 10 至 95%、 10 至 90%、 10 至 80%、 10 至 70%、 10 至 60%、 10 至 50%、 10 至 40%、 10 至 30%、 10 至 20%、 20 至 95%、 20 至 90%、 20 至 80%、 20 至 70%、 20 至 60%、 20 至 50%、 20 至 40%、 20 至 30%、 30至 95%、 30 至 90%、 30 至 80%、 30 至 70%、 30 至 60%、 30 至 50%、 30 至 40%、 40 至 95%、 40 至 90%、 40 至 80%、 40 至 70%、 40 至 60%、 40 至 50%、 50 至 95%、 50 至 90%、 50 至 80%、 50 至 70%、 50 至 60%、 60 至 95%、 60 至 90%、 60 至 80%、 60 至 70%、 70 至 95%、 70 至 90%、 70 至 80%、 80 至 95%、 80 至 90%, 和 90 至 95%负碳。在一些情况下, 本发明的产品或方法 为至少 5%负碳, 或至少 10%负碳, 或至少 20%负碳, 或至少 30%负碳, 或至少 40%负碳, 或至少 50%负碳, 或至少 60%负碳, 或至少 70%负碳, 或至少 80%负碳, 或至少 90%负碳。 负碳方法更详细描述在全文经此引用并入本文的美国专利申请 No.12/344,019 中。
     本发明的集料在一些实施方案中包括如上所述存在于例如工业废气中的其它封 存组分。相应地, 在一些实施方案中, 除了含有例如由封存的 CO2 产生的碳酸盐外, 本发明 的集料可包括一种或多种下列化合物或元素或衍生自下列化合物或元素的物质 : CO、 硫氧 化物 (SOx, 如 SO2 和 SO3)、 氮氧化物 (NOx, 如 NO 和 NO2)、 重金属如汞、 镉、 铅、 和 / 或本领域 中公知的其它、 微粒、 放射性物质和有机化合物。因此, 本发明包括除 CO2- 封存组分如碳酸 盐外, 还含有 SOx- 衍生组分, 如硫酸盐或亚硫酸盐, 例如钙或镁的硫酸盐或亚硫酸盐, 或钙 和镁的硫酸盐或亚硫酸盐的组合的集料。在一些实施方案中, 本发明提供含有例如衍生自 CO2 的碳酸盐化合物和例如衍生自 SOx 的硫酸盐和 / 或亚硫酸盐化合物的集料, 其中碳酸 盐与硫酸盐 / 亚硫酸盐 ( 如果两者都存在, 它们的总和 ) 的摩尔比为 200 ∶ 1 至 10 ∶ 1, 如 150 ∶ 1 至 20 ∶ 1, 或 120 ∶ 1 至 80 ∶ 1。在一些实施方案中, 本发明提供含有例如衍 生自 CO2 的碳酸盐化合物和例如衍生自 SOx 的硫酸盐和 / 或亚硫酸盐化合物的集料, 其中 该碳酸盐构成该集料的 20% -99%且该硫酸盐 / 亚硫酸盐化合物构成该集料的 0.01-5%, 例如其中该碳酸盐构成该集料的 50% -99%且该硫酸盐 / 亚硫酸盐化合物构成该集料的 0.1-3%, 如其中该碳酸盐构成该集料的 85% -99%且该硫酸盐 / 亚硫酸盐化合物构成该集 料的 0.2-2%。 在一些实施方案中, 本发明提供含有碳酸盐化合物和硫酸盐和 / 或亚硫酸盐 化合物的集料, 其中碳酸盐与硫酸盐 / 亚硫酸盐 ( 如果两者都存在, 它们的总和 ) 的摩尔比 为 200 ∶ 1 至 10 ∶ 1, 如 150 ∶ 1 至 20 ∶ 1, 或 120 ∶ 1 至 80 ∶ 1。在一些实施方案中, 本发明包括除例如衍生自 CO2 的碳酸盐化合物和任选例如衍生自 SOx 的硫酸盐或亚硫酸盐 外还包括重金属, 例如汞, 或重金属衍生的化合物的集料。在此类实施方案中, 该集料可以 9 8 9 8 以 5X10 ∶ 1 至 5X10 ∶ 1, 如 2X10 ∶ 1 至 5X10 ∶ 1 的碳酸盐∶汞化合物摩尔比含有碳 酸盐和汞化合物。在一些实施方案中, 本发明的集料包括 CO2- 衍生组分、 SOx- 衍生组分和 汞 - 衍生组分, 任选还包括 NOx- 衍生组分。
     在一些实施方案中, 本发明的集料含有下列至少一种 : 碳酸钙化合物、 碳酸镁化合 物和碳酸钙镁化合物。该集料的钙 / 镁摩尔比可以根据原材料、 制造条件等为本文给出的 任何比率, 例如在 7 ∶ 1 至 2 ∶ 1, 2 ∶ 1 至 1 ∶ 2, 或 1 ∶ 10 至 1 ∶ 200 的镁∶钙范围内。 在一些实施方案中, 所述一种或多种碳酸盐化合物构成该集料的至少 10、 20、 30、 40、 50、 60、 70、 80、 90、 95、 99 重量%, 例如, 至少 50%, 包括至少 80%, 如至少 90%。所述一种或多种碳 酸盐化合物可包括由含二价阳离子的水, 例如含有衍生自气态工业废物流的 CO2 的含二价 阳离子的水制成的沉淀物。 工业气态废物流可以如本文所述例如来自发电厂、 铸造厂、 水泥 厂、 精炼厂或冶炼厂。 在一些实施方案中, 该集料含有通过如本文其它地方所述的制造条件 制成的特殊矿物。 在一些具体实施方案中, 该集料以至少 0.1%, 或至少 0.5%, 或至少 1%, 或至少 2%, 或至少 5%, 或至少 10%的百分比 w/w 含有球碳镁石。在一些实施方案中, 该集料含有球碳镁石以及三水菱镁矿。在一些具体实施方案中, 该集料含有至少 0.1%, 或至 少 0.5%, 或至少 1%, 或至少 2%, 或至少 5%, 或至少 10%的百分比 w/w 的球碳镁石和至 少 0.1%, 或至少 0.5%, 或至少 1%, 或至少 2%, 或至少 5%, 或至少 10%的百分比 w/w 的 三水菱镁矿。在一些实施方案中, 该集料以至少 0.1%, 或至少 0.5%, 或至少 1%, 或至少 2%, 或至少 5%, 或至少 10%, 或至少 20%, 或至少 30%的百分比 w/w 含有方解石。在一些 实施方案中, 该集料以至少 0.1%, 或至少 0.5%, 或至少 1%, 或至少 2%, 或至少 5%, 或至 少 10%, 或至少 20%, 或至少 30%的百分比 w/w 含有白云石。
     在一些实施方案中, 本发明提供不含粘合剂的合成岩石, 即自粘结合成岩石。本 发明的方法能够通过如本文其它地方更充分描述的不需要外来或固有粘合剂的涉及物理 反应的方法制造硬的耐久岩石。因此, 在一些实施方案中, 本发明提供含有少于 10、 5、 2、 1、 0.5、 0.2、 0.1、 0.05、 0.02、 0.01、 0.005、 0.001、 0.0005、 0.0001% w/w 粘合剂的合成岩石, 其 中本文所用的术语 “粘合剂” 包括添加到到合成岩石体系中以造成或促进在合成过程中将 合成岩石的组分粘合在一起的化学反应的化合物或物质。 在本文其它地方描述了典型粘合 剂。在一些实施方案中, 本发明的合成岩石基本不含粘合剂。这类合成岩石可以在模拟地 质过程的工艺中人工岩化, 其中物理而非化学过程是形成岩石的过程, 例如化合物以用于 将该组合物粘合在一起的新的形式溶解和再沉淀。 这类合成岩石在某些实施方案中含有一 种或多种碳酸盐化合物, 例如衍生自化石燃料源的碳酸盐化合物。该合成岩石在一些实施 方案中可具有比 -10‰或 -12‰, 或 -14‰或 -18‰, 或 -22‰, 或 -26‰或 -30‰, 或 -32‰, 13 或 -36‰ 更负 ( 更小 ) 的碳同位素分馏 (δ C) 值。该合成岩石在一些实施方案中可具 有 -10‰至 -40‰的碳同位素分馏 (δ13C) 值。
     在一些实施方案中, 具有低或零的粘合剂含量的合成岩石包括下列至少一种 : 碳 酸钙化合物、 碳酸镁化合物和碳酸钙镁化合物。该合成岩石的钙 / 镁摩尔比可以根据原材 料、 制造条件等为本文给出的任何比率, 例如在 7 ∶ 1 至 2 ∶ 1, 2 ∶ 1 至 1 ∶ 2, 或 1 ∶ 10 至 1 ∶ 200 的镁∶钙范围内。 在一些实施方案中, 所述一种或多种碳酸盐化合物构成该合成 岩石的至少 10、 20、 30、 40、 50、 60、 70、 80、 90、 95、 99 重量%, 例如, 至少 50%, 包括至少 80%, 如至少 90%。所述一种或多种碳酸盐化合物可包括由含二价阳离子的水, 例如含有衍生自 气态工业废物流的 CO2 的含二价阳离子的水制成的沉淀物。工业气态废物流可以如本文所 述例如来自发电厂、 铸造厂、 水泥厂、 精炼厂或冶炼厂。可以在其中将亚稳组分如亚稳碳酸 盐转化成更稳定组分的方法中制造人造岩石。 例如, 在一些实施方案中, 在将文石转化成方 解石, 和 / 或将球霰石转化成文石和 / 或方解石, 和 / 或将原白云石 (protodolomite) 转化 成白云石的方法中制造合成岩石。
     在一些实施方案中, 本发明提供轻型集料, 例如堆积密度为 75-125lb/ft3, 或 3 90-115lb/ft 的集料。在一些实施方案中, 该轻型集料是 CO2- 封存集料, 其可以是含有碳 酸盐, 例如至少 10、 20、 30、 40、 50、 60、 70、 80 或 90 %衍生自化石燃料的碳酸盐的集料。在 一些实施方案中, 该集料具有比 -10‰, 或 -12‰, 或 -14‰, 或 -18‰, 或 -22‰, 或 -26‰ 13 或 -30‰, 或 -32‰, 或 -36‰更负 ( 更小 ) 的碳同位素分馏 (δ C) 值。该轻型集料在一些 实施方案中可具有 -10‰至 -40‰的碳同位素分馏 (δ13C) 值。该轻型集料在一些实施方案 中可具有比 -20‰更负 ( 更小 ) 的碳同位素分馏 (δ13C) 值。 该轻型集料在一些实施方案中 13 可具有比 -30‰更负 ( 更小 ) 的碳同位素分馏 (δ C) 值。 该轻型集料在一些实施方案中含有碳酸盐和硫酸盐或亚硫酸盐, 或硫酸盐和亚硫酸盐的组合。 在一些实施方案中, 碳酸盐与 硫酸盐和 / 或亚硫酸盐的摩尔比为 1000 ∶ 1 至 10 ∶ 1, 或 500 ∶ 1 至 50 ∶ 1, 或 300 ∶ 1 至 75 ∶ 1。在这些实施方案的一些中, 该集料进一步含有可能源自化石燃料的汞或汞化合 物。在一些实施方案中, 该集料含有球碳镁石。
     在一些实施方案中, 本发明提供定制的集料组合, 例如具有多种特性的一组集料, 选择其以匹配预定的特性组合, 如尺寸、 形状、 表面结构、 硬度、 抗磨性、 密度、 孔隙率、 酸稳 定性、 碱稳定性、 CO2 释放稳定性和颜色中的至少两种、 三种、 四种或五种。在一些实施方案 中, 本发明提供具有多种特性的一组集料, 选择其以匹配预定的特性组合, 其中这些特性包 括尺寸、 形状和硬度。在一些实施方案中, 本发明提供具有多种特性的一组集料, 选择其以 匹配预定的特性组合, 其中这些特性包括尺寸、 形状、 硬度和表面结构 (texture)。在一些 实施方案中, 本发明提供具有多种特性的一组集料, 选择其以匹配预定的特性组合, 其中这 些特性包括尺寸、 形状、 硬度和密度。在一些实施方案中, 本发明提供具有多种特性的一组 集料, 选择其以匹配预定的特性组合, 其中这些特性包括尺寸、 形状和密度。在一些实施方 案中, 本发明提供包含合成碳酸盐的集料。该合成碳酸盐可含有封存的 CO2, 如从含二价阳 离子的水, 例如含碱土金属离子的水, 如本文进一步描述的咸水例如海水中沉淀的碳酸盐。 该含二价阳离子的水, 例如含碱土金属离子的水, 可含有来自工业废物流的 CO2, 其中至少 一部分所述来自工业废物流的 CO2 以封存的 CO2 的形式存在于该合成碳酸盐中。该工业气 态废物流可以是如本文所述的任何废物流, 例如来自发电厂、 铸造厂、 水泥厂、 精炼厂或冶 炼厂。该合成碳酸盐可以以如本文更充分描述的任何比率含有下列至少一种 : 碳酸钙化合 物、 碳酸镁化合物和碳酸钙镁化合物, 例如, 其中镁与钙的重量比为 10/1 至 1/10。 如果存在 碳酸钙化合物, 其可能包括本文所述的多晶型物中的任何一种或多种, 例如, 方解石、 文石、 球霰石、 六水方解石或非晶碳酸钙。 如果存在碳酸镁化合物, 其可能包括本文所述的多晶型 物中的任何一种或多种, 例如, 球碳镁石、 菱镁矿、 二水菱镁矿、 三水菱镁矿、 五水菱镁矿、 水 菱镁矿或非晶碳酸镁, 如至少 1% w/w 的量或至少 5% w/w 的量的球碳镁石 ; 包括球碳镁石 的实施方案在一些情况中可进一步包括三水菱镁矿、 水菱镁矿或其组合。如果存在碳酸钙 镁化合物, 其可能包括本文所述的多晶型物中的任何一种或多种, 例如白云石、 碳钙镁石或 水碳钙镁石。该集料可包含如本文所述的量的锶。也如本文进一步描述, 该集料可以是反 应性或非反应性的。在一些实施方案中, 合成碳酸盐构成该集料的 1%至 99%。该集料可 以是粗集料, 例如具有 0.125 英寸至 6 英寸的平均粒度, 或细集料, 例如具有 0.001 英寸至 0.25 英寸的平均粒度, 或粗集料和细集料的组合。该集料可具有选自圆形、 不规则形状、 薄 片形、 角形、 细长形、 薄片 - 细长形、 次棱角形 (subangular)、 次圆形 (subrounded)、 滚圆形 (well rounded) 及其任何混合的粒子形状 ; 在一些情况中, 该集料进一步具有选自玻璃质、 光滑、 颗粒状、 粗糙、 结晶、 蜂窝状及其混合的粒子表面结构。在一些实施方案中, 该集料具 有选自多边形、 圆柱形、 球形、 三角形、 曲面形、 环状、 椭球形、 卵形、 星形、 棱柱形或其任何混 合的粒子形状 ; 在一些情况中, 可进一步具有选自玻璃质、 光滑、 颗粒状、 粗糙、 结晶、 蜂窝状 及其混合的粒子表面结构。该集料可具有大约 1.5 至 9, 如大约 2.5 至 6 的莫氏硬度, 或在 Rockwell、 Vickers 或 Brinell 标上的同等硬度。任何上述集料可进一步包括下列一种或 多种 : 波特兰水泥、 飞灰、 石灰和粘合剂, 例如, 波特兰水泥, 如其中合成碳酸盐与波特兰水 3 泥的重量比为 0.1/1 至 5/1。该集料具有 100 至 150lb/ft , 如 75-125lb/ft3 的单位密度。在一些实施方案中, 本发明提供制造包含合成碳酸盐的集料的方法, 该方法包括 : 获得合成碳酸盐 ; 和制造包含合成碳酸盐的集料。 在一些实施方案中, 该合成碳酸盐包含封 存的 CO2。在一些实施方案中, 所述获得步骤包括从含二价阳离子的水, 例如含碱土金属离 子的水, 如咸水, 例如海水中, 沉淀合成碳酸盐。所述获得步骤可进一步包括在沉淀步骤之 前和 / 或之中使含二价阳离子的水, 例如含碱土金属离子的水与包含 CO2 的工业气态废物 流接触。 该工业气态废物流可以是如本文所述的任何流, 如来自发电厂、 铸造厂、 水泥厂、 精 炼厂或冶炼厂, 例如烟道气。 在一些实施方案中, 所述获得步骤进一步包括在沉淀步骤之前 或之中将该含碱土金属离子的水的 pH 升至 10 或更高。所述制造步骤可进一步包括生成包 含该合成碳酸盐的可凝固组合物 ; 和例如通过将该合成碳酸盐与水、 波特兰水泥、 飞灰、 石 灰和粘合剂中的一种或多种混合来使该可凝固组合物形成固体产物, 和任选通过模制、 挤 出、 制丸或压碎来机械精制该固体产物。所述制造步骤可包括使该合成碳酸盐与淡水接触 以将该合成碳酸盐转化成淡水稳定产物 ; 在一个实施方案中, 这通过在敞开区域铺开该合 成碳酸盐 ; 和使该铺开的合成碳酸盐与淡水接触来进行。
     在一些实施方案中, 本发明提供适用在建筑材料中的集料, 其中该集料具有低于 115lb/cu ft 的单位密度并且是负碳集料。
     在一些实施方案中, 本发明提供包括水凝水泥 ; 和含合成碳酸盐 ( 如上述任何合 成碳酸盐 ) 的集料的组合物。该组合物可进一步包括水, 且该组合物是可凝固组合物, 如混 凝土、 灰浆或土壤稳定剂。该组合物可进一步含有至少一种混合物。该水凝水泥可含有第 二合成碳酸盐, 例如其中该第二合成碳酸盐包含封存的 CO2。
     本发明还提供一种方法, 包括获得包含水凝水泥和含合成碳酸盐的集料的组合 物, 所述合成碳酸盐例如上述任何合成碳酸盐, 例如 CO2- 封存碳酸盐, 即含有封存的 CO2 的 碳酸盐 ; 和制造包含所得组合物的可凝固组合物。该方法可进一步包括使该可凝固组合物 凝固成固体产物, 如结构产品, 例如道路的组成部分, 如沥青, 或建筑地基。
     在一些实施方案中, 本发明提供包含含合成碳酸盐 ( 如上述任何合成碳酸盐 ) 的 集料的路基。 在一些实施方案中, 本发明提供包含含合成碳酸盐 ( 如上述任何合成碳酸盐 ) 的集料的沥青。
     本发明还提供制造含合成碳酸盐的集料的系统, 该系统包括 : 含碱土金属的水的 输入端 ; 对该水施以碳酸盐化合物沉淀条件和制造合成碳酸盐的碳酸盐化合物沉淀站 ; 和 用于制造包含合成碳酸盐的集料的集料制造器。在一些实施方案中, 该集料制造器包含机 械精制该包含合成碳酸盐的集料的精制站。
     在一些实施方案中, 本发明提供封存 CO2 的方法, 包括 :
     使含碱土金属离子的水与包含 CO2 的气态工业废物流接触 ;
     从该含碱土金属离子的水中沉淀合成碳酸盐, 其中该合成碳酸盐包含该来自气态 工业废物流的 CO2 ; 和制造包含合成碳酸盐的集料。
     在一些实施方案中, 本发明提供贝壳状断裂的 (concoidally-fracturing) 集料。
     2. 制造本发明的组合物
     本发明的集料可以通过任何合适的方法制造。例如, 本发明的集料可以通过从水 中沉淀前体钙和 / 或碳酸镁组合物随后加工所得沉淀物以产生集料来制造。构成本发明的 集料的碳酸盐化合物组合物可以是亚稳碳酸盐化合物, 或衍生自这类化合物, 其如下文更详细描述的那样从水, 如咸水中沉淀。本发明的碳酸盐化合物组合物包括沉淀的结晶和 / 或非晶碳酸盐化合物。
     如上综述, 本发明的集料包括碳酸盐化合物组合物, 例如从含二价阳离子的水, 如 含碱土金属的水中沉淀的组合物, 如盐水衍生的碳酸盐化合物组合物。 因此, 该集料的碳酸 盐化合物组合物是由一种或多种可能是非晶或结晶的不同的碳酸盐化合物构成的。 如上综 述, 该水泥的碳酸盐化合物组合物可包括一种或多种氢氧化物化合物。
     制备本发明的组合物的示例性方法包括可分成 1) 沉淀物的制备, 和 2) 由该沉淀 物制备集料的方法。
     1) 沉淀物的制备
     本发明的集料中所用的沉淀物可以由二价阳离子, 例如镁和 / 或钙离子和例如来 自工业废气源的 CO2 制备。该沉淀物通常是碳酸盐和 / 或碳酸氢盐, 为了制备该沉淀物, 必 须从该溶液中除去质子, 例如借助碱、 借助电化学方法, 或联用。
     二价阳离子 二价阳离子 ( 例如碱土金属的阳离子, 如 Ca2+ 和 Mg2+) 用于使用本发 明的系统和方法制造集料。 二价阳离子可根据在特定地点的可得性来自许多不同的二价阳 离子源。这类源包括工业废料、 海水、 盐水、 硬水、 矿物和任何其它合适的来源。
     在一些地点, 来自各种工业过程的工业废料流提供便利的二价阳离子源 ( 以及在 一些情况中, 该方法中可用的其它材料, 例如金属氢氧化物 )。 这类废料流包括但不限于, 采 矿废料 ; 化石燃料燃烧灰 ( 例如飞灰 ) ; 矿渣 ( 例如铁矿渣、 磷矿渣 ) ; 水泥窑废料 ; 炼油厂 / 石化精炼厂废料 ( 例如油田和甲烷层盐水 (mathane seam brine)) ; 煤层废料 ( 例如采气 盐水和煤层盐水 ) ; 纸加工废料 ; 水软化废盐水 ( 例如离子交换流出物 ) ; 硅加工废料 ; 农业 废料 ; 金属表面处理废料 ; 高 pH 纺织废料 ; 和碱渣。
     在一些地点, 用于本发明的系统和方法的便利的二价阳离子源是水 ( 例如, 包含 二价阳离子的水溶液, 如海水或地表盐水 (surfacebrine)), 这可以随实施本发明的特定地 点而变。可用的合适的二价阳离子水溶液包括包含一种或多种二价阳离子, 例如碱土金属 ( 例如, 钙、 镁 ) 的溶液。在一些实施方案中, 该水性二价阳离子源包含碱土金属阳离子。在 一些实施方案中, 该碱土金属阳离子包括钙、 镁或其混合物。在一些实施方案中, 该二价阳 离子水溶液包含 50 至 50,000ppm, 50 至 40,000ppm, 50 至 20,000ppm, 100 至 10,000ppm, 200 至 5000ppm, 或 400 至 1000ppm 的量的钙。在一些实施方案中, 该二价阳离子水溶液包含 50 至 40,000ppm, 50 至 20,000ppm, 100 至 10,000ppm, 200 至 10,000ppm, 500 至 5000ppm, 或 500 2+ 2+ 至 2500ppm 的量的镁。在一些实施方案中, 如果 Ca 和 Mg 都存在, 该二价阳离子水溶液 2+ 2+ 中 Ca /Mg 的比率为 1 至 1000 ; 1 至 800 ; 1 至 500 ; 1 至 250 ; 1 至 200 ; 1 至 150 ; 1 至 100 ; 1 至 50 ; 和 1 至 25。
     该二价阳离子水溶液可包含衍生自淡水、 微咸水、 海水或盐水 ( 例如天然存在 的盐水或人造盐水, 如地热电厂废水、 脱盐装置废水 ) 以及盐度大于淡水的其它含盐水 (saline) 的二价阳离子。微咸水是比淡水咸但不如海水咸的水。微咸水具有大约 0.5 至大 约 35ppt( 千分之份数 ) 的盐度。海水是来自海、 洋或任何其它盐水体的水, 其具有大约 35 至大约 50ppt 的盐度。盐水 (brine) 是盐饱和或接近饱和的水。盐水具有大约 50ppt 或更 大的盐度。 在一些实施方案中, 作为二价阳离子源的咸水源是选自海、 洋、 湖泊、 沼泽、 河口、 泻湖、 地表盐水、 深层盐水、 碱湖、 内海等的天然存在的来源。在一些实施方案中, 作为二价阳离子源的咸水源是选自地热电厂废水或脱盐废水的人造盐水。
     淡水通常是便利的二价阳离子源 ( 例如碱土金属的阳离子, 如 Ca2+ 和 Mg2+)。可以 使用许多合适的淡水源中的任意种, 包括从相对不含矿物的来源到相对富含矿物的来源的 淡水源。富矿淡水源可能是天然存在的, 包括多种硬水源、 湖泊或内海的任意种。一些富矿 淡水源, 如碱湖或内海 ( 例如 Turkey 的 Lake Van) 也提供 pH 改性剂来源。富矿淡水源也 可以是人造的。例如, 可以使贫矿 ( 软 ) 水与二价阳离子源, 如碱土金属阳离子 ( 例如钙或 镁 ) 接触以制造适用于本发明的制造集料的系统和方法的富矿水。可以使用任何便利的程 序 ( 例如添加固体、 悬浮液或溶液 ) 将二价阳离子或其前体 ( 例如盐、 矿物 ) 添加到淡水 ( 或本文所述的任何其它水 ) 中。 在一些实施方案中, 将选自钙和镁的二价阳离子添加到淡 水中。在一些实施方案中, 将选自钠和钾的一价阳离子添加到淡水中。在一些实施方案中, 将包含钙的淡水与硅酸镁 ( 例如橄榄石或蛇纹石 ) 或其产物或加工形式合并, 从而产生包 含钙和镁阳离子的溶液。
     许多矿物提供二价阳离子源, 此外, 一些矿物是碱源。镁铁质矿物和超镁铁质矿 物, 如橄榄石、 蛇纹石和任何其它合适的矿物可以使用任何便利的程序溶解。 可以通过提高 表面积, 如通过以传统方式研磨或通过例如喷射研磨, 以及通过利用例如超声技术加速溶 解。此外, 可以通过暴露在酸或碱中来加速矿物溶解。可以将金属硅酸盐 ( 例如硅酸镁 ) 和其它包含相关阳离子的矿物溶解在例如酸 ( 例如 HCl, 如来自电化学工艺的 HCl) 中以制 造例如, 镁和用在沉淀材料中的其它金属阳离子, 和随后集料或本发明的其它组合物。 在一 些实施方案中, 可以在由于添加二氧化碳和废气的其它组分 ( 例如燃烧气体 ) 而已经变酸 性的水性溶液中消化 (digest) 或溶解硅酸镁和其它矿物。或者, 可以通过用碱金属氢氧化 物水溶液 ( 例如 NaOH) 或任何其它合适的苛性材料溶解一种或多种金属硅酸盐 ( 例如橄榄 石和蛇纹石 ) 来使其它金属物类, 如金属氢氧化物 ( 例如, Mg(OH)2、 Ca(OH)2) 可用于集料 中。可以使用任何合适浓度的碱金属氢氧化物水溶液或其它苛性材料分解金属硅酸盐, 包 括高浓溶液和极稀溶液。碱金属氢氧化物 ( 例如 NaOH) 在溶液中的浓度 ( 按重量计 ) 可以 为例如 30%至 80%, 和 70%至 20%水。有利地, 用碱金属氢氧化物水溶液消化的金属硅酸 盐等可直接用于由废气流制造沉淀材料, 和随后集料。 此外, 可回收来自沉淀反应混合物的 碱值并再用于消化添加的金属硅酸盐等。
     在一些实施方案中, 二价阳离子水溶液可获自也提供燃烧气流的工厂。 例如, 在水 冷工厂, 如海水冷却的工厂中, 工厂已使用用于冷却的水可随后用作在本发明的系统或方 法中制造沉淀材料和随后集料用的水。如果需要, 该水可以在进入沉淀系统之前冷却。这 类方法可以例如与单程冷却系统一起使用。例如, 可以使用城市或农业供水作为工厂的单 程冷却系统。来自该工厂的水可随后用于制造沉淀材料, 其可随后用于在本发明的系统和 方法中制造集料, 且其中输出的水具有降低的硬度和更高的纯度。 如果需要, 这类系统可以 修改以包括安全措施 ( 例如用于检测干扰 (tampering), 如毒物的添加 ) 和与政府机构 ( 例 如 Homeland Security 或其它机构 ) 协作。在此类实施方案中可以使用附加的干扰或侵袭 安全措施 (tampering or attack safeguards)。CO2 源尽管在一些实施方案中, 水源中的 二氧化碳足以沉淀显著量的碳酸盐 ( 例如从海水中 ), 但通常使用附加的二氧化碳——对 CO2- 封存集料而言, 显而易见的是, 情况通常如此。 因此, 在某些实施方案中, 该方法进一步 包括使被施以矿物沉淀条件的水溶液, 例如二价阳离子水溶液与 CO2 源接触。与水溶液, 例如二价阳离子水溶液接触的 CO2 源可以是任何便利的 CO2 源。 该 CO2 源可以是气体、 液体、 固 体 ( 例如干冰 )、 超临界流体, 或溶解在液体中的 CO2。在某些实施方案中, 该 CO2 源是气态 CO2 源。这种气态 CO2 源在某些情况中是来自工厂的废料 ( 即工厂的活动过程的副产物 )。 在这些情况中, 工厂的性质可变, 其中可提到的工厂包括发电厂、 化学加工厂、 机械加工厂、 精炼厂、 水泥厂、 炼钢厂和作为燃料燃烧或另一加工步骤 ( 如水泥厂的煅烧 ) 的副产物产生 CO2 的其它工厂。对于 CO2- 封存集料, 这些废料流在一些实施方案中提供待封存的 CO2。该 气流可以是基本纯净的 CO2 或包含多组分, 包括 CO2 和一种或多种附加气体和 / 或其它物 质, 如灰分和其它微粒。
     包含 CO2 的废气流既包括还原条件流 ( 例如合成气、 转换的合成气、 天然气、 氢 气等 ), 又包括氧化条件流 ( 例如燃烧产生的烟道气 )。对本发明而言便利的特定废气 流包括含氧的燃烧工厂烟道气、 燃气轮机增压的锅炉产品气体 (turbo charged boiler product gas)、 煤气化产品气体、 转换的煤气化产品气体、 厌氧消化池产品气体 (anaerobic digesterproduct gas)、 井口天然气流 (wellhead natural gas stream)、 重整天然气或甲 烷水合物等。可以使用来自任何便利来源的燃烧气体制造集料。在一些实施方案中, 使用 工厂, 如发电厂、 水泥厂和煤加工厂的后燃烧排放烟囱中的燃烧气体。 因此, 该废料流可以由各种不同类型的工厂产生。适用于本发明的废料流包括燃 烧化石燃料 ( 例如煤、 油、 天然气 ) 和天然存在的有机燃料沉积物的人造燃料产品 ( 例如 沥青砂、 重油、 油页岩等 ) 的工厂产生的废料流。在一些实施方案中, 适用于本发明的系统 和方法的废料流源自燃煤发电厂, 如粉煤发电厂、 超临界煤发电厂、 物料燃煤发电厂 (mass burn coal power plant)、 流化床煤发电厂 ; 在一些实施方案中, 该废料流源自燃气或燃 油锅炉和蒸汽轮机发电厂、 燃气或燃油锅炉简单循环燃气轮机发电厂, 或燃气或燃油锅炉 联合循环燃气轮机发电厂。在一些实施方案中, 使用燃烧合成气 ( 即通过有机物, 例如煤、 生物质等的煤气化制成的气体 ) 的发电厂产生的废料流。在一些实施方案中, 使用来自 整体煤气化联合循环 (IGCC) 发电厂的废料流。在一些实施方案中, 使用余热锅炉 (Heat Recovery Steam Generator)(HRSG) 发电厂产生的废料流根据本发明的系统和方法制造集 料。
     水泥厂产生的废料流也适用于本发明的系统和方法。 水泥厂废料流包括来自湿法 和干法工厂的废料流, 这些工厂可以使用竖窑或回转窑, 并可以包括预煅烧炉。 这些工厂各 自可燃烧单一燃料, 或可相继或同时燃烧两种或更多种燃料。
     工业废气流可含有二氧化碳作为主要的非空气的衍生组分, 或尤其在燃煤发电 厂的情况下可含有附加组分, 如氮氧化物 (NOx)、 硫氧化物 (SOx) 和一种或多种附加气体。 附加气体和其它组分可以包括 CO、 汞和其它重金属, 和粉尘粒子 ( 例如来自煅烧和燃烧过 程 )。该气流中的附加组分还可能包括卤化物, 如氯化氢和氟化氢 ; 颗粒物, 如飞灰、 粉尘和 金属, 包括砷、 铍、 硼、 镉、 铬、 铬 VI、 钴、 铅、 锰、 汞、 钼、 硒、 锶、 铊和钒 ; 和有机物, 如烃、 二氧 芑和 PAH 化合物。在各种实施方案中, 一种或多种这些附加组分沉淀在通过使包含这些附 加组分的废气流与包含二价阳离子 ( 例如碱土金属离子, 如 Ca2+ 和 Mg2+) 的水溶液接触而形 成的沉淀材料中。例如, 如果气流中含有 SO2, 可以在沉淀材料中沉淀钙和镁的硫酸盐和亚 硫酸盐, 该沉淀可进一步包含碳酸钙和 / 或碳酸镁。其它组分, 如重金属, 例如汞可能截留 在沉淀物中或可能以固体化合物形式沉淀。
     尽管工业废气提供相对浓缩的燃烧气体源, 该方法和系统也适用于从含有比例如 烟道气低得多的污染物浓度的较不浓缩的来源 ( 例如大气 ) 中除去燃烧气体组分。 因此, 在 一些实施方案中, 方法和系统包括通过使用本文阐述的程序制造稳定的沉淀材料和随后集 料来降低大气中的污染物浓度。在这些情况中, 一部分大气中的污染物, 例如 CO2 的浓度可 以降低 10%或更多, 20%或更多, 30%或更多, 40%或更多, 50%或更多, 60%或更多, 70% 或更多, 80%或更多, 90%或更多, 95%或更多, 99%或更多, 99.9%或更多, 或 99.99%。大 气污染物的这种降低可以以本文所述的收率或以更高或更低的收率实现, 并且可以在一个 沉淀步骤或一系列沉淀步骤中实现。
     可以处理各种不同的气态废料流以利用各种燃烧气体组分。合适的气态废料 流 在 一 些 实 施 方 案 中 具 有 以 200ppm 至 1,000,000ppm, 如 200,000ppm 至 1000ppm, 包括 200,000ppm 至 2000ppm, 例如 180,000ppm 至 2000ppm, 或 180,000ppm 至 5000ppm, 也包括 180,000ppm 至 10,000ppm 的量存在的 CO2。 该废料流可包括一种或多种附加组分, 例如, 水、 NOx( 单氮氧化物 : NO 和 NO2)、 SOx( 单硫氧化物 : SO、 SO2 和 SO3)、 VOC( 挥发性有机化合物 )、 重金属如汞、 和颗粒物 ( 悬浮在气体中的固体或液体粒子 )。烟道气温度也可变。在一些实 施方案中, 烟道气的温度为 0℃至 2000℃, 如 60℃至 7000℃, 包括 100℃至 400℃。
     在该方法过程中的一定时刻, 如在对二价阳离子水溶液施以沉淀条件之前、 之中 或甚至之后使 CO2 源与水溶液, 例如二价阳离子 ( 例如碱土金属阳离子 ) 的水溶液接触。 水 溶液, 例如二价阳离子如碱土金属离子的水溶液与 CO2 源的接触可以对该阳离子溶液施以 CO2 沉淀条件之前和 / 或之中发生。相应地, 本发明的实施方案包括在对该阳离子水溶液施 以矿物沉淀条件之前使该二价阳离子水溶液与 CO2 源接触的方法。本发明的实施方案还包 括在对该二价阳离子溶液施以碳酸盐和 / 或碳酸氢盐化合物沉淀条件的同时使该二价阳 离子溶液与 CO2 源接触的方法。本发明的实施方案包括在对该阳离子溶液施以碳酸盐和 / 或碳酸氢盐化合物沉淀条件之前使该二价阳离子水溶液与 CO2 源接触的方法。本发明的实 施方案包括对该阳离子溶液施以碳酸盐和 / 或碳酸氢盐化合物沉淀条件之前和同时都使 该二价阳离子水溶液与 CO2 源接触的方法。 在一些实施方案中, 该相同二价阳离子溶液可以 循环一次以上, 其中第一沉淀周期主要除去碳酸钙和碳酸镁矿物并留下残留的碱性水, 可 以向其中加入其它碱土金属离子源, 可以使更多 CO2 循环通过它, 从而沉淀更多碳酸盐和 / 或碳酸氢盐化合物。要认识到, 在这些情况下, 可以在已添加二价阳离子之前、 之中和 / 或 之后使该 CO2 与水接触。
     气态废料流可以以将气态废料流从该工厂传送到沉淀设施的任何便利的方式从 工厂供应到沉淀地点。在一些实施方案中, 用从该工厂所在地 ( 例如工厂烟道 ) 通向一个 或多个沉淀地点的气体传送装置 ( 例如导管 ) 提供该气态废料流。该气态废料流的来源可 以在远离沉淀地点的位置, 以使该气态废料流的来源在距沉淀地点 1 英里或更远, 如 10 英 里或更远, 包括 100 英里或更远的地点。例如, 该气态废料流可以从远端工厂经由 CO2 气体 传送系统 ( 例如管道 ) 运往沉淀地点。该工厂生成的含 CO2 的气体在到达沉淀地点 ( 即进 行沉淀和 / 或集料制造的地点 ) 之前可以经过或不经过加工。在另一些情况下, 该气态废 料流的来源邻近沉淀地点。 例如, 沉淀地点与该气态废料流的来源集成, 如集成了用于沉淀 可用于制造集料的沉淀材料的沉淀反应器的发电厂。
     可以使用来自工厂的一部分气态废料流 ( 即并非全部气态废料流 ) 制造沉淀材料和随后集料。在这些实施方案中, 用于沉淀材料的沉淀的这部分气态废料流可以为该气态 废料流的 75%或更低, 如 60%或更低, 且包括 50%和更低。在另一些实施方案中, 在可用 于制造本发明的集料的沉淀材料的沉淀中使用该工厂产生的基本 ( 例如 80%或更多 ) 所 有的气态废料流。在这些实施方案中, 80%或更多, 如 90%或更多, 包括 95%或更多, 最多 100%的该来源生成的气态废料流 ( 例如烟道气 ) 可用于沉淀材料的沉淀。
     如上所述, 该气态废料流可以是获自工厂烟道或类似结构的气态废料流。在这些 实施方案中, 将管道 ( 例如导管 (duct)) 连向烟道以使气体经由该管道离开烟道并传送至 沉淀系统的适当位置。根据该沉淀系统的使用气态废料流的部分 (point) 的特定构造, 该 气态废料流的获得来源的位置可变 ( 例如以提供具有适当或所需温度的废料流 )。 因此, 在 需要具有 0℃至 1800℃, 如 60℃至 700℃温度的气态废料流的某些实施方案中, 可以在锅炉 或燃气轮机的出口处、 窑, 或在发电厂或烟囱的提供所需温度的任何位置获得烟道气。 如果 需要, 使烟道气保持在高于露点 ( 例如 125℃ ) 的温度以避免冷凝和相关的复杂情况。 如果 不能保持高于露点的温度, 可以采取步骤减轻冷凝的不利作用 ( 例如采用氟烃 ( 如聚 ( 四 氟乙烯 )) 衬里的不锈钢导管、 用水稀释和控制 pH 值等 ), 以使该导管不会迅速变质。
     可以使用任何便利的程序使该水与 CO2 源接触。如果 CO2 是气体, 可提到的接触程 序包括, 但不限于 : 直接接触程序, 例如将该气体鼓泡通过该咸水体, 并流接触方式, 即单向 流动的气相和液相流之间的接触, 对流方式, 即对向流动的气相和液相流之间的接触等。 因 此, 可以视便利使用注入器、 鼓泡器、 流体文丘里反应器、 喷雾器、 气体过滤器、 喷嘴、 塔盘或 填充塔反应器等实现接触。在一个实施方案中, 接触在扁平喷射液体层 (flat jet liquid sheet) 和该气体之间进行, 其中该液体层和该气体可以以对流、 并流或交叉流方向或以任 何其它合适的方式运动。参见例如全文经此引用并入本文的 2009 年 3 月 10 日提交的美国 专利申请 No.61/158,992。 在一个实施方案中, 接触是在室中在溶液的直径 5 微米或更小的 中性浮起液滴和气体之间进行。在一些实施方案中, 使用催化剂通过加速反应朝平衡进行 来加速二氧化碳溶解到水中 ; 该催化剂可以是无机物, 如三氯化锌或镉, 或有机物, 例如酶, 如碳酸酐酶。
     除质子 CO2 溶解到水溶液中以与碳酸氢盐和碳酸盐平衡地产生碳酸。为了沉淀碳 酸盐, 从该溶液中除去质子以使该平衡移向碳酸盐。 此外, 除去质子能使更多 CO2 进入溶液。 在一些实施方案中, 和 CO2 与例如含二价阳离子的水溶液的接触一起利用去除质子提高该 反应的一个相中的 CO2 吸收, 其中 pH 可保持不变、 提高或甚至降低, 随后迅速除质子 ( 例如 通过添加碱 ) 以使碳酸盐化合物迅速沉淀。可以通过任何便利的方法从该溶液中除去质 子。可提到的方法包括, 但不限于 : 使用天然存在的 pH 升高剂、 使用微生物和真菌、 使用合 成的化学 pH 升高剂、 回收人造废料流和使用电化学方式。
     术语天然存在的 pH 升高剂包括在可能创造或具有碱性局部环境的更宽环境中发 现的任何试剂。一些实施方案提供在添加到溶液中, 例如溶解时创造碱性环境的天然存在 的 pH 升高剂, 包括矿物。这类矿物包括, 但不限于 : 石灰 (CaO)、 方镁石 (MgO)、 火山灰、 超 镁铁质岩和矿物, 如蛇纹石, 和氢氧化铁矿物, 例如针铁矿和褐铁矿。在本文中提供了溶解 这类岩石和矿物的方法。一些实施方案包括使用天然碱性水体作为天然存在的 pH 升高剂。 天然碱性水体的实例包括, 但不限于 : 地表水源, 例如碱湖, 如 California 的 Mono Lake, 和 地下水源, 例如碱性蓄水层。另一些实施方案使用来自干燥的碱性水体的沉积物, 如沿着Africa’ s Great Rift Valley 的 Lake Natron 的地壳。另一些实施方案使用在它们的正 常代谢中分泌碱性溶液或分子的有机体作为 pH 升高剂。这类有机体的实例是产生碱性蛋 白酶的真菌, 例如具有 9 的最佳 pH 值的深海真菌焦曲霉, 和制造碱性分子的细菌, 例如在 BristishColumbia 的 Atlin wetland 中发现的蓝菌, Lyngbya sp., 其由光合作用附带提高 pH 值。在一些实施方案中, 使用有机体, 其中存在在代谢中使用以产生 pH 升高分子或溶液 的共 - 污染物, 例如使用将脲水解成氨的 B.pasteurii, 其中脲作为污染物存在。在一些实 施方案中, 独立于本方法培养有机体, 它们的碱性分泌用于补充该封存法。
     化学 pH 升高剂通常是指大量生产的市售合成化学品。一些实施方案使用化学 品, 包括 : 氢氧化物、 有机碱、 超强碱、 氧化物、 氨和碳酸盐。氢氧化物包括含 OH 的分子。 示例性氢氧化物是 : 氢氧化钠 (NaOH)、 氢氧化钾 (KOH)、 氢氧化钙 (Ca(OH)2) 和氢氧化镁 + (Mg(OH)2)。有机碱是含碳分子和并通常为 (-NR2H ) 形式。一些实施方案使用有机碱提高 pH, 包括 : 吡啶、 甲基胺、 咪唑、 苯并咪唑、 组氨酸和磷腈碱 (phophazene base)。一些实施方 案用氨, NH3, 除去质子 pH。一些人认为氨是有机碱, 尽管其不含碳分子。另一些实施方案使 用超强碱作为升高 pH 的化学品, 包括但不限于 : 乙醇盐、 氨基化钠 (NaNH2)、 氢化钠 (NaH)、 丁基锂、 二异丙基氨基化锂、 二乙基氨基化锂和双 ( 三甲基甲硅烷基 ) 氨基化锂。氧化物是 可用作质子受体 /pH 升高剂的另一些化学品。一些实施方案使用氧化物作为 pH 升高剂, 包 括但不限于 : 氧化钙 (CaO)、 氧化镁 (MgO)、 氧化锶 (SrO) 和氧化铍 (BeO)。
     来自各种工艺的废料流是可用于与水溶液中的质子反应的试剂例如碱的其它来 源。在一些实施方案中, 提供废料流作为碱。这类废料流包括, 但不限于 : 采矿废料 ; 化石 燃料燃烧灰 ; 矿渣, 例如铁矿渣、 磷矿渣 ; 水泥窑废料 ; 炼油厂 / 石化精炼厂废料, 例如油田 和甲烷层盐水 ; 煤层废料, 例如采气盐水和煤层盐水 ; 纸加工废料 ; 水软化, 例如离子交换 废盐水 ; 硅加工废料 ; 农业废料 ; 金属表面处理废料 ; 高 pH 纺织废料 ; 和碱渣。采矿废料包 括由从土地提取金属或另外的昂贵或有用的矿物产生的任何废料。一些实施方案使用来 自采矿的废料提高 pH, 包括 : 来自拜耳铝提取法的红泥 ; 来自海水 ( 例如在 Moss Landing, California) 的镁提取的废料 ; 和来自包括浸提的其它采矿法的废料。来自燃烧化石燃料 的工艺, 如燃煤发电厂的灰分产生通常富含 CaO 或可以在溶解时创造碱性环境的其它金属 氧化物的灰分。 在一些实施方案中, 提供由燃烧化石燃料, 例如燃煤发电厂产生的灰分作为 pH 升高剂, 包括飞灰, 例如离开烟囱的灰分和底灰。 水泥窑废料可用作 pH 升高剂, 因为留在 水泥窑中的粉末通常含有 CaO, 且在一些实施方案中就这样提供。 农业废料 ( 通过动物废物 或过量使用肥料 ) 可能含有氢氧化钾 (KOH) 或氨 (NH3) 或两者, 在本发明的一些实施方案中 提供农业废料作为 pH 升高剂。该农业废料通常收集在池子中, 但其也可能渗入蓄水层中, 在此可获取其以用在该封存法中。
     电化学方法是从溶液中除去质子的另一方式, 其通过从二价阳离子水溶液中的分 子中除去质子 ( 脱质子 ), 例如如果由 CO2 溶解产生的质子匹配或超过通过电化学法除去的 质子, 或通过制造苛性碱分子例如氢氧化物, 如通过氯碱法, 或其它电化学法。 例如, 可以在 容纳水溶液, 例如在一些实施方案中, 二价阳离子的水溶液的反应器中提供电极 ( 阴极和 阳极 ), 其中该电极可以按需要被选择性隔板, 如膜隔开。 如果需要, 可以收集水解产物的副 产物, 例如 H2、 钠金属等并按需要用于其它用途。可提到的其它电化学法包括但不限于, 美 国临时申请序号 Nos.61/081,299 和 61/091,729 中公开的那些 ; 它们的公开内容经此引用并入本文。
     在一些情况下, 使用低电压电化学程序从水溶液中除去质子, 例如在溶解 CO2( 直 接除去质子或间接地通过提供碱 ) 的同时和在沉淀步骤 ( 仍是直接或间接地 ) 中。 “低电 压”包括在 2、 1.9、 1.8、 1.7 或 1.6V 或更低, 如小于 1.5、 1.4、 1.3、 1.2、 1.1V 或更低, 如 1V 或更低, 包括 0.9V 或更低, 0.8V 或更低, 0.7V 或更低, 0.6V 或更低, 0.5V 或更低, 0.4V 或更 低, 0.3V 或更低, 0.2V 或更低, 或 0.1V 或更低的平均电压下运行的电化学程序。可使用不 生成氯气的电化学程序。也可使用不生成氧气的电化学程序。也可使用不生成氢气的电化 学程序。在一些情况下, 该电化学程序是不生成任何气态副产物的电化学程序。在一些实 施方案中, 该电化学程序在阴极处生成氢气, 其输送至阳极, 在此将其转化成质子。参见例 如 2008 年 12 月 24 日提交的美国专利申请 No.12/344,019 和 2008 年 12 月 23 日提交的美 国专利申请 No.12/375,632 和 2008 年 12 月 23 日提交的 PCT 申请 No.US08/088242 和 2009 年 1 月 28 日提交的 PCT 申请 No.US09/32301, 所有这些都全文经此引用并入本文。
     这些除质子法可以任何合适地结合使用。 一些实施方案提供 pH 升高 / 除质子法的 组合, 包括 : 与市售碱例如 NaOH 联合使用人造废料, 例如飞灰或采矿废料 ; 与电化学方法, 例如脱质子和天然存在的 pH 升高剂, 例如蛇纹石矿物联合使用人造废料 ; 或与市售碱和天 然存在的 pH 升高剂联合使用人造废料。一些实施方案提供 pH 升高 / 除质子的组合, 以使 2-30%的 pH 升高剂是飞灰, 20-80%%的 pH 升高剂是例如来自采矿过程的废料, 如红泥, 或 矿物, 如蛇纹石, 或其组合, 且 10-50%的 pH 升高剂是在电化学法中通过脱质子来除质子。
     沉淀条件 在 CO2 溶解在含二价阳离子的水溶液中后, 或在一些实施方案中在溶 解之中或之后, 进行沉淀。可用的沉淀条件可变。例如, 水温可以在适合发生所需矿物的沉 淀的范围内。在一些实施方案中, 水温可以为 5 至 70℃, 如 20 至 50℃, 包括 25 至 45℃。因 此, 尽管给定的一组沉淀条件可具有 0 至 100℃的温度, 但在某些实施方案中可能不得不调 节水温以产生所需沉淀物。
     尽管在给定沉淀过程中该二价阳离子水溶液的 pH 值可以为 5 至 14, 在一些情况 下, 除去质子, 例如将 pH 值升至碱性水平, 以产生所需沉淀产物。在一些实施方案中, 将 pH 值升至足以使所需 CO2 封存产物沉淀的水平。因此, 可以将 pH 值升至 9.5 或更高, 如 10 或 更高, 包括 10.5 或更高。在一些实施方案中, 调节条件以便在沉淀过程中几乎或完全不释 放 CO2。以海水为例, 在正常海水中, 93%的溶解的 CO2 是碳酸氢根离子 (HCO3-) 形式, 且 6% -2 是碳酸根离子 (CO3 ) 形式。当碳酸钙在环境 pH 下从海水中沉淀时, 释放 CO2。在 pH 大于 10.33 的淡水中, 多于 90%的碳酸盐是碳酸根离子形式, 且在碳酸钙沉淀过程中不释放 CO2。 在海水中, 在接近 pH 9.7 的略低 pH 下发生这种转变。 如果需要, 可以将 pH 值升至如果不是 消除的话则最小化沉淀过程中的 CO2 生成的水平。例如, 可以将 pH 值升至 10 或更高的值, 如 11 或更高的值。在某些实施方案中, 将 pH 值升到 7 至 11, 如 8 至 11, 包括 9 至 11, 例如 9 至 10, 或 10 至 11。在此步骤中, 可以将 pH 值升高并维持在所需碱性水平, 以使 pH 值保持 在恒定碱性水平, 或可以按需要使 pH 值在两个或更多个不同碱性水平之间转变或循环。
     也可以将 pH 升高剂以外的添加剂引入该二价阳离子水溶液以影响制成的沉淀物 的性质。因此, 该方法的某些实施方案包括在对该阳离子溶液施以沉淀条件之前或之中在 该溶液中提供添加剂。 可以用痕量的某些添加剂促成某些碳酸钙多晶型物。 例如, 通过在碳 酸钙过饱和溶液中包含痕量的氯化镧形式的镧, 可以以极高收率获得球霰石—— CaCO3 的高度不稳定的多晶型物, 其以各种不同的形态沉淀并迅速转化成方解石。可用的除镧外的 其它添加剂包括但不限于过渡金属等。例如, 亚铁或正铁的添加已知促使形成本来不会形 成的无序白云石 ( 原白云石 )。
     也可以通过选择适当的主要离子比率来影响沉淀物的性质。 主要离子比率也显著 影响多晶型物形成。 例如, 随着水中的镁∶钙比提高, 文石优于低镁方解石变成优先的碳酸 钙多晶型物。在低镁∶钙比下, 低镁方解石是优选多晶型物。因此, 可以使用宽范围的镁∶ 钙 比, 包 括 例 如 大 于 100/1、 50/1、 20/1、 10/1、 5/1、 2/1、 1/1、 或 小 于 1/2、 1/5、 1/10、 1/20、 1/50、 1/100。在某些实施方案中, 该镁∶钙比取决于该沉淀法中所用的二价阳离子水溶液 ( 例如海水、 盐水、 微咸水、 淡水 ), 而在另一些实施方案中, 例如通过添加外源钙或镁 ( 例如 由岩石或矿物, 如蛇纹石的溶解产生 ), 将镁∶钙比调节至落在一定范围内。在一些实施方 案中, 使用高钙水源, 如地质盐水或其它盐水, 并通过添加高镁源, 如溶解的蛇纹石或其它 岩石或矿物来朝 1 ∶ 1Ca ∶ Mg 调节矿物比。这种 Ca ∶ Mg 比率能够在沉淀阶段形成原白 云石, 其可以在集料或人造岩石的形成中进一步转化成白云石。
     当存在二氧化硅时, 可能形成许多附加矿物。用二氧化硅替代碳酸盐矿物是古老 沉积岩和深海沉积物的共同特征。二氧化硅以许多形式添加。在碱性 pH 下, 二氧化硅溶解 并可供与沉淀的碳酸盐反应。二氧化硅源包括硅藻土、 来自煤燃烧的飞灰和硅粉。也使用 碳酸镁清除废水中的二氧化硅, 表明也可以在短时间内发生溶解的二氧化硅 / 碳酸盐矿物 相互作用。Klein 和 Walter(1992) 进行实验以测定水性 SiO2 在 25℃至 50℃的温度下吸收 到充分表征的 Ca-Mg 碳酸盐上的速率、 时间依赖性和程度, 其中该水性 SiO2 的溶液为 1.5 至 3.5mM SiO2。 测试三种不同的反应条件 : (1) 在指定的方解石过饱和程度下短期方解石附生 沉淀到方解石晶种上的过程中的二氧化硅吸收 ; (2) 相对于方解石, 近平衡的二氧化硅吸 收; 和 (3) 在亚稳定碳酸盐 ( 文石, 18 摩尔% Mg- 方解石 ) 的相对长期 (3 周 ) 重结晶过程 中的二氧化硅吸收。在快速碳酸盐沉淀过程中, 二氧化硅最多吸收到碳酸盐上。但是, 方解 石沉淀动力学不受 SiO2 与碳酸盐表面的相互作用的影响, 并在二氧化硅掺杂和不含二氧化 碳的实验中在同等方解石过饱和程度下观察到类似沉淀速率。在近平衡实验中, SiO2 吸收 非常依赖于时间, 但量级较小, 且在较高 SiO2 浓度、 较低 pH 和较高温度下, 吸收增强。在长 期文石和 Mg- 方解石重结晶实验中, SiO2 吸收类似于用低 Mg 方解石进行的近平衡实验。在 碳酸盐沉淀物中存在二氧化硅的一个优点与它们稍后形成硬的稳定集料粒子的潜力有关。
     沉淀速率也极大影响化合物相形成。通过用所需相接种 (seed) 该溶液, 可以实现 最快速的沉淀。在不接种的情况下, 可以通过快速提高该二价阳离子水溶液的 pH 值来实现 快速沉淀, 这产生更非晶态的成分。 当存在二氧化硅时, 当存在二氧化硅时, 反应速率越快, 越多二氧化硅与碳酸盐沉淀物结合。PH 值越高, 沉淀越快且沉淀物越非晶态。
     相应地, 由二价阳离子水溶液制造所需沉淀物的一组沉淀条件在某些实施方案中 包括溶液温度和 pH 值, 在一些情况下包括添加剂和离子物类在该二价阳离子水溶液中的 浓度。沉淀条件也可以包括如混合速率、 搅拌形式 ( 如超声 ) 以及晶种、 催化剂、 膜或底物 的存在等因素。在一些实施方案中, 沉淀条件包括过饱和条件、 温度、 pH 和 / 或浓度梯度, 或循环或改变任何这些参数。用于制备本发明的碳酸盐和 / 或碳酸氢盐化合物沉淀物的程 序可以是分批或连续程序。 要认识到, 为制造给定沉淀物, 沉淀条件在连续流系统中可能与 分批系统不同。在由水产生碳酸盐矿物沉淀物后, 从母液中分离所得沉淀的碳酸盐矿物组合物以 产生分离的碳酸盐矿物沉淀产物, 在本文中也被描述为脱水沉淀物或水沉淀物滤饼。可以 使用任何便利的方法, 包括机械法实现沉淀物的分离, 例如其中从沉淀物中沥出大部分过 量水, 例如仅靠重力或辅以真空、 机械加压, 通过从母液中过滤沉淀物以产生滤液等。大部 分水的分离产生湿的脱水沉淀物。
     2) 由沉淀物制造集料或人造岩石
     随后进一步处理由上述方法制成的沉淀物以制造本发明的集料或人造岩石。
     在一些实施方案中, 随后将该脱水沉淀物干燥以产生产物。可以通过风干滤出物 来实现干燥。在风干滤出物的情况下, 风干可以按需要在 -70℃至 120℃的温度下。在某些 实施方案中, 通过冷冻干燥 ( 即冻干 ) 实现干燥, 其中将沉淀物冷冻, 降低周围压力并加入 足够的热以使该材料中的冻结水从冻结的沉淀相中直接升华成气体。在再一实施方案中, 将该沉淀物喷雾干燥以干燥该沉淀物, 其中通过使其穿过热气体 ( 如来自发电厂的气态废 料流 ) 来干燥含沉淀物的液体, 例如其中经由雾化器将液体进料泵送到主干燥室中并使热 气体并流或对流通向该雾化器。 根据该系统的特定干燥程序, 干燥站可以包括过滤元件、 冻 干结构、 喷雾干燥结构等。在某些实施方案中, 在适当时, 使用来自发电厂或类似操作的废 热实施该干燥步骤。
     如果需要, 该沉淀物在沉淀之后和分离之前可以在母液中储存一段时间。 例如, 该 沉淀物可以在 1℃至 40℃, 如 20℃至 25℃的温度下在母液中储存 1 至 1000 天或更久 ( 例 如许多年或十年或更久 ), 如 1 至 10 天或更久。
     在水沉淀物滤饼阶段, 可以使用任何便利的方法制造集料。在本文中描述了几种 方法。在一些情况中, 该脱水沉淀物可以在水、 粘合剂、 表面活性剂、 絮凝剂 ( 其可能来自 该方法的较早阶段 ) 或其它合适的物质存在下球磨。随后进一步处理该沉淀物 ; 这可以简 单到将其从球磨机中取出并置于在空气流下的容器中, 在此其自固结成可随后进一步使用 的物料。在一些情况中, 该滤饼可以与淡水反应以产生在淡水中更稳定的不同的一组固体 沉淀化合物, 随后进一步加工以产生集料。 在一些情况中, 可以对该滤饼施以造成人为岩化 ( 即人为生产岩石 ) 的温度和压力条件, 其可随后进一步加工 ; 例如, 可以压制或堆叠滤饼, 或可以使滤饼通过挤出机。 在这些情况的一些中, 在不使用粘合剂的情况下进行该方法, 以 制造不含粘合剂或含有最小限度的粘合剂的合成岩石, 例如集料。 在另一些情况下, 使用一 种或多种粘合剂。
     产生淡水稳定的再沉淀物质的示例性方法包括下列 : 可以以足以使该沉淀物形成 固体产物的方式将该沉淀物与淡水合并, 其中认为该沉淀物中存在的亚稳碳酸盐化合物已 转化成在淡水中稳定的形式。通过控制该湿材料的水含量, 可以控制最终集料的孔隙率以 及最终强度和密度。通常, 湿滤饼为 40-60 体积%水。对于较致密的集料, 该湿滤饼< 50% 水, 对于较不致密的集料, 该湿滤饼> 50%水。 在硬化后, 所得固体产物可随后机械加工, 例 如压碎或以其它方式弄碎并拣选以制造具有所需特性, 例如尺寸、 特定形状等的集料。 在这 些方法中, 可以以基本连续的方式或在分开的时间进行凝固和机械加工步骤。
     在某些实施方案中, 可以将大量沉淀物储存在敞开环境中, 在此该沉淀物暴露在 大气中。该沉淀物可以用淡水以便利方式冲洗, 或被雨淋或以其它方式天然暴露在淡水中 以产生集料产物。该集料产物可随后如上所述机械加工。在本发明的一个实施方案的实例中, 使用传送带和公路压路机将该沉淀物以均匀 形式机械铺到压实的地表上至相关深度, 例如最多 12 英寸, 如 1 至 12 英寸, 包括 6 至 12 英 寸。 随后用淡水以便利的比率, 例如每立方英尺沉淀物 1.5 加仑的水冲洗该铺开的材料。 随 后用钢辊 ( 如用于压实沥青的那些 ) 多道压实该材料。定期, 例如每周再冲洗该表面, 直至 该材料表现出所需化学和机械性质, 此时通过压碎将该材料机械加工成集料。
     在涉及使用温度和压力的方法中, 通常先干燥该脱水的水沉淀物滤饼。该滤饼随 后在回水和升高的温度和 / 或压力的组合下暴露一段时间。加回的水量、 温度、 压力和暴露 时间以及滤饼厚度的组合可以根据原材料的组成和所需结果而变。在本文中描述了使该 材料暴露在温度和压力下的许多不同方式 ; 要认识到, 可以使用任何便利的方法。示例性 的干燥程序是在 40℃下暴露 24-48 小时, 但可以视便利使用更高或更低的温度和时间, 例 如 20-60℃ 3-96 小时或更久。加回水至所需百分比, 例如至 1% -50%, 例如 1%至 10%, 如 1、 2、 3、 4、 5、 6、 7、 8、 9 或 10 % w/w, 如 5 % w/w, 或 4-6 % w/w, 或 3-7 % w/w。在一些情况 中, 如在室外储存并暴露在大气降水 (meteoric precipitation) 中的材料中那样, 加回的 水的确切百分比不重要。可以按需要调节该滤饼的厚度和尺寸 ; 该厚度在一些实施方案中 可以为 0.05 英寸至 5 英寸, 例如 0.1-2 英寸, 或 0.3-1 英寸不等。在一些实施方案中, 该滤 饼可以为 0.5 英寸至 6 英尺或甚至更厚。该滤饼随后通过任何便利的方法 ( 例如在使用加 热压板的印压机中 ) 在升高的温度和 / 或压力下暴露给定时间。可以例如通过来自工业 废气流, 如烟道气流的热提供用于升高温度, 例如供给压板的热。该温度可以为任何合适 的温度 ; 通常, 较厚的滤饼需要较高的温度 ; 温度范围的实例是 40-150℃, 例如 60-120℃, 如 70-110℃, 或 80-100℃。类似地, 该压力可以是任何适合产生所需结果的压力 ; 示例性 压力包括 1000-100,000 磅 / 平方英寸 (psi), 包括 2000-50,000psi, 或 2000-25,000psi, 或 2000-20,000psi, 或 3000-5000psi。最后, 滤饼受压时间可以为任何合适的时间, 例如 1-100 秒, 或 1-100 分钟, 或 1-50 分钟, 或 2-25 分钟, 或 1-10,000 天。所得硬片随后任选固 化, 例如通过置于室外储存, 通过置于室中——在此它们受到高湿度和热等。 任选固化的这 些硬片随后本身用作建筑材料或压碎制造集料。
     提供温度和压力的一种方法是堆叠脱水和干燥的厚片 (slab)。例如, 在这种方法 中, 可以在例如 1 英寸至 10 英尺厚, 或 1 英尺至 10 英尺厚的厚片中例如用烟道气干燥脱水 沉淀物。通过将厚片彼此叠置, 提供压力 ; 通过厚片层的更大厚度, 例如 10-1000 英尺或甚 至更大, 如 100-5000 英尺实现更大压力。 根据所需结果, 在适当时间 ( 其可以为数天、 数周、 数月、 或甚至数年 ), 例如通过采石法从指定的层级, 例如从底部取出岩化厚片, 并按需要处 理以制造集料或其它岩石材料。
     提供温度和压力的另一方法是如实施例中更充分描述的那样使用压机。 可以使用 合适的压机, 例如印压机在所需温度 ( 使用例如由烟道气或由制造沉淀物的方法的其它步 骤提供的热, 例如来自电化学法 ) 下提供压力所需时间。可以以类似方式使用一组辊。
     使滤饼暴露在升高的温度和压力下的另一方式是借助挤出机, 例如也进一步描述 在实施例中的螺杆型挤出机。可以配备该挤出机的机筒以实现升高的温度, 例如通过装护 套; 可以由例如烟道气等提供这种升高的温度。挤出可用作在加压操作之前预加热和干燥 该原料的方式。可以借助压模、 经由辊、 经由具有成形凹口的辊 ( 其可以提供所需的几乎 任何集料形状 )、 在其运行时提供压缩的带之间, 或任何其它便利的方法实施这种加压。或者, 该挤出机可用于经由模头挤出材料, 从而使该材料在挤过模头时受压并产生任何所需 形状。 在一些实施方案中, 将该碳酸盐矿物沉淀物与淡水混合, 随后置于旋转螺杆挤出机的 进料段。可以加热该挤出机和 / 或口型以进一步辅助该过程。螺杆的旋转沿其长度传送该 材料并随着螺杆的螺纹深度降低而将其压缩。 该挤出机的螺杆和机筒可进一步包括在机筒 中的排气孔以及在螺杆中的与机筒排气口对应的减压区。特别在加热的挤出机的情况下, 这些排气区能够从传送的物料中释放蒸汽, 从而从该材料中除去水。
     该螺杆传送的材料随后挤过模头区段, 其进一步压缩该材料和将其成形。模头中 的典型开口可以是圆形、 椭圆形、 正方形、 矩形、 梯形等, 尽管可以通过调节该开口的形状来 制造最终集料所需的任何形状。可以通过任何便利的方法, 如通过飞刀将离开模头的材料 切割成任何便利的长度。典型长度可以是 0.05 英寸至 6 英寸, 尽管在这些范围以外的长度 也有可能。典型直径可以是 0.05 英寸至 1.0 英寸, 尽管在这些范围以外的直径也有可能。
     加热的模头区段的使用可进一步通过加速该碳酸盐矿物转化成硬的稳定形式来 辅助集料的形成。在粘合剂的情况下, 也可以使用加热的模头使该粘合剂硬化或凝固。在 加热的模头段中常使用 100℃至 600℃的温度。该加热的模头所用的热可以完全或部分来 自烟道气或制造该沉淀物的方法中使用的其它工业气体, 其中先将烟道气送至模头以使热 从该热烟道气转移至模头。
     不受制于理论, 上述过程被认为通过原始滤饼中的化合物重新形成不需要附加粘 合剂而彼此粘合并一起留在防断裂或压碎的粘结物料中的形式来引发人为岩化, 即岩石的 形成。因此, 在一些实施方案中, 本发明提供不使用粘合剂制造合成岩石, 例如合成的含碳 酸盐的岩石的方法。可以例如使用如上所述的方法形成岩石。在一些实施方案中, 仅使 用热和压力形成人造岩石, 其中该岩石具有至少 2.5Mohs, 或至少 3Mohs, 或 3-10Mohs, 或 3-8Mohs, 或 3-6Mohs, 或 2-6Mohs 的硬度。
     可以在集料形成之前将粘合剂添加到碳酸盐矿物中以助于将粉状材料粘合在一 起, 从而提供结构稳定性或用于在进一步加工时使粉末保持固定。典型粘合剂包括但不限 于, 波特兰水泥、 飞灰、 二氧化硅、 柠檬酸、 黄原胶, 或其组合。 粘合剂包括在加热过程中变得 相对流动并在冷却时再硬化的那些。 这些粘合剂提供挤出时的加工助剂以及将矿物粉末粘 合在一起。这些粘合剂的实例包括沥青和热塑性聚合物, 如聚乙烯。可用的其它粘合剂是 与自身或与矿物原料化学反应以形成包封和粘结矿物原料的基质的那些。 这些粘合剂的实 例包括热固性树脂, 如环氧树脂、 酚醛树脂或聚酯, 和反应性无机材料, 如波特兰水泥、 飞灰 和石灰。当使用粘合剂时, 可以根据矿物原料的性质使用任何合适百分比的粘合剂 ; 在一 些实施方案中, 可以使用 0.05%至 50% w/w, 如 0.1%至 20%, 或 0.5%至 10%, 或 0.5%至 5%, 或 0.5%至 2%。
     成形后的加工可以包括进一步湿处理、 干燥、 烧结或用于加速和完成所需的任何 化学反应或形态变化的类似技术。其它的后加工处理包括粒子附聚或粒度降低, 如通过颚 式破碎或研磨。 可以使用任何便利的筛子或过滤器进一步分离集料的粒度。 在一些情况下, 集料的粒度均匀 ( 即相对类似的粒度 ), 在另一些情况下, 粒度差别极大。
     通过上述形成技术制成的本发明的集料可以根据其在形成过程中经受的条件而 差别极大。通过控制该集料的尺寸、 形状、 表面结构和内腔结构, 可以为该集料设计所需性 质。在一些实施方案中, 可以将本发明的集料加工成具有高长宽比的形状, 其中其长 度显著长于其宽度。 “显著长于” 是指长 2 至 100 倍, 如长 5 至 50 倍, 包括长 5 至 10 倍。由 于沿其长轴的纵向排列, 具有高长宽比的集料可改进混凝土流动性质和集料互锁。在一些 情况下, 本发明的集料可以呈圆柱形、 管形或胶囊形 ( 图 3A)。 “胶囊” 是指具有圆缘的圆柱 管。在另一些情况下, 本发明的集料呈棱柱形。术语 “棱柱” 以其常规意义使用以表示由 n 边多边底面、 平移面 (translated copy) 和连接相应边的 n 面构成的多面体。棱柱的连接 面为平行四边形, 且与底面平行的所有横截面都相同。
     图 3B 显示通过本发明提供的三 ( 即 n = 3) 棱柱集料的实例。该集料可以在提供 优异的集料互锁的同时具有高的混凝土流动性质。
     在一些实施方案中, 本发明的集料可以包括形状和尺寸的混合物。集料混合物可 具有包括但不限于棱柱 (n = 3 至 15)、 球形、 多面体、 圆柱体、 三角形、 曲面形、 环状、 椭球形、 卵形、 星形、 盘形和它们的任何组合的形状。根据其预期用途, 该混合物中的不同形状的类 型的数量可变。该混合物中的形状的类型和数量可以均布, 或一些形状的百分比高于另一 些。在一个实施方案中, 本发明的集料混合物可以具有不同形状, 但具有仅略微不同的粒 度。 “略微不同” 是指在一些实施方案中不超过 0.05 英寸, 或在一些实施方案中不超过 0.10 英寸, 或在一些实施方案中不超过 0.20 英寸的粒度偏差。在另一实施方案中, 该集料混合 物可具有不同尺寸, 但具有类似或相同的形状 ( 例如不同尺寸的三棱柱集料 )。 在再一实施 方案中, 该集料混合物的形状和尺寸都不同。本发明还提供了含有形状和尺寸相同的粒子 的集料混合物。
     在示例性实施方案中, 本发明的集料混合物包含具有不同形状和不同尺寸的集 料。较大集料之间的空隙空间可以被较小集料占据, 从而降低集料粒子之间的总体空隙。 这能够生产强韧耐久的集料基, 从而降低道路或混凝土中的水泥含量。 例如, 集料混合物可 包含球体和 “桥状物” ( 图 3C)。成形为桥状物的集料可占据球体形集料粒子之间的空隙空 间, 从而产生紧密堆积的集料混合物。
     在另一实施方案中, 本发明的集料混合物包含用在混凝土中时产生高的开放空隙 空间量的集料。 这些集料通常含有具有类似尺寸以及设计成在集料粒子之间产生开放空隙 空间的形状的粒子, 从而提高填充集料床的孔隙率。图 3D 和 3E 显示这类中的示例性集料 ( 分别是 “间隔分级的球体” 和棱柱 )。在某些实施方案中, 开放空隙空间未被填充以提供 更高水平的孔隙率和穿过材料的液流。在某些实施方案中, 该开放空隙可以被水泥填充以 产生高水泥含量混凝土或也可以被非反应性填料填充。 由包含具有类似尺寸的类似形状的 混合物产生的空隙空间也可以被聚合材料或其它结构支承件填充。
     也可以制造本发明的集料以沿集料粒子的一个或多个轴具有一个或多个连接的 开放空隙。在一些情况下, 这类集料可以是含有贯穿集料的管状空隙空间的中空圆柱体或 多面棱柱体形式 ( 见图 3F、 3G 和 3H)。 这类结构可以通过挤出、 模制或从固体集料粒子中造 孔来制造。该集料中的开放空隙可随后填充 ( 例如用水泥、 聚合纤维等 ) 或可保持未填充。
     本发明提供的另一实施方案是中空集料。 中空集料可以在具有一个或多个基本上 空的内腔的同时具有任何形状 ( 例如球体、 盘形、 多面棱柱体等 ) 和尺寸。 “基本上空的” 是 指该内腔含有在某些实施方案中为集料内腔总体积的 10%至 100%的内腔空隙空间。该集 料的内腔可以是多孔的 ( 具有空隙空间凹坑 ) 或可以具有蜂窝状结构。本发明提供的另一实施方案是具有利于任何所需液体流过填充集料床的外凹槽 的集料。 外凹槽可以例如蚀刻到平滑表面的集料中, 或可以通过模制或挤出该集料来制造。 凹槽类型可变, 其中在一些情况下, 凹槽型式可以是规则的 ( 即非无规间隔的凹槽 ) 或可以 是无规的。也可以直接穿过集料表面制造凹槽或可以具有曲面型式。
     在示例性实施方案中, 集料外凹槽可以形成互锁集料。将互锁集料粒子成形成使 集料粒子的外凹槽嵌入其它集料粒子的凹槽。粒子之间的互锁可以紧密 ( 即凹槽严密嵌 合, 从而降低粒子间的空隙空间 ) 或可以松散。
     在本发明的示例性实施方案中, 具有不同类型外凹槽的各种集料形状可结合产生 互锁形成平滑耐久表面但仍允许任何所需流体流过该材料的集料。 具有外凹槽的良好分级 ( 即均匀覆盖多种粒度 ) 的球体集料是一种这样的实施方案。另一些实施方案包括具有各 种形状的外凹槽的集料, 这些外凹槽具有开放连接空间, 可经过其中心使流体穿过集料粒 子。在某些实施方案中, 一种或多种集料形状包括有利于液体流过该材料的通孔 ( 例如如 上所述 )。 具有集料粒子的不同组合方式的示例性集料混合物显示在图 3I、 3J、 3K 和 3L 中。
     如上所述, 本发明的集料组合物包含具有可根据该集料的预期用途 ( 例如使用该 集料的材料的所需性质 ) 选择的多种形状和表面结构的集料粒子。示例性的集料形状包 括, 但不限于 : 圆形、 不规则形状、 薄片形、 角形、 细长形、 薄片 - 细长形、 次棱角形、 次圆形、 滚圆形、 多边形、 圆柱形、 球形、 三角形、 曲面形、 环形、 椭球形、 卵形、 星形、 棱柱形和它们的 任何混合。示例性的集料表面结构包括但不限于选自玻璃质、 光滑、 颗粒状、 粗糙、 带槽、 结 晶、 蜂窝状及其混合的表面结构。 图 1 提供根据本发明的一个实施方案的集料制造法的示意性流程图。在图 1 中所 示的实施方案中, 先向二价阳离子, 如 Ca2+ 或 Mg2+ 的水溶液 (10) 中充入废气流 30 以制造包 含 CO2 的沉淀反应混合物, 随后对该反应混合物施以沉淀条件。在一些实施方案中, CO2 充 气和沉淀可以同时发生, 例如在单件设备中。如图 1 中所示, 使废气流 30 在沉淀步骤 20 中 与二价阳离子 10 接触。通过在二价阳离子水溶液中充入废气组分, CO2 之类的组分与水分 子结合产生例如, 碳酸、 碳酸氢根和碳酸根离子。同样地, SOx 和 NOx 之类的废气组分形成 水性含硫和含氮物类。因此, 水的充气造成例如水的 CO2 含量 ( 呈现碳酸、 碳酸氢根和碳酸 根离子形式 ) 提高, 这伴随着与该水接触的废料流中的 CO2 分压的降低。 该沉淀反应混合物 可以是酸性的, 具有 6 或更低, 如 5 或更低, 包括 4 或更低的 pH ; 但是, 如本文中进一步详细 描述的那样, 可以在将该二价阳离子水溶液充气以形成沉淀反应混合物之前使该沉淀反应 混合物呈碱性 (pH 7 或更大, 例如 pH 8、 9、 10、 11 或 12)。 在某些实施方案中, 充入该水中的 废气中的 CO2 浓度为 1%或更高, 2%或更高, 4%或更高, 8%或更高, 10%或更高, 11%或更 高, 12%或更高, 13%或更高, 14%或更高, 15%或更高, 20%或更高, 25%或更高, 包括 50% 或更高, 如 75%或更高。 在一些实施方案中, 该废气包含其它组分, 如硫氧化物 (SOx) ; 氮氧 化物 (NOx) ; 重金属如汞、 镉、 铅、 硒等 ; 放射性物质 ; 颗粒物 ; 挥发性有机成分等。这些组分 中的一种或多种也可溶解形成水溶液。例如, SOx 可以以硫酸盐和 / 或亚硫酸盐形式 ; NOx 以硝酸盐和 / 或亚硝酸盐形式 ; 汞以氯化汞形式溶解 ; 诸如此类。在一些实施方案中, 调节 接触条件以便除 CO2 外, 该废气的其它组分从气相移至水相, 如 SOx 和 / 或汞, 以最终截留 在本发明的集料中。
     可用的接触程序包括, 但不限于 : 直接接触程序, 例如将该气体鼓泡通过该水体,
     并流接触方式, 即单向流动的气相和液相流之间的接触, 对流方式, 即对向流动的气相和液 相流之间的接触, 交叉流方式等。因此, 可以视便利使用注入器、 鼓泡器、 流体文丘里反应 器、 喷雾器、 气体过滤器、 喷嘴、 塔盘或填充塔反应器等实现接触。在一个实施方案中, 接触 是经由交叉流接触器, 其中气体以与水或其它液体的平层垂直的方向流动。在一个实施方 案中, 接触在室中在溶液的直径 5 微米或更小的中性浮起液滴和气体之间进行。
     在沉淀步骤 20, 沉淀碳酸盐和 / 或碳酸氢盐化合物。可用的沉淀条件包括改变水 的物理环境以产生所需沉淀产物的那些。例如, 可以将水温升至适合发生所需碳酸盐化合 物的沉淀的值。在此类实施方案中, 可以将水温升至 5 至 70℃, 如 20 至 50℃, 包括 25 至 45℃。因此, 尽管给定的一组沉淀条件可具有 0 至 100℃的温度, 在某些实施方案中可以升 高该温度以产生所需沉淀物。 在某些实施方案中, 利用由低或零二氧化碳排放源, 例如太阳 能源、 风能源、 水电能源等生成的能量升高该温度。在一些实施方案中, 通过暴露在烟道气 的热中来升高温度。 尽管在指定沉淀过程中该水的 pH 值可以为 7 至 14, 在某些实施方案中 按需要将 pH 值升至碱性水平以驱使碳酸盐矿物沉淀。在某些这些实施方案中, 将 pH 值升 至如果不是消除的话则最小化沉淀过程中的 CO2 气体生成的水平。 在这些实施方案中, 可以 将 pH 值升至 10 或更高, 如 11 或更高。如果需要, 使用任何便利的方法提高该水的 pH。在 某些实施方案中, 可以使用 pH 升高剂, 其中这类试剂的实例包括氧化物、 氢氧化物 ( 例如氢 氧化钠、 氢氧化钾、 水镁石 )、 碳酸盐 ( 例如碳酸钠 ) 等。添加到咸水源中的 pH 升高剂的量 取决于该试剂的特定性质和改性的咸水的体积, 并足以将该咸水源的 pH 提高至所需值。或 者, 可以通过水的电解将该咸水源的 pH 提高至所需水平。 CO2 充入和碳酸盐矿物沉淀可以在连续法或在分开的步骤中进行。 因此, 根据本发 明的某些实施方案, 充气和沉淀可以在系统的相同反应器中, 例如如图 1 中所示在步骤 20 中进行。 在本发明的另一些实施方案中, 这两个步骤可以在分开的反应器中进行, 以便先在 充气反应器中向水中充入 CO2, 随后在另一反应器中对所得充有 CO2 的水施以沉淀条件。
     集料产物中可能需要非晶二氧化硅以例如改进集料产物的硬度和耐久性。 可以在 向水中充入废气如燃烧气体 ( 例如包含 CO2 的气体 ) 之前, 向该二价阳离子水溶液中加入 硅质材料。在此类实施方案中, 二氧化硅与 pH 升高剂如来自煤燃烧的飞灰一起添加。由于 飞灰的氧化物含量 ( 即 CaO), 将飞灰添加到二价阳离子水溶液中会显著提高 pH 值, 这有助 于使二氧化硅溶解在飞灰中。 当向含有溶解的二氧化硅的二价阳离子的碱性溶液中充入包 含二氧化硅的废气时, 该二氧化碳形成碳酸, 其快速分离成碳酸根离子。 沉淀浓度的碳酸根 离子的存在允许形成碳酸盐化合物, 可以同时沉淀与该沉淀材料夹杂的二氧化硅。
     在由该沉淀反应混合物制造沉淀材料后, 如图 1 的步骤 40 所示, 将沉淀材料与该 沉淀反应混合物分离以产生分离的沉淀材料。 使用任何便利的方式实现沉淀材料与沉淀反 应混合物的分离, 包括沥水 ( 例如沉淀产物的重力沉降, 随后沥水 )、 滗析、 过滤 ( 例如重力 过滤、 真空过滤、 使用加压空气过滤 )、 离心、 加压, 或它们的任何组合。 大部分水的分离产生 湿的脱水沉淀材料。
     随后任选如图 1 的步骤 60 所示将所得脱水沉淀材料干燥以产生干燥的沉淀材料。 可以通过风干该沉淀材料来实现干燥。在风干沉淀材料的情况下, 风干可以在室温或升高 的温度下。在某些实施方案中, 由工厂气态废料流提供该升高的温度。在此类实施方案中, 在干燥步骤中可以先使用来自发电厂的气态废料流 ( 例如烟道气 ), 其中该气态废料流可
     具有 30 至 700℃, 如 75 至 300℃的温度。该气态废料流可以在干燥阶段中直接与湿沉淀材 料接触, 或用于在干燥阶段中间接加热气体 ( 如空气 )。通过使来自工厂的气体传送装置 ( 例如导管 ) 出现在合适的位置, 例如余热锅炉 (HRSG) 中一定距离的位置或直至烟道, 可以 在气态废料流中提供所需温度, 这根据废气和工厂构造的细节确定。 在再一实施方案中, 将 沉淀材料喷雾干燥以干燥该沉淀材料, 其中通过使其穿过热气体 ( 如来自发电厂的气态废 料流 ) 来干燥包含沉淀材料的浆料, 例如其中经由雾化器将浆料泵送到主干燥室中并使热 气体并流或对流通向该雾化器。在某些实施方案中, 通过冷冻干燥 ( 即冻干 ) 实现干燥, 其 中将沉淀材料冷冻, 降低周围压力并加入足够的热以使该沉淀材料中的冻结水升华。根据 该系统的特定干燥程序, 干燥站可以包括过滤元件、 冻干结构、 喷雾干燥结构等。
     如果需要, 来自分离反应器 40 的脱水沉淀材料可以如图 1 的任选步骤 50 所示在 干燥之前洗涤。该沉淀材料可以用淡水洗涤以例如从该脱水沉淀材料中除去盐, 如 NaCl。 用过的洗水可以视便利弃置, 例如, 通过将其弃置在尾矿池、 洋、 海、 湖等中。
     在步骤 70, 如果必要, 加工该干燥的沉淀材料以提供所需集料产物。如上综述, 该 步骤可包括使该沉淀材料与淡水接触 ( 先将其干燥或不先将其干燥 ) 以产生固化产物, 随 后机械加工该固化产物以产生所需集料。
     在某些实施方案中, 系统用于实施上述方法, 其中这类系统包括下文更详细描述 的那些。
     B. 可凝固组合物
     本发明的另一些实施方案是包括水凝水泥和本发明的 CO2 封存集料的可凝固组合 物; 在添加水性流体例如水时, 该组合物凝固和硬化成例如混凝土或灰浆。 术语 “水凝水泥” 以其常规意义使用以表示在与水或以水为溶剂的溶液, 例如掺加剂溶液合并后凝固和硬化 的组合物。 通过将本发明的水泥与水性液合并而制成的产物的凝固和硬化归因于由水泥在 与水反应时形成的水合物的生成, 其中该水合物基本不溶于水。
     本发明的集料可用于代替常规混凝土中所用的常规天然岩石集料与纯波特兰水 泥混合。可用的其它水凝在某些实施方案中是波特兰水泥掺合物。术语 “波特兰水泥掺合 物” 包括水凝水泥组合物, 其包含波特兰水泥组分和显著量的非波特兰水泥组分。 由于本发 明的水泥是波特兰水泥掺合物, 该水泥包括波特兰水泥组分。该波特兰水泥组分可以是任 何便利的波特兰水泥。如本领域中已知那样, 波特兰水泥是通过研磨波特兰水泥熔渣 ( 大 于 90% )、 有限量的控制凝固时间的硫酸钙和最多 5%的次要成分 ( 如各种标准允许的那 样 ) 而制成的粉末组合物。当用于为该反应提供二氧化碳的废气含有 SOx 时, 作为水泥或 集料的该沉淀材料中可能存在充足的硫酸钙形式的硫酸盐, 以抵消追加硫酸钙的需要。如 European Standard EN197.1 所定义, “波特兰水泥熔渣是应该由按质量计至少 2/3 的硅酸 钙 (3CaO.SiO2 和 2CaO.SiO2) 构成的水凝材料, 其余部分是含铝和含铁的熔渣相和其它化合 物。CaO 与 SiO2 的比率不应小于 2.0。镁含量 (MgO) 不应超过 5.0 质量%” 。关于 MgO, 随后 在凝固反应中, 可能形成氢氧化镁水镁石, 造成该水泥变形和变弱和裂化。 在含碳酸镁的水 泥的情况中, 不像 MgO 那样形成水镁石。在某些实施方案中, 本发明的波特兰水泥成分是符 合 ASTMStandards and Specifications of C150(Types I-VIII)of the AmericanSociety for Testing of Materials(ASTM C50-Standard Specification forPortland Cement) 的 任何波特兰水泥。ASTM C 150 包含八类波特兰水泥, 各自具有不同性质并专门根据这些性质进行使用。
     同样可用作水凝水泥的是含碳酸盐的水凝水泥。这类含碳酸盐的水凝水泥、 它们的制造和使用方法描述在 2008 年 5 月 23 日提交的共同待审的美国专利申请序号 No.12/126,776 中 ; 该申请的公开内容经此引用并入本文。
     在某些实施方案中, 该水凝水泥可以是两种或多种不同种类的水凝水泥, 如波特 兰水泥和含碳酸盐的水凝水泥的掺合物。 在某些实施方案中, 该掺合物中第一水泥, 例如波 特兰水泥的量为 10 至 90% (w/w), 如 30 至 70% (w/w), 包括 40 至 60% (w/w), 例如 80% OPC 和 20%碳酸盐水凝水泥的掺合物。
     通过将水凝水泥与一定量的集料 ( 用于灰浆的细集料, 例如砂 ; 用于混凝土的含 或不含细集料的粗集料 ) 和水同时混合或通过预混合该水泥和集料并随后将所得干组分 与水混合, 制造本发明的可凝固组合物, 如混凝土和灰浆。 使用本发明的水泥组合物的混凝 土混合物用的粗集料的选择可以具有大约 3/8 英寸的最小尺寸, 且尺寸可以为最小至 1 英 寸或更大不等, 包括在这些界限值之间的粒级。细碎集料的尺寸小于 3/8 英寸, 并可以分成 细得多的粒度, 小至 200- 筛目等。在本发明的灰浆和混凝土中都可存在细集料。该水泥的 干组分中的水泥与集料的重量比可变, 在某些实施方案中为 1 ∶ 10 至 4 ∶ 10, 如 2 ∶ 10 至 5 ∶ 10, 包括 55 ∶ 1000 至 70 ∶ 100。
     与干组分合并以制造可凝固组合物例如混凝土的液体相, 例如水性流体, 可以按 需要从纯净水到包括一种或多种溶质、 添加剂、 助溶剂等的水不等。 在可凝固组合物的制备 中合并的干组分与液体相的比率可变, 在某些实施方案中为 2 ∶ 10 至 7 ∶ 10, 如 3 ∶ 10 至 6 ∶ 10, 包括 4 ∶ 10 至 6 ∶ 10。
     在某些实施方案中, 该水泥可以与一种或多种掺加剂一起使用。掺加剂是添加到 混凝土中从而为其提供用碱性混凝土混合物不可获得的合意特性或从而改变该混凝土的 性质以使其更易用或更适合特定用途或适合降低成本的组合物。如本领域中已知的那样, 掺加剂是除水凝水泥、 集料和水外的任何材料或组合物, 其用作该混凝土或灰浆的组分以 增强一些特性或降低其成本。所用掺加剂的量可以随该掺加剂的性质而变。在某些实施方 案中, 这些组分的量为 1 至 50% w/w, 如 2 至 10% w/w。
     可用的掺加剂包括细碎矿物掺加剂, 如水泥质材料 ; 火山灰 ; 火山灰质和水泥质 材料 ; 和所谓惰性材料。火山灰包括硅藻土、 蛋白石燧石、 粘土、 页岩、 飞灰、 硅粉、 火山凝灰 岩和浮石, 它们是已知火山灰中的一些。某些磨碎的颗粒状高炉矿渣和高钙飞灰同时具有 火山灰质和水泥质性质。所谓惰性材料也可以包括细碎的原始石英、 白云石、 石灰石、 大理 石、 花岗岩和其它。在 ASTM C618 中定义了飞灰。
     可用的其它类型的掺加剂包括增塑剂、 促凝剂、 缓凝剂、 加气剂、 发泡剂、 减水剂、 缓蚀剂和颜料
     因此, 可用的掺加剂包括, 但不限于 : 促凝剂、 缓凝剂、 加气剂、 消泡剂、 碱 - 反应性 降低剂、 粘合掺加剂、 分散剂、 着色掺加剂、 缓蚀剂、 防潮掺加剂、 发气剂、 减渗剂、 泵送助剂、 收缩补偿掺加剂、 杀真菌掺加剂、 杀菌掺加剂、 杀虫掺加剂、 流变改性剂、 细碎矿物掺加剂、 火山灰、 集料、 润湿剂、 强度增强剂、 拒水剂和任何其它混凝土或灰浆掺加剂或添加剂。 掺加 剂是本领域中公知的, 并且可以使用上述类型或任何其它所需类型的任何合适的掺加剂 ; 参见例如全文经此引用并入本文的美国专利申请 No.12/126,776。在某些实施方案中, 本发明的可凝固组合物包括与纤维一起使用的水泥, 例如在 需要纤维增强的混凝土时。 纤维可以由含氧化锆的材料、 钢、 碳、 玻璃纤维或合成材料, 例如 聚丙烯、 尼龙、 聚乙烯、 聚酯、 人造丝、 高强度芳族聚酰胺 ( 即 ) 或其混合物制成。
     可以使用任何便利的程序合并可凝固组合物的组分。可以在作业时混合各材料, 或可以预先混合一部分或全部材料。或者, 将一些材料与含或不含掺加剂如高级减水掺加 剂的水混合, 随后将其余材料与其混合。作为混合装置, 可以使用任何传统装置。例如, 可 以使用 Hobart 混合机、 倾斜圆筒混合机、 Omni Mixer、 亨舍尔混合机、 V- 型混合机和 Nauta 混合机。
     在将组分合并产生可凝固组合物 ( 例如混凝土 ) 后, 该可凝固组合物在指定时间 后凝固。凝固时间可变, 在某些实施方案中为 30 分钟至 48 小时, 如 30 分钟至 24 小时, 包 括 1 小时至 4 小时。
     该凝固产物的强度也可变。在某些实施方案中, 凝固水泥的强度可以为 5Mpa 至 70MPa, 如 10MPa 至 50MPa, 包括 20MPa 至 40MPa。在某些实施方案中, 如使用 ASTM C 1157 描述的试验方法测得, 由本发明的水泥制成的凝固产物极耐用。
     本发明的方面进一步包括由本发明的集料和可凝固组合物制成的结构。 由于这些 结构由本发明的集料和 / 或可凝固组合物制成, 它们包括确定它们获自水沉淀的碳酸盐化 合物组合物的标记物或组分, 如痕量的存在于如上所述的初始咸水源中的各种元素。 例如, 如果该混凝土的集料组分的矿物组分是由海水产生的, 则该凝固产物含有鉴定量的不同元 素 ( 如镁、 钾、 硫、 硼、 钠和氯化物等 ) 的海水标记物特征。
     C. 结构
     进一步实施方案包括含有本发明的集料的人造结构及其制造方法。因此, 在一些 实施方案中, 本发明提供包括一种或多种如本文所述的集料的人造结构。该人造结构可以 是可使用集料的任何结构, 如建筑物、 水坝、 防洪堤、 道路或包含集料或岩石的任何其它人 造结构。该集料可以是二氧化碳封存集料、 具有比 -10‰更负的 δ13C 的集料等, 或本文所 述的任何集料。
     在一些实施方案中, 本发明提供人造结构, 例如建筑物、 水坝或道路, 其包括含有 来自化石燃料源的 CO2 的集料, 例如至少 10% w/wCO2 来自化石燃料源, 或至少 20% CO2 来自 化石燃料源, 或至少 30% CO2 来自化石燃料源的集料。在一些情况中, 该集料具有比 -10‰ 13 更负, 或比 -20‰更负的 δ C 值。在一些实施方案中, 本发明提供含有集料的人造结构, 例 如建筑物、 水坝或道路, 其中一部分或全部集料是轻型集料, 例如密度为 90-115lb/ft3 的 集料, 且其中该集料含有来自化石燃料源的 CO2, 例如至少 10% w/w 的 CO2 来自化石燃料源, 或至少 20% CO2 来自化石燃料源, 或至少 30% CO2 来自化石燃料源的集料。在一些情况中, 该集料具有比 -10‰更负, 或比 -20‰更负的 δ13C 值。
     在一些实施方案中, 本发明提供制造结构的方法, 包括提供含有来自化石燃料源 的 CO2 的集料, 例如至少 10% w/wCO2 来自化石燃料源, 或至少 20% CO2 来自化石燃料源, 或 至少 30% CO2 来自化石燃料源的集料。 在一些情况中, 该集料具有比 -10‰更负, 或比 -20‰ 13 更负的 δ C 值, 并使用该集料制造至少一部分该结构。在一些实施方案中, 至少一部分集 3 料是轻型集料, 例如密度为 90-115lb/ft 的集料。
     1. 道路在一些实施方案中, 本发明提供包括一种或多种本发明的集料的道路, 或包括一 种或多种本发明的集料的道路的组分, 和制造这类道路和 / 或组分的方法和系统。在一些 实施方案中, 本发明提供封存二氧化碳的道路, 即用可包括一种或多种本发明的集料的组 分建造的道路, 它们的总体制造导致封存二氧化碳, 例如从工业源封存二氧化碳 ; 在一些实 施方案中, 本发明提供道路, 其中在制造道路时产生的二氧化碳量小于封存在该道路的材 料内的二氧化碳量, 其可以包括本发明的集料、 二氧化碳封存水泥, 、 成型体 (form) 和其它 组分, 即负碳道路。
     术语 “道路” 在本文中用于包括用于运输和游憩的地面总类。其包括机动车、 动物 和行人交通、 自行车和任何其它运输使用的路 ( 它们单独或整体使用 )。本发明的道路可 以包括但不限于, 如下文进一步详细描述的公路、 人行道、 桥面、 自行车道、 铺砌人行道等。 道路包括像砂砾路 ( 其可以是单层 ) 那样简单的结构, 以及通常含有两层或更多层的沥 青 - 和混凝土 - 铺面的道路。
     在一些实施方案中, 本发明提供包括 CO2- 封存集料, 如含有衍生自工业废气源的 CO2 的集料, 如本文所述的任何 CO2- 封存集料的道路。在一些实施方案中, 该道路包括包含 合成碳酸盐的集料。在一些实施方案中, 该道路包括具有小于 -15‰, 或小于 -20‰, 或小 13 于 -25‰的 δ C 值的集料。在一些实施方案中, 该道路包括含有球碳镁石 (dypinginite)、 三水菱镁矿、 菱镁矿或这些中的一种或多种的组合的集料。
     上述实施方案的集料可以如下文进一步详述的那样用在道路的一种或多种组分 中。该集料可构成该道路的按重量计多于 1、 2、 5、 10、 20、 30、 40、 50、 60、 70、 80, 或 90%, 例如 多于 20%或多于 50%。
     在一些实施方案中, 该道路是公路、 公路系统、 城市街道、 机场跑道、 人行道或露天 路面。 公路包括在重要目的地, 如市镇之间用于公共交通的主干道。 互连的公路集合不同地 被称作 “公路系统” 、 “公路网” 或 “公路运输系统” 。城市街道包括任何街道, 其是毗连建筑 物的土地——人可以在其上行走。 本发明的城市街道是指主要用于车辆交通但不遇到像公 路那样大的交通量, 但承受比人行道高的负荷的那些道路。本发明提供的另一示例性道路 结构是机场跑道。跑道包括机场上的条状地面——飞机可以在其上起飞和着陆, 也可以包 括喷气防护坪 (blast pad)——这是在跑道末端的超出区域或停机道 (stopway) 以及用于 飞机滑行、 起飞和着陆跑道末端 (rollout) 的起点 (threshold)。 人行道包括常规上位于车 辆交通道路旁边的铺砌路面。本发明的人行道可包括主要用于行人交通的任何铺砌道路, 包括沿海滩行进 ( 即海滩通道 )、 在公园内和在居住和商业建筑物之间的卵石路面、 砖铺道 路以及铺砌走道。本发明的人行道也可以包括自行车道和设计用于非车辆和 / 或动物交通 的其它道路。 露天路面可以是已铺砌以使其可用于多种不同用途的一块任何大小或形状的 土地。例如, 露天路面可以是运动场、 体育娱乐路面 ( 例如篮球场、 旱冰场 )、 停车场等。铺 砌路面可以是临时建筑物或储存设施的地基。可以根据外加负荷构造该露天路面, 各层的 厚度可显著变化。
     本发明还提供含有每车道英里道路封存至少 1、 5、 10、 50、 100、 500、 1000、 2000、 3000、 4000、 5000、 6000、 7000、 8000、 9000 或 10,000 吨 CO2 的材料的道路。在一些实施方案 中, 该道路为至少 10、 100、 1000、 10,000 英尺长, 或至少 3、 5、 10、 50 或 100 英里长。该材料 可以是以人造法制成以使来自工业源的 CO2 截留在该材料内 ( 例如通过化学反应产生稳定的沉淀物 ) 并在所需程度的普通使用条件下或在经受如本文其它地方所述的特殊试验, 如 温度、 酸和 / 或碱稳定性试验时留在该材料中的任何材料, 例如如本文所述的集料。例如, 3 具有 18 英寸深的含堆积密度为 100lb/ft 的集料 ( 其中一部分或全部是本发明的实施方 案的集料 ) 的基层的 15 英尺宽的一车道道路含有大约 2250 磅集料 / 每直线英尺道路, 或 大约 1.1 吨 / 每直线英尺, 因此大约 5,500 吨 / 每车道英里。如果集料总体仅封存其重量 的 1%的 CO2, 该道路含有每车道英里封存 55 吨 CO2 的材料。如果其封存其重量的 50%的 CO2( 例如如果基本所有的集料是根据本发明的一些实施方案的 CO2- 集料 ), 则该道路含有 每车道英里封存至少 2750 吨 CO2 的材料。具有更深基层的道路具有相应更多的集料, 具有 较浅基层的道路则具有相应较少的集料。假定集料是 CO2- 封存组分, 该计算仅是用于阐述 原理的简单实例。道路的其它组分也可能含有 CO2- 封存材料, 如表面水泥或沥青、 道路的 其它层等。容易计算每车道英里的道路封存多少 CO2。为了验证一材料是 CO2- 封存材料, 例如含有源自化石燃料燃烧的二氧化碳的材料, 可以使用如同位素测量 ( 例如 δ13C 值的测 量 ) 和碳库仑法之类的试验 ; 也可以使用任何其它合适的测量。
     本发明还提供负碳道路, 其中 “负碳” 具有如本文所用的含义。 在一些实施方案中, 该道路为至少 10、 100、 1000、 10,000 英尺长, 或至少 3、 5、 10、 50, 或 100 英里长。 在一些情况 下, 该道路至少 5%负碳, 或至少 10%负碳, 或至少 20%负碳, 或至少 30%负碳, 或至少 40% 负碳, 或至少 50%负碳, 或至少 60%负碳, 或至少 70%负碳, 或至少 80%负碳, 或至少 90% 负碳。 由各种组分制造道路, 本发明还提供一种或多种道路组分。 “道路组分”包括 用于建造道路的任何组分 ( 例如结构组分 )。在某些实施方案中, 该道路组分可以是集 料、 粘合剂、 土壤固化剂、 混凝土、 成形材料或沥青。在另一些实施方案中, 该道路组分可 以是可凝固组合物, 如水泥、 混凝土或成形建筑材料 ( 例如砖 )。在一些实施方案中, 该 13 道路组分包含 CO2 封存集料, 如所述用在本发明的集料中的那种, 或 δ C 值小于 -15‰ 或 -20‰ 的碳酸盐。根据要建造的道路的特定类型和规模及其地理位置, 该道路的道路 组分中存在的碳酸盐的量可变。在某些实施方案中, 道路组分中碳酸盐的量可以为 1 至 100 % w/w, 如 5 至 99 % w/w, 包括 10 至 90 %, 或 15 至 50 %, 或 30 %至 70 %, 或 50 %至 80 %, 或 60-90 %, 或 70-100 %, 或 70-99 %。在制造道路组分时, 将一定量的碳酸盐组分 与水和其它附加组分合并, 所述附加组分包括, 但不限于 : 粘土、 页岩、 软板岩、 硅酸钙、 石 块、 波特兰水泥、 飞灰、 矿渣水泥、 粘合剂、 集料 ( 例如高炉矿渣、 底灰、 砾石、 石灰石、 花岗 硅粉、 硅酸盐和火山灰。可用的合成碳酸盐生产程序包括但不限于, 美国专利 岩、 砂等 )、 申 请 序 号 Nos.12/126,776 ; 12/163,205 ; 和 12/344,019 以 及 待 审 美 国 临 时 专 利 申 请 序 号 Nos.61/017,405 ; 61/017,419 ; 61/057,173 ; 61/056,972 ; 61/073,319 ; 61/079,790 ; 61/081,299 ; 61/082,766 ; 61/088,347 ; 61/088,340 ; 61/101,629 ; 和 61/101,631 中公开的 那些 ; 它们的公开内容经此引用并入本文。本发明的道路组分和道路中所用的合成碳酸盐 可以通过如本文其它地方所述从水中沉淀碳酸钙和 / 或碳酸镁组合物来制造。
     在一些实施方案中, 该道路组分是沥青产品。术语 “沥青” ( 即地沥青 (bitumen)) 以其常规意义使用以包括天然或人造的黑色或深色固体、 半固体或粘性材料, 主要由衍生 自在石油蒸馏中已从原油中除去石脑油、 汽油、 煤油和其它馏分后的馏分的高分子量烃构
     成。 因此, 本发明提供包括沥青和如本文所述的集料的沥青产品。 本发明的道路沥青产品中的集料量可极大不同。其可以为 5 至 50%, 包括 10 至 40%, 如 25 至 35%。CO2 封存沥青、 它们的制造方法和系统进一步描述在 2008 年 10 月 31 日提交的美国临时申请 61/110,495 和 2009 年 2 月 9 日提交的 61/149,949 中, 它们的公开内容经此引用并入本文。
     在另一些实施方案中, 该道路组分是土壤稳定剂。 “土壤稳定剂” 是指用于改进土 壤的稳定性和结构完整性 ( 即维持其形状 ) 的组合物。CO2 封存土壤稳定剂、 它们的制造方 法和系统进一步描述在 2009 年 2 月 3 日提交的美国临时申请 61/149,633 中, 其公开内容 经此引用并入本文。
     在另一些实施方案中, 该道路组分是成形建筑材料。 “成形” 是指成形, 例如模制、 浇铸、 切割或以其它方式制造成具有确定物理形状, 即构造的人造结构。 成形建筑材料不同 于没有确定和稳定的形状而是与它们的容器, 例如袋子或其它容器共形的无定形建筑材料 ( 例如粉末、 糊料、 浆料等 )。CO2 封存的成形建筑材料、 它们的制造方法和系统进一步描述 在 2009 年 2 月 3 日提交的美国临时申请 61/149,610 中, 其公开内容经此引用并入本文。
     如上所述, 本发明的道路可以包括一个或多个道路层。例如, 本发明的道路, 例如 CO2 封存道路或负碳道路, 可以包括路基层 (sub-gradelayer)、 底基层 (sub-base layer)、 基层层 (base course layer) 和表面层 ( 这些术语如本领域技术人员理解的那样 ; 如果含 义基本相同, 同等术语可代用 ) 中的一个或多个。要认识到, 这些层的组成决定其中可用的 材料的类型。 例如, 当本发明的集料用在一个或多个层中时, 如果没有钢筋或其它易腐蚀材 料, 该集料可以是具有可浸出氯化物含量的集料, 这不会减损该集料的强度和耐久性。因 此, 如果该集料用在道路的适当层中, 由含有大量氯化物的水, 如海水或盐水制成的本发明 的集料不一定必须加工, 或在最小限度内加工以除去氯化物。此外, 在一些实施方案中, 本 发明提供一个或多个含集料的层, 其中一部分或全部集料是反应性集料。与传统结构中不 同, 反应性集料在道路中是有利的, 因为在反应中, 该集料提供更强的粒子间结合和因此更 耐久的层。其中的集料松散的道路层, 如基层层, 允许使用形成膨胀凝胶的反应性集料, 只 要该膨胀凝胶不超过空隙空间。
     制造道路例如 CO2 封存道路的方法包括建造这些层中的一个或多个的任何部分。 因此, 根据本发明的方面建造道路, 例如 CO2 封存道路的方法包括建造新道路、 取代之前建 成的道路、 或维修 / 改善之前建成的道路的任何部分。在另一些实施方案中, 该道路, 例如 CO2 封存道路可以是全深式再生。 在另一些实施方案中, 本发明的道路可以是仅顶层的再铺 平 ( 即覆面 (overlay))。
     道路的底层可以是路基层。在制备路基时, 第一步骤可以包括土壤加固步骤。也 可以使用本发明的道路土壤固化剂组分加固下方路基土壤。 应将路基土壤与道路土壤固化 剂组分掺合以产生均匀组合物。根据所需性质 ( 例如承载力、 抗霜冻性 ), 可以将路基与上 述其它道路组分 ( 例如水泥质材料 ) 进一步混合以提供提高的加固。也可以用除草剂处理 路基以防止或延迟可能影响路基的长期结构完整性的植物生长。
     在最终压实后, 可以在分级路基的表面上添加底涂层 (primecoat)。通常, 如果最 终道路表面的厚度小于 100 毫米, 应该在路基层上添加底涂层。本发明中所用的示例性底 涂层包括包含一定量的本发明的集料, 例如上述封存 CO2 的合成碳酸盐的乳化沥青产品。
     道路的第二层可以是底基层。 该底基层位于路基上方并主要用于结构支承上覆的 基层和表面层。 在一些实施方案中, 根据该道路的最终所需承载力, 该底基可具有最小厚度或完全不存在。由于稳定底基的用途是提供交通负荷在下方路基上的均匀分配, 所用的合 适底基材料是能够均匀分配外加负荷的那些。
     在一些实施方案中, 底基可包含未粘合的颗粒材料。 “未粘合的颗粒材料” 是指在 铺设和压实时不彼此粘合或粘着而是依赖相邻粒子的自然互锁的那些, 未粘合的颗粒材料 中的细粒和粗粒的比例取决于该道路的所需承载力。因此, 底基中未粘合的颗粒材料的粒 度可以极大不同, 为 0.05 毫米至 25 毫米, 尽管它们不应超过 37.5 毫米。在一些情况下, 未 粘合的颗粒材料可以是包含封存 CO2 的合成碳酸盐的非反应性集料。该集料组分可以如上 所述通过压碎可凝固组合物来制造, 或可以是具有适合与相邻集料粒子互锁的形状 ( 例如 星形 ) 的模制集料。
     在另一些实施方案中, 该底基可包含粘合材料。粘合材料是通过粘合剂与相邻粒 子粘合的那些。 “粘合剂” 是指能够基本固定或邻接相邻粒子的组分。在本发明的一些情况 中, 该粘合剂是包含封存 CO2 的合成碳酸盐的沥青产品。在另一些情况下, 该粘合剂可以是 包含封存 CO2 的合成碳酸盐的水泥。在一些实施方案中, 该底基包含反应性集料。通过使 用反应性集料, 在集料粒子之间形成稳定基质, 以致该底基能使细粒最小程度地从路基侵 入道路结构和使霜冻作用的破坏最小化。在一些实施方案中, 可以将水添加到该组合物中 以提供最佳湿含量和材料均匀性。在铺设适当厚度的底基材料后, 可以以如上文对路基所 述相同的方式压实该底基。
     在一些实施方案中, 该底基可包含预浇制的混凝土板。可以通过混合和模制一定 量的封存 CO2 的合成碳酸盐和水泥质组分如波特兰水泥以及如上所述的其它辅助水泥质材 料来制备混凝土。该混凝土板也可以使用增强材料, 如钢筋结构或铝丝网。
     通过本发明提供的另一道路层是基层层。该基层层紧邻位于表面层下方, 实现追 加的负荷分配、 排水和抗霜冻性, 并为施工设备提供稳定平台。 本发明的基层层可以基本由 如上所述用于底基的集料构成。 包含封存 CO2 的合成碳酸盐的集料是优选的, 尤其是在路基 中、 在路基土壤不稳固的区域中、 在已除去不合适的材料的区域中或在全深挠性道路下方 存在表面下排水问题的情况中。在一些实施方案中, 该集料基层包含反应性集料和非反应 性集料的混合物。该混合物中反应性集料的比例可以不等, 为 5 至 25%, 包括 5 至 15%, 如 10%。该集料组合物还可以包括一定量的水泥质组分。水泥质组分的添加量随道路类型而 言, 为基层的 1 至 20 重量%, 包括 1 至 10%, 如 5%。可以通过使用和混入密级配的或透水 性的热混沥青来进一步制备该基层。
     道路的由本发明提供的顶层是表面层。 该表面层是紧邻位于基层上方并与交通负 荷接触的层。 应该构造该表面层以使其提供摩擦、 平整度、 噪音控制和排水性等特性。 此外, 该表面层充当下方的基层、 底基和路基的防水层。该表面层可以在两个分开的阶段中建造 以制备其两个层——磨耗层和粘结层。该磨耗层是直接与交通负荷接触的层。其意在承受 交通磨耗的冲击并可以在磨损后移除或更换。 粘结层是该表面层结构的主体并用于分配上 方的交通负荷。
     在一些实施方案中, 通过本发明提供的表面层基本由集料 ( 其中一部分或全部是 本发明的集料 ) 和沥青粘合剂构成。此外, 可以以粉末形式进一步使用一定量的本发明的 集料作为矿物填料。该表面层中所用的沥青粘合剂的量可以为 5 至 50%, 包括 5 至 40%, 如 5 至 35%不等。该表面层中所用的集料的粒度可以为 50 毫米至 15 毫米, 包括 100 毫米至 12.5 毫米, 如 75 毫米至 10 毫米不等。通过将集料和矿物填料与热沥青粘合剂混合直至 充分涂布所有的集料和矿物填料来制备该表面层。 可随后将该沥青涂布的集料铺到基层表 面上以使其产生平整的均匀层。 可以使用追加的沥青粘合剂沿表面填充任何空隙空间或级 配变化。该表面层随后在高温下压实。 “高温” 是指不低于 125℃的温度。
     在另一些实施方案中, 该表面层可以是如上所述的硬质成形铺砌混凝土表面。在 表面层是混凝土板的情况下, 可以用化学掺加剂处理该表面以改善防霜冻性、 湿害和剥离 损害。硬质混凝土表面层可用在主要用于步行交通或用于较低外加负荷的道路中。
     包含封存 CO2 的合成碳酸盐的道路组分可用在各种不同用途中。可使用本发明的 道路组分组合物的具体道路结构包括, 但不限于 : 公路、 人行道、 自行车道、 海滨通道、 机场 跑道、 城市街道、 卵石路、 停车场、 旱冰场和任何其它铺砌土地。
     在一些实施方案中, 本发明提供一种方法, 包括 : 建造包含含合成碳酸盐的 CO2 封 存组分的道路。 在一些实施方案中, 本发明提供一种方法, 包括 : 建造包含集料的道路, 其中 13 该集料具有比 -10‰更负, 或在一些实施方案中比 -20‰更负的 δ C 值。该集料可构成该 道路的多于 10、 20、 30、 40、 50、 60、 70、 80 或 90%。
     在一些实施方案中, 本发明提供制造道路组分的方法, 该方法包括 : 获得封存 CO2 的合成碳酸盐 ; 和制造包含封存 CO2 的合成碳酸盐的道路组分。该道路组分可以是例如集 料、 水泥、 掺配水泥、 沥青、 土壤固化剂、 混凝土、 粘合剂、 成形材料 ( 砖、 石板 )、 可凝固组合 物。 在一些实施方案中, 本发明提供制造道路组分的方法, 该方法包括 : 获得合成碳酸盐, 其 13 中该碳酸盐具有比 -10 更负或在一些实施方案中比 -20 更负的 δ C 值 ; 和制造包含封存 CO2 的合成碳酸盐的道路组分。该道路组分可以是例如集料、 水泥、 掺配水泥、 沥青、 土壤固 化剂、 混凝土、 粘合剂、 成形材料 ( 砖、 石板 )、 可凝固组合物。
     在一些实施方案中, 本发明提供制造包含封存 CO2 的合成碳酸盐的道路组分的系 统, 该系统包含 : 含碱土金属的水的输入端 ; 对该水施以碳酸盐化合物沉淀条件和产生封 存 CO2 的合成碳酸盐的碳酸盐化合物沉淀站 ; 和用于制造包含该封存 CO2 的合成碳酸盐的 道路组分的道路组分制造器。在一些实施方案中, 本发明提供制造包含合成碳酸盐的道路 组分的系统, 其中该碳酸盐具有比 -10‰更负或在一些实施方案中比 -20‰更负的 δ13C, 该 系统包含 : 含碱土金属的水的输入端 ; 对该水施以碳酸盐化合物沉淀条件和产生合成碳酸 盐的碳酸盐化合物沉淀站, 其中该碳酸盐具有比 -10‰更负 δ13C 值, 或在一些实施方案中 13 比 -20‰更负的 δ C 值 ; 和用于制造包含该合成碳酸盐的道路组分的道路组分制造器, 其 13 13 中该碳酸盐具有比 -10‰更负 δ C 值或在一些实施方案中比 -20‰更负的 δ C 值。
     在一些实施方案中, 本发明提供封存 CO2 的方法, 该方法包括 : 使含碱土金属离子 的水与包含 CO2 的气态工业废料流接触 ; 从该含碱土金属离子的水中沉淀封存 CO2 的合成碳 酸盐, 其中该合成碳酸盐包含来自该气态工业废料流的 CO2 ; 和制造包含该封存 CO2 的合成 碳酸盐的道路组分。在一些实施方案中, 本发明提供封存 CO2 的方法, 该方法包括 : 使含碱 土金属离子的水与包含 CO2 的气态工业废料流接触 ; 从该含碱土金属离子的水中沉淀合成 碳酸盐, 其中该碳酸盐具有比 -10‰更负或在一些实施方案中比 -20‰更负的 δ13C 值, 其中 该合成碳酸盐包含来自该气态工业废料流的 CO2 ; 和制造包含该合成碳酸盐的道路组分, 其 13 中该碳酸盐具有比 -10‰更负或在一些实施方案中比 -20‰更负的 δ C 值。
     在一些实施方案中, 本发明提供制造碳封存适售商品的方法, 该方法包括 : 制造包含封存 CO2 的合成碳酸盐化合物的道路组分 ; 测定该道路组分中封存的 CO2 的量 ; 和根据该 测得的量制造碳封存适售商品。
     在一些实施方案中, 本发明提供获得碳封存适售商品的方法, 该方法包括 : (a) 生 成 CO2 ; (b) 将该 CO2 送至 CO2 封存器, 其: (i) 制造包含封存 CO2 的合成碳酸盐化合物的道路 组分 ; (ii) 测定该道路组分中封存的 CO2 的量 ; 和 (iii) 根据该测得的量制造碳封存适售 商品 ; 和 (c) 从该 CO2 封存器中接收碳封存适售商品。
     Ⅲ . 方法
     本发明的方法包括制造集料的方法、 通过制造集料来封存 CO2 的方法、 根据预定特 性组合生产集料组合的方法、 制造可凝固组合物的方法、 制造包括本发明的集料的结构的 方法和经营方法。
     A. 制造集料的方法
     在一些实施方案中, 本发明提供制造集料的方法。 在一个实施方案中, 本发明提供 制造集料的方法 : 通过将来自工业废料流的二氧化碳溶解在水溶液中和从该水溶液中沉淀 一种或多种碳酸盐化合物、 将该沉淀物脱水和在一些实施方案中进一步处理该脱水沉淀物 以制造集料。 该工业废料流可以是如本文所述的任何合适的废料流。 在一些实施方案中, 该 工业废料流是燃煤发电厂的烟道气。 接触可以通过如本文所述的任何合适的装置和程序进 行, 如通过扁平射流接触器, 或通过气溶胶接触。在一些实施方案中, 使用如本文所述的平 流接触器使该工业废料流中的 CO2 与水溶液接触。通过也如本文进一步描述的任何便利的 方式从该含有溶解的 CO2( 和碳酸氢盐和碳酸盐, 这取决于 pH 值 ) 的水溶液中除去质子 ; 在 一些实施方案中, 通过可用于制造除质子用的碱或可用于直接除去质子 ( 例如通过与其中 溶解 CO2 的溶液接触 ) 的电化学系统除去质子 ; 进一步的描述参见本申请和美国专利申请 Nos.12/344,019 和 12/375,632。 该沉淀物的组成取决于水溶液的组成 ; 该水溶液含有二价 阳离子, 例如镁和 / 或钙, 其可能来自各种来源中的一种或多种, 包括海水、 盐水如地质盐 水、 矿物, 例如蛇纹石、 橄榄石等, 飞灰、 矿渣、 其它工业废料, 如来自铝土矿精炼的红泥。因 此, 该沉淀物中的钙 / 镁比可变, 并可以根据水溶液中所用的材料为本文所述的比率之一, 如 5/1 至 1/5, 或 1/1 至 1/10, 或 100/1 至 10/1, 或任何其它比率。该沉淀物含有碳酸钙和 / 或碳酸镁并且还可含有如本文所述包含在沉淀物中的工业废气的其它组分, 例如如本文 公开的硫酸盐或亚硫酸盐、 沉淀的含氮化合物、 重金属如汞和其它。在一些实施方案中, 将 该沉淀物脱水。进一步处理可包括如本文其它地方所述通过升高的温度和 / 或压力来处 理, 例如借助印压机, 或通过挤出。该脱水沉淀物在一些实施方案中进一步干燥, 随后加回 水至所需百分比, 例如至 1-20%, 或 1-10%, 或 3-7% w/w。在一些实施方案中, 该脱水沉淀 物 ( 任选干燥和重构 ) 通过送过挤出压机来进行处理, 其如本文进一步描述的那样制造几 乎任何所需形状和尺寸的集料。在一些实施方案中, 该脱水沉淀物 ( 任选干燥和重构 ) 通 过在印压机中加压来处理, 其可以制造可进一步处理的成形集料或集料 “片 (plate)” 。 在一 些实施方案中在合适的温度, 例如 50-150℃, 或 70-120℃, 或 80-100℃下对该脱水沉淀物 施加高压, 例如 2000-6000psi, 或甚至 2000-20,000psi 以合适的时间, 例如 0.1 分钟至 100 分钟, 或 1-20 分钟, 或 1-10 分钟。在一些实施方案中, 由此形成的产物就这样使用。在一 些实施方案中, 该产物含有碳酸盐并具有比 -10‰更负, 或比 -15‰更负, 或比 -20‰更负, 13 或比 -25‰更负的 δ C。在另一些实施方案中, 例如通过压碎、 研磨等进一步处理该产物。在一些实施方案中, 该方法进一步包括将由此制成的集料合并在可凝固组合物中。
     在一些实施方案中, 本发明提供制造包含合成碳酸盐的集料的方法, 包括获得合 成碳酸盐 ; 和制造包含合成碳酸盐的集料。任何合适的方法, 如本文所述的那些, 都可用 于获得合成碳酸盐, 只要其适用在集料中。在一些实施方案中, 该合成碳酸盐包含封存的 CO2。在一些实施方案中, 该合成碳酸盐具有比 -10‰更负, 或比 -15‰更负, 或比 -20‰更 13 负, 或比 -25‰更负的 δ C。所述获得步骤可包括从含碱土金属离子的水, 例如咸水, 如海 水, 或盐水, 或经过处理以含有碱土金属的水中, 例如由矿物或由工业废料, 如飞灰、 矿渣或 红泥沉淀合成碳酸盐。在一些实施方案中, 所述获得步骤进一步包括在沉淀步骤之前使该 含碱土金属离子的水与包含 CO2 的工业气态废料流接触 ; 该工业气态废料流可以来自例如 发电厂、 铸造厂、 水泥厂、 精炼厂或冶炼厂 ; 该气体废料流可以是例如烟道气, 如燃煤发电厂 的烟道气。在一些实施方案中, 所述获得步骤进一步包括在沉淀步骤中将该含碱土金属离 子的水的 pH 值升至 10 或更高。在一些实施方案中, 所述制造步骤进一步包括 : 生成包含 合成碳酸盐的可凝固组合物 ; 和使该可凝固组合物形成固体产物。在另一些实施方案中, 所述制造步骤进一步包括对该沉淀物施以足以制造适合预期用途的集料的温度和压力的 组合 ; 如 35-500℃, 或 50-200℃, 或 50-150℃的温度和 1000psi 至 20,000psi, 或 1000psi 至 10,000psi, 或 1000psi 至 6000psi, 如 4000psi 至 6000psi 的压力。在另一些实施方案 中, 该生成步骤包括将合成碳酸盐与水、 波特兰水泥、 飞灰、 石灰和粘合剂中的一种或多种 混合。 该生成步骤可进一步包括机械精制该固体产物, 如通过模制、 挤出、 制粒、 压碎或它们 的一些组合。在一些实施方案中, 所述制造步骤包括使该合成碳酸盐与淡水接触以例如将 该合成碳酸盐转化成淡水稳定产物 ; 在一些实施方案中, 该接触步骤包括 : 在敞开区域铺 开该合成碳酸盐 ; 和使该铺开的合成碳酸盐与淡水接触。
     B. 其它方法
     在一些实施方案中, 本发明提供一种方法, 包括 : 获得包含水凝水泥和含合成碳酸 盐的集料的组合物 ; 和制造包含所得组合物的可凝固组合物。该包含合成碳酸盐的集料在 一些实施方案中可通过本文所述的方法制造。在一些实施方案中, 该合成碳酸盐包含封存 的 CO2。在一些实施方案中, 该合成碳酸盐具有比 -10‰更负, 或比 -15‰更负, 或比 -20‰ 13 更负, 或比 -25‰更负的 δ C。 该方法可进一步包括使该可凝固组合物凝固成固体产物, 如 结构产品, 例如道路的组成部分, 如沥青, 或建筑地基。
     在一些实施方案中, 本发明提供封存二氧化碳的方法, 该方法包括 : 从含碱土金属 和制造包含封存 CO2 的碳酸盐化合物组 离子的水中沉淀封存 CO2 的碳酸盐化合物组合物 ; 合物的集料。在一些实施方案中, 本发明提供通过使含碱土金属离子的水与包含 CO2 的气 态工业废料流接触 ; 从该含碱土金属离子的水中沉淀合成碳酸盐, 其中该合成碳酸盐包含 来自该气态工业废料流的 CO2 ; 和制造包含合成碳酸盐的集料来封存 CO2 的方法。在一些实 施方案中, 将该集料合并在可凝固组合物中。该集料可用于制造人造结构。在一些实施方 案中, 该集料构成该人造结构的至少 1、 5、 10、 20、 30、 40、 50、 60、 70、 80、 90 或 95%。在一些 实施方案中, 该人造结构是建筑物。在一些实施方案中, 该人造结构是道路, 或道路的组成 部分。在一些实施方案中, 该人造结构是水坝。在另一些实施方案中, 将该集料运输至储存 地, 如水下储存地, 或地下储存地, 例如煤矿或其它化石燃料获取地 (fossil fuelremoval site)。 该集料可以用例如轨道, 如将煤运输至燃煤发电厂 ( 在此制造集料 ) 的相同轨道车,运输至该地点。该集料可以以各种形状制造以使在储存地的填装更有效和 / 或产生更强的 填装体。
     在一些实施方案中, 本发明提供制造 CO2 封存集料的方法, 其通过 : 获得 CO2 封存组 分; 和制造包含 CO2 封存组分的集料。该 CO2- 封存组分在一些实施方案中可通过从已经与 含 CO2 的工业废气流接触的水溶液中沉淀碳酸盐来获得。可以通过任何合适的方法, 如本 文所述的方法制造该集料。
     在一些实施方案中, 本发明提供制造含有 δ13C 比 -10‰更负, 或比 -15‰更负, 或 13 比 -20‰更负, 或比 -25‰更负的碳的集料的方法, 其通过 : 获得含有 δ C 比 -10‰更负, 或 比 -15‰更负, 或比 -20‰更负, 或比 -25‰更负的碳的组分 ; 和由该组分制造集料, 由此制 13 造含有 δ C 比 -10‰更负, 或比 -15‰更负, 或比 -20‰更负, 或比 -25‰更负的碳的集料。 该组分在一些实施方案中可以通过从已经与含有来自化石燃料燃烧的 CO2 的工业废气流 接触的水溶液中沉淀含碳酸盐的沉淀物来获得 ; 根据化石燃料的类型, 该 CO2 会含有 δ13C 比 -10‰更负, 或比 -15‰更负, 或比 -20‰更负, 或比 -25‰更负的碳, 且由该气体沉淀的碳 13 酸盐也具有类似的 δ C 值。 该碳酸盐的抗衡离子在一些实施方案中是钙、 镁或本文所述的 任何比率的钙和镁的组合。在一些实施方案中, 将该集料合并在可凝固组合物中。该集料 可用于制造人造结构。在一些实施方案中, 该集料构成该人造结构的至少 1、 5、 10、 20、 30、 40、 50、 60、 70、 80、 90 或 95%。在一些实施方案中, 该人造结构是建筑物。在一些实施方案 中, 该人造结构是道路, 或道路的组成部分。在一些实施方案中, 该人造结构是水坝。在另 一些实施方案中, 将该集料运输至储存地, 如水下储存地, 或地下储存地, 例如煤矿或其它 化石燃料获取地。该集料可以用例如轨道, 如将煤运输至燃煤发电厂 ( 在此制造集料 ) 的 相同轨道车运输至该地点。该集料可以以各种形状制造以使在储存地的填装更有效和 / 或 产生更强的填装体。 储存地还包括防波浪结构 ( 例如人工礁 ), 或抗水流和运动的其它结构 ( 如乱石基 ) ; 本发明由此提供含有一种或多种本文所述的集料的防波浪结构, 以及提供含 有一种或多种本文所述的集料的抗水流和运动的结构。 本发明进一步提供制造防波浪结构 或耐水结构的方法, 包括制造如本文所述的集料和使用该集料形成防波浪结构或抗水流和 运动的结构。
     在一些实施方案中, 本发明提供一种方法, 包括 : 获得包含水凝水泥和 CO2 封存集 料的可凝固组合物 ; 和由该可凝固组合物制造固体产物。
     在一些实施方案中, 本发明提供通过在该结构的建造中使用负碳集料来制造负碳 结构的方法。 “负碳” 具有本文所述的含义。在一些实施方案中, 该结构是建筑物。在一些 实施方案中, 该结构是水坝。在一些实施方案中, 该结构是道路。在一些实施方案中, 该结 构是较大型结构的组成部分, 例如建筑物地基, 或道路的基层或底层。在一些实施方案中, 该负碳集料构成该结构的至少 5、 10、 20、 30、 40、 50、 60、 70、 80 或 90%。在一些实施方案中, 该结构还包括至少一种其它 CO2- 封存组分。 例如, 在一些实施方案中, 该结构进一步含有在 制造该结构的水泥时使用的封存 CO2 的辅助水泥质材料和 / 或封存 CO2 的火山灰。在一些 实施方案中, 该结构进一步含有封存 CO2 的水泥。在一些实施方案中, 制造该结构及其组分 时封存的 CO2 的量超过制造该结构及其组分时产生的 CO2 的量至少 1、 5、 10、 20、 30、 40、 50、 60、 70、 80、 90 或 95%, 其中如本文其它地方对 “负碳” 所述那样计算。
     在一些实施方案中, 本发明提供制造碳封存适售商品的方法, 其通过 : 制造包含合成的 CO2 封存碳酸盐化合物的集料 ; 测定该集料中封存的 CO2 的量 ; 和根据所述测得的量制 造碳封存适售商品。在一些实施方案中, 本发明提供获得碳封存适售商品的方法, 其通过 : 生成 CO2 ; 将该 CO2 送至 CO2 封存器, 其: (i) 制造包含合成的 CO2 封存碳酸盐化合物的集料 ; (ii) 测定该 CO2 集料中封存的 CO2 的量 ; 和 (iii) 根据该测得的量制造碳封存适售商品 ; 和 (c) 从该 CO2 封存器中接收所述碳封存适售商品。
     在一些实施方案中, 本发明提供制造轻型集料的方法, 其通过以在处理过程中没 有净生成 CO2 的方式处理原材料以制造轻型集料。 在一些实施方案中, 在集料制造中净封存 CO2。该原材料可以是水溶液、 含 CO2 的气流, 如工业废气流, 二价阳离子源, 或其组合。可以 处理该原材料以沉淀碳酸盐, 其中该碳酸盐在该方法中封存 CO2。 该方法可进一步包括在制 3 造轻型集料, 例如堆积密度 ( 单位重量 ) 为 75lb/ft 至 125lb/ft3, 如 90lb/ft3 至 115lb/ ft3 的集料的条件下处理该沉淀物。
     在一些实施方案中, 本发明提供通过对合成碳酸盐施以使其发生物理转化的条件 而不使用粘合剂制造人造岩石的方法, 由此形成人造岩石, 其中该人造岩石的形成不依赖 原材料的化学反应。在一些实施方案中, 通过原始的合成碳酸盐中的化合物的溶解和再沉 淀以产生新化合物或更大量的已存在于原材料中的化合物来形成人造岩石。在一些实施 方案中, 该新化合物或更大量的化合物包括球碳镁石、 水菱镁矿和 / 或三水菱镁矿中的一 种或多种。在一些实施方案中, 人造岩石的制造包括对该合成碳酸盐施以升高的温度和压 力的组合达足以产生人造岩石的时间。在一些实施方案中, 该合成碳酸盐经受的条件足 以产生具有在莫氏硬度标上大于 2, 或大于 3, 或大于 4, 或 2-7, 或 2-6, 或 2-5 的硬度或在 Rockwell、 Vickers 或 Brinell 硬度标上的同等硬度的人造岩石。在一些实施方案中, 该合 3 3 成碳酸盐经受的条件足以产生堆积密度为 50lb/ft 至 200lb/ft 的人造岩石。在一些实施 方案中, 该合成碳酸盐经受的条件足以产生堆积密度为 75lb/ft3 至 125lb/ft3 的人造岩石。
     在一些实施方案中, 本发明提供制造集料的方法, 包括将来自工业过程的废气与 含水物类混合, 所述含水物类会与废气反应形成沉淀物, 和加工该沉淀物以形成集料。
     本发明的方法能够制造几乎任何尺寸或形状的集料, 以及该集料的许多其它特 性, 如硬度、 抗磨性、 密度、 孔隙率、 化学组成、 矿物组成、 耐酸性、 耐碱性、 氯化物含量、 钠含 量、 CO2 的留存和反应性 ( 或其缺乏 )。相应地, 在一些实施方案中, 本发明提供通过将该 集料制造成预定特性组合来制造集料的方法。在这些实施方案的一些中, 该集料含有来自 工业废气流的 CO2。在一些实施方案中, 这些特性包括尺寸、 形状、 硬度、 抗磨性、 密度、 孔隙 率、 化学组成、 矿物组成、 耐酸性、 耐碱性、 氯化物含量、 钠含量、 CO2 的留存和反应性 ( 或其缺 乏 ) 中的两种或更多种。在一些实施方案中, 这些特性包括尺寸、 形状、 硬度、 抗磨性、 密度、 孔隙率、 化学组成、 矿物组成、 耐酸性、 耐碱性、 氯化物含量、 钠含量、 CO2 的留存和反应性 ( 或 其缺乏 ) 中的三种或更多种。在一些实施方案中, 这些特性包括尺寸、 形状、 硬度、 抗磨性、 密度、 孔隙率、 化学组成、 矿物组成、 耐酸性、 耐碱性、 氯化物含量、 钠含量、 CO2 的留存和反应 性 ( 或其缺乏 ) 中的四种或更多种。 在一些实施方案中, 这些特性包括尺寸和形状。 在一些 实施方案中, 这些特性包括尺寸、 形状, 以及硬度、 抗磨性、 密度、 孔隙率、 化学组成、 矿物组 成、 耐酸性、 耐碱性、 氯化物含量、 钠含量、 CO2 的留存和反应性 ( 或其缺乏 ) 中的至少一种。
     在使该组集料包括预定尺寸和形状的集料的实施方案中, 将集料制成所需形状或 尺寸的方法如本文所述。可以制造任何所需的混合物, 例如具有一种、 两种、 三种、 四种、 五种、 六种、 七种、 八种、 九种、 十种或多于十种的集料尺寸与一种、 两种、 三种、 四种、 五种、 六 种、 七种、 八种、 九种、 十种或多于十种的集料形状相结合的集料混合物。例如, 集料组合可 具有至少两种尺寸和至少两种形状, 或刚好两种尺寸和刚好两种形状。 这仅是示例性的, 可 以使用许多种尺寸和形状的任何组合。该尺寸可以是任何合意的尺寸, 例如以提供所需填 装程度和降低对混凝土中的水泥的需要, 可以使用成组的 (a set of) 分级的尺寸, 例如选 自最大粗集料至最细的细集料, 或它们之间的任何组合。 类似地, 形状可以是预定的任何合 意的形状, 例如全部相同的形状, 和多种形状。该组中的部分集料尺寸可以以一种形状制 成, 而其它的可以以一种或多种其它形状制成。例如, 本发明的方法能够制造成组的集料, 其包括用于填装的具有成组的分级尺寸的球形或盘形集料以及通过充当 “销子” 来改进流 动性和 / 或降低开裂的一部分细长形状 ( 即具有如本文其它地方所述的高长宽比 ) 的更大 粒子。另一些可能性是具有一些用于彼此互锁结合的星形件、 用于填装和降低水泥需要的 较小件的集料的组合。 这些可能性仅是示例性的, 本领域技术人员会认识到, 可以根据它们 要用于的作业, 以尺寸和形状的几乎任何组合制造集料组合 ; 可以由这种作业决定该集料 组合的特性并可以 “定制” 该组合。
     除尺寸和形状外还可以包括其它有用的特性, 如反应性。 在一些用途中, 一定程度 的反应性可能有用, 或一定百分比的集料组合而非该组合全部是反应性可能是有用的。在 道路的建造中, 例如, 基层由一定程度的反应性集料构成可能有用, 以致渗透通过道路表面 的水使下方集料反应和形成更强的基底。 本发明的方法允许在成组的集料中使用校准量的 反应性集料, 例如含硅质材料的集料, 以实现所需程度的总体反应性。 这可以是一定百分比 的集料具有某一尺寸, 或全部都具有特定集料尺寸或形状等。
     可根据该集料的制造条件改变的其它特性包括硬度。 尽管较硬的集料一般是优选 的, 在组合中的某些尺寸级或形状的集料如果略软则更有用, 例如以在某些高填装用途中 提供形变。例如, 如果集料用于回填采矿空隙, 例如在煤矿中, 制造具有用于填装的各种尺 寸以及具有一定百分比的用于形变的略软的较小集料的成组的集料可能是合意的, 因为该 集料紧密填塞以在采煤留下的空隙中切实有用。
     其它特性包括稳定性, 例如溶解度, 如在中性、 酸性或碱性 pH 中的溶解度。一组的 集料可以都具有相同溶解度或不同溶解度。 一组的某些集料可以有意制成在它们的使用条 件下可溶以便经过一段时间 ( 这可以是任何持续时间 ), 它们溶解, 在混凝土或其它材料中 留下与集料的尺寸和形状匹配的空隙空间。这能够制造具有受控渗透性的混凝土。
     也可以控制集料组合中的抗磨性, 由此可以以全部相同的抗磨性制造集料或可以 是具有不同抗磨性的不同集料的组合。
     Ⅳ . 系统
     本发明的方面进一步包括用于制造碳酸盐化合物组合物, 例如咸水衍生的碳酸盐 和氢氧化物矿物组合物, 和本发明的集料, 以及包括本发明的集料的混凝土和灰浆的系统, 例如加工装置或工厂。本发明的系统可具有能够实施相关的特定制造方法的任何构造。
     本发明的方面进一步包括用于由二价阳离子和工业废气的组分制造本发明的集 料, 以及包括本发明的集料的混凝土和灰浆的系统, 例如加工装置或工厂。 本发明的系统可 具有能够实施相关的特定制造方法的任何构造。本发明的系统包括制造集料的系统, 其中 该系统包括含二价阳离子的水的输入端、 对该水施以碳酸盐化合物沉淀条件和制造沉淀碳酸盐化合物组合物的碳酸盐化合物沉淀站 ; 和由该沉淀碳酸盐化合物组合物制造集料的集 料制造器。在一些实施方案中, 该系统进一步包括含 CO2 的工业废气流 ( 其在一些实施方 案中可以是来自发电厂、 铸造厂、 水泥厂或冶炼厂 ; 例如在一些实施方案中发电厂, 如燃煤 发电厂的废气流 ) 的输入端。该系统的集料制造器可以是使用任何适用于制造所需品质的 集料的方法, 例如本文所述的任何方法 ( 如使用温度和压力的组合, 例如在印压机、 挤出机 或辊系统中 ) 的集料制造器。在一些实施方案中, 该集料制造器能够制造具有特定尺寸和 / 或特定形状的集料。在一些实施方案中, 该集料制造器能够制造各种尺寸和 / 或形状的 集料。该集料制造器可以在一个步骤中或在多于一个步骤中制造集料, 例如制造固体块的 步骤, 任选此后一个或多个由该固体块制造具有所需性质, 例如尺寸和 / 或形状的集料的 步骤。在一些实施方案中, 本发明的系统能够每天制造至少 0.5、 1、 2、 5、 10、 50、 100、 1000, 或 10,000 吨集料, 其含有每吨集料至少 0.1、 0.2、 0.3、 0.4 或 0.5 吨从 CO2 源封存的 CO2。在 一些实施方案中, 本发明的系统能够每天制造至少 1 吨集料, 其含有每吨集料至少 0.1 吨从 CO2 源封存的 CO2。在一些实施方案中, 本发明的系统能够每天制造至少 1 吨集料, 其含有每 吨集料至少 0.2 吨从 CO2 源封存的 CO2。在一些实施方案中, 本发明的系统能够每天制造至 少 1 吨集料, 其含有每吨集料至少 0.3 吨从 CO2 源封存的 CO2。在一些实施方案中, 本发明 的系统能够每天制造至少 10 吨集料, 其含有每吨集料至少 0.3 吨从 CO2 源封存的 CO2。在 这些实施方案的一些中, 该集料适合用作建筑材料。
     图 2 提供根据本发明的一个实施方案的沉淀和集料制造系统的示意图。 在图 2 中, 系统 100 包括二价阳离子源 110。 在某些实施方案中, 二价阳离子源 110 包括具有二价阳离 子水溶液输入端, 如来自海洋的管道或导管等的结构。如果该系统加工以制造沉淀材料和 随后集料的二价阳离子水溶液是海水, 该输入端与该海水流体连通。 例如, 该输入端可以是 从海水到陆地基系统的管路或进料端, 或该输入端可以是在船体中的入口端 ( 例如, 当该 系统是海运船的一部分时 )。
     在图 2 中也显示了气态废料流源 130, 其包含二氧化碳和燃烧气体的其它组分。 该 废气流可如上所述不等。将二价阳离子源和气态废料流源连接到充料器和沉淀器反应器 120。该充料器和沉淀器 120 可包括许多不同的元件, 如温度调节器 ( 例如构造成将该水加 热至所需温度 )、 化学添加剂元件 ( 例如用于将化学 pH 升高剂 ( 如飞灰 ) 引入水中 ) 和电 解元件 ( 例如, 阴极 / 阳极等 )。充料器和沉淀器 120 可以以分批法、 半分批法或连续法运 行。
     沉淀反应的产物 ( 例如, 浆料 ) 任选如图 2 中所示在分离器 140 中加工。分离器 140 可以使用各种不同的除水法, 包括如连续离心、 离心、 过滤器离心、 重力沉降之类的方 法。该沉淀材料可以简单地用淡水洗涤, 并保持湿润以使淡水水淬硬化反应 (fresh water hardeningreaction) 继续进行。可以进行部分机械除水以调节凝固产物的密度, 从而控制 强度和硬度。
     图 2 中所示的系统还包括用于干燥分离器 140 中制成的脱水沉淀材料的任选干燥 器 160。根据该系统的特定干燥程序, 该干燥器 160 可以包括如上文更详细描述的过滤元 件、 冻干结构、 烘干、 喷雾干燥结构等。
     也显示了任选洗涤站 150, 其中在干燥器 160 中干燥之前洗涤来自分离器 140 的大 部分脱水沉淀材料以例如从该沉淀材料中除去盐和其它溶质。随后将来自干燥器 160 的干燥的沉淀材料供应至集料制造单元 180, 其中该沉淀 材料可以凝固和机械加工以制造最终集料产物。
     如上所述, 该系统可位于陆地或海洋。例如, 该系统可以是陆地基系统, 其位于海 岸区 ( 例如接近海水源 ), 或甚至内陆地点, 其中将水从二价阳离子源 ( 例如海洋 ) 用管输 送到沉淀和集料制造系统。或者, 该沉淀和集料制造系统可以是水基系统 ( 即位于水上或 水中的系统 )。这种系统可以按需要位于船、 海洋平台等上。
     Ⅳ . 用途
     本集料和包含它的可凝固组合物可用于各种不同的用途, 如地上稳定的 (above ground stabl)CO2 封存产物, 以及建筑或建造材料。可以使用本发明的可凝固组合物的具 体结构包括, 但不限于 : 铺砌路面、 建筑结构, 例如建筑物、 地基、 汽车道 / 公路、 天桥、 停车 结构、 砖 / 砌块墙以及门、 栅栏和柱杆的基座。本发明的灰浆可用于将建筑块, 例如砖粘合 在一起和填充建筑块之间的间隙。 除其它用途外, 灰浆也尤其可用于修理现有结构, 例如替 代原始灰浆已受损或被侵蚀的部分。
     列出下列实施例以便为本领域普通技术人员提供如何制造和利用本发明的完整 公开和描述, 并且不是要限制被本发明人视为其发明的内容的范围, 也不是要表明, 下列实 验是所实施的所有或唯一实验。已经努力确保所用数值 ( 例如量、 温度等 ) 的精确性, 但应 该考虑一些实验误差和偏差。除非另行指明, 份数为按重量计的份数, 分子量为重均分子 量, 温度为℃, 且压力为等于或接近大气压。
     实施例
     实施例 1. 用在集料中的沉淀材料的制备
     76,000 加 仑 海 水 以 40 加 仑 / 分 钟 泵 入 在 罐 底 配 有 鼓 泡 器 (sparger) 的 250,000- 加仑敞口罐, 直至罐中的海水高度为鼓泡器上方 6 英尺。随后将二氧化碳以使 pH 保持高于 5.6 的速率鼓泡进入海水。
     在继续鼓泡通入二氧化碳的情况下, 通过用联机 (in-line) 混合器经管道加入含 有 4,500 千克喷射研磨的 ( 以降低粒度和改进溶解速率 ) 氢氧化镁的浆料。 ( 用于此实验的 氢氧化镁是来自海水氧化镁 (MgO) 装置的废料, 该氢氧化镁为大约 85% Mg(OH)2、 大约 12% CaCO3 和大约 3% SiO2)。 在完全添加氢氧化镁后继续鼓泡通入二氧化碳, 直至加入 9,400 磅 二氧化碳。随后将该罐 ( 罐 A) 中的一半反应混合物转移到另一罐 ( 罐 B) 中。完成这些步 骤的总时间为大约 30 小时的期间。
     经 4-6 小时向罐 A 中加入大约 300 加仑 50% (w/w) 氢氧化钠溶液, 直至 pH 达到 9.5。随后将该混合物经大约 5 小时的期间转移到罐 B 中, 并使其在重力作用下沉降 8-12 小时。
     从罐 B 底部取出沉降的沉淀材料并随后用淡水洗涤部分的该沉降的沉淀材料, 在 压滤机中脱水以制造大约 30%固含量的滤饼, 并用于制造集料 ( 见实施例 2)。
     X- 射线荧光 (XRF) 数据 ( 表 3) 表明, 该沉淀材料具有 12 的高 Mg ∶ Ca 重量比。 由此提供的热解重量分析 (TGA) 数据 ( 图 5 和图 6) 表明, 该沉淀材料保持湿润。图 5 提供 湿沉淀材料的 TGA 分析。图 6 提供在干燥器中干燥的沉淀材料的 TGA 分析。
     48101952012 A CN 101952017说Mg 19.99 Al 0.00 Si明书S 0.06 Cl 2.09 K 0.07 Ca 1.6845/55 页Na 重量%
     Fe 0.041.650.24表3: 沉淀材料的 XRF 元素分析% H2O 重量% 27.38 % CO2 31.98表4: % CO2 含量 ( 库仑法 ) 和由 TGA 计算的% H2O
     该 沉 淀 材 料 的 X- 射 线 衍 射 (XRD) 分 析 ( 图 4) 表 明 存 在 球 碳 镁 石 (Mg5(CO3)4(OH)2·5(H2O)) 作为主要相, 三水菱镁矿 (MgCO3·3H2O) 作为另一相, 一些水菱镁 矿 (Mg5(CO3)4(OH)2·4(H2O)) 和方解石作为次要组分。也检出一些石盐 (NaCl)。
     也提供该沉淀材料的傅里叶变换红外 (FT-IR) 光谱 ( 图 7)。 也提供该沉淀材料在 1000x( 左 ) 和 4000x( 右 ) 放大率下的扫描电子显微镜 (SEM) 图像 ( 图 8)。
     实施例 2 : 由沉淀材料制备集料
     清洗 Wabash 水压机 ( 型号 No. : 75-24-2TRM ; ca.1974) 的钢模具并预热压板以使 压板表面 ( 包括模腔和冲头 ) 处于 90℃最少 1 小时。
     将来自实施例 1 的一些沉淀材料滤饼在薄盘中在 40℃下烘箱干燥 48 小时并随后 在掺合器中压碎和研磨以使磨碎的材料通过 8 号筛。随后将该磨碎的材料与水混合以产生 90-95%为固体且余量为添加的水 (5-10% ) 的混合物。
     在 Wabash 压机中的 4” x 8” 模具中装入磨碎的沉淀材料的湿混合物并向该沉淀材 料施加 64 吨 (4000psi) 的压力大约 10 秒。随后释放压力并再打开模具。刮下粘在模具侧 面上的沉淀材料并移向模具中心。随后再关闭模具并施加 64 吨的压力总共 5 分钟。随后 释放该压力, 再打开模具, 并将压制的沉淀材料 ( 现在为集料 ) 从模具中取出和在环境条件 下冷却。 任选地, 可以将该集料从模具转移到 110℃炉中的干燥架上并干燥 16 小时, 随后在 环境条件下冷却。
     一旦冷却至室温, 该集料具有浅褐色至白色石灰石外观。集料表面不会被硬币划 伤, 表明 3 或更大的莫氏硬度, 这是大多数天然石灰石的硬度。在将该集料分裂为二半时观 察到层状结构。当来自 NorthernCalifomia 的 Calera 地层的天然石灰石断裂时, 观察到与 该集料相同的层状结构。天然石灰石薄片断裂仅用略大于该集料断裂所需的力。在手掌之 间摩擦天然石灰石和集料的样品 5 秒表明, 该集料仅稍微比石灰石更易碎。
     图 9-12 提供该实验的光谱和图像 : 图 9 提供该集料的 XRD 谱 ; 图 10 提供该集料的 FT-IR 光谱 ; 图 11 提供该集料的 TGA 数据 ; 和图 12 提供该集料在 1000x( 左 ) 和 4000x( 右 ) 放大率下的 SEM 图像。
     实施例 3 : 由硅灰石和沉淀材料的混合物制成的集料
     将实施例 1 中制成的一些沉淀材料 ( 主要为三水菱镁矿棒材 (rod), 来自沉淀材料 的未洗涤滤饼 ) 在炉中干燥至一致重量。随后将该干燥的初始沉淀材料 (5 千克 ) 添加到 反应器中, 随后加入 1 千克商品级硅灰石 ( 硅酸钙 ) 和 500 毫升 50% (w/w) 氢氧化钠 ( 同
     时搅拌 )。在继续搅拌下, 向该反应混合物中加入 12 千克水。随后将该反应混合物在 70℃ 下加热过夜。
     将所得产物材料过滤, 喷雾干燥, 并用于如实施例 2 中所述制备集料, 包括在 110℃炉中的干燥架上干燥该集料 16 小时的任选步骤。
     Na 重量%
     Mg 0.48Al 0.27Si 22.12S 0.00Cl 0.19K 0.00Ca 36.18Fe 0.300.00表5: 硅灰石原材料的 XRF 元素分析 Na Mg 13.09 Al 0.12 Si 4.48 S 0.36. Cl 2.47 K 0.06 Ca 7.19 Fe 0.07重量%
     12.14表6: 喷雾干燥材料的 XRF 元素分析% H2O 重量% 14.67 % CO2 23.77表7: 喷雾干燥的材料的% CO2 含量 ( 库仑法 ) 和由 TGA 计算的% H2O
     图 13 提供集料 ( 顶部光谱 )、 喷雾干燥的材料 ( 中部光谱 ) 和硅灰石原材料 ( 底 部光谱 ) 的 XRD 谱。硅灰石原材料 ( 顶部光谱 ) 的 XRD 谱表明该硅灰石原材料包含硅灰 石 -1A 和可能硅灰石 -2M( 两种硅灰石多晶型物 )、 方铁矿 (FeO) 和刚玉 (Al2O3) 相。该喷 雾干燥的材料 ( 中部光谱 ) 显示水菱镁矿 (Mg5(CO3)4(OH)·4H2O) 和文石 (CaCO3) 相。( 库 仑法表明该喷雾干燥的材料具有 24 重量%的% CO2, 证实存在所观察到的碳酸盐相 )。大 多数与硅灰石原材料相关联的峰仍可见 ; 但是, 几个峰增宽, 表明在上述程序中在初始沉淀 材料和硅灰石之间发生一些反应。该集料 ( 顶部光谱 ) 的 XRD 分析表明喷雾干燥的材料和 集料之间几乎没有发生结晶相变化。
     提供集料 ( 实线 ) 和喷雾干燥的材料 ( 虚线 ) 的 TGA 分析的图 14 表明水在压制 过程中损失 ( 在 100℃下方的第一峰 ), 但几乎没有发生由压制造成的其它变化。400℃附 近的峰指示水合碳酸镁, 且 650-680℃附近的峰指示碳酸钙。
     图 15 提供喷雾干燥的材料 ( 顶部 ) 和集料 ( 底部 ) 的 SEM 图像。在该集料中, 剩 余硅灰石晶体 ( 通过能量色散 X- 射线光谱学 (EDS) 测得 ) 表现为被剩余初始沉淀材料包 围。基于该 XRD 和 SEM 图像, 不清楚该基质是否具有附加网络或这是否是初始沉淀材料的 填实 / 增密。
     实施例 4 : 由飞灰制沉淀材料制成的集料
     在尺寸合适的反应器中向海水 (900 加仑 ) 中鼓泡通入气态 CO2 混合物 ( 包含 20% CO2 和 80%压缩空气 ) 直至 pH 稳定在大约 pH 5.8。
     在继续鼓泡下, 加入 10 千克 NaOH 溶液 (50% (w/w)NaOH(aq)), 同时使 pH 值保持 在 pH 8.5 或更低。向单独的混合器中加入 Indian River 飞灰 (25 千克 ) 和水 (25 千克 ) 以形成飞灰∶水的 1 ∶ 1 混合物。随后在充分搅拌下向所得飞灰 - 水混合物中加入 60 千 克 NaOH 溶液 (50% (w/w)NaOH(aq))。在连续 CO2 鼓泡下, 将该飞灰 - 水混合物添加到反应 器中的反应混合物中, 同时使该反应混合物的 pH 值保持在大约 pH 10.0。 用 10 升水从该单 独的混合器中洗除任何残留的飞灰 - 水混合物, 此后停止 CO2 鼓泡。将该反应混合物再搅 拌 10 分钟, 并将该反应混合物转移到沉降罐中并使其在重力作用下沉降。
     将反应产物过滤, 喷雾干燥并用于如实施例 2 中所述制备集料, 包括在 110℃炉中 的干燥架上干燥该集料 16 小时的任选步骤。
     下面给出飞灰原材料和所得喷雾干燥的材料的 XRF 数据 :
     Na 重量%
     Mg 1.12Al 14.63Si 23.68S 0.24Cl 0.48K 1.95Ca 1.17Fe 3.690.00表8: 飞灰原材料的 XRF 元素分析 Na Mg 6.88 Al 4.76 Si 6.84 S 0.45 Cl 11.91 K 1.05 Ca 3.44 Fe 1.17重量%
     15.23表9: 喷雾干燥材料的 XRF 元素分析 .% H2O 重量% 10.21 % CO2 12.64表 10 : 喷雾干燥的材料的% CO2( 库仑法 ) 和由 TGA 计算的% H2O( 图 17)
     图 16 提供飞灰原材料 ( 顶部光谱 )、 喷雾干燥的材料 ( 中部光谱 ) 和集料 ( 底部光 谱 ) 的 XRD 谱。 图 16 还提供相应的相分析。 飞灰原材料的 XRD 谱显示标准飞灰结晶相如石英 (SiO2) 和富铝红柱石。该喷雾干燥的材料的 XRD 谱显示主要结晶的飞灰相 ( 即石英和富铝 红柱石 ) 以及浅峰——其与氯碳钠镁石 (Na2Mg(CO3)2Cl)、 水菱镁矿 (Mg5(CO3)4(OH)· 4H2O)、 石盐 (NaCl) 和文石 (CaCO3) 相关联。该集料的 XRD 谱显示在喷雾干燥的材料中存在结晶 相 ( 例如水菱镁矿、 石盐、 氯碳钠镁石和文石 ), 以及如上所示的飞灰相。 该喷雾干燥的材料 具有 13 重量%的% CO2, 表明存在碳酸化材料, 即使不是结晶形式。
     图 18 提供在 1000X( 左 )、 4000X( 右 ) 下的 SEM 图像, 显示由飞灰制成的集料样品 的切开面。该集料的 SEM 观察证实在集料中存在飞灰原材料 ; 但是, 除基质中的一些微晶 外, 基质出现在飞灰周围。该样品容易研磨, 表明该基质没有充分形成, 或其可能是易碎材 料。通过分散在基质内的所述量的细飞灰粒子, 通过 SEM-EDS 不确定基质中是否有二氧化 硅或该二氧化硅份额是否来自这些细飞灰粒子。
     图 17 提供该喷雾干燥的材料和集料的 TGA 分析。如该 TGA 图所示, 水在集料形成 过程中损失 ( 在 250℃以下的峰 ), 但从喷雾干燥的材料到集料没有发生显著的相性质变 化。
     实施例 5 : 灰浆中的集料
     一般而言, 将来自实施例 2 的集料弄碎, 筛分集料碎块以产生 #2 号集料、 #4 号集 料、 #16 号集料和细砂集料 ( 如下 )。
     集料尺寸 :
     ·尺寸 1 : 留在筛 #4(4.75mm) 上 [+4]
     ·尺寸 2 : 通过筛 #4(4.76mm) 但留在筛 #16(1.19mm) 上 [-4/+16]
     · 尺寸 3 : 通过筛 #16(1.19mm) 但留在筛 #35(0.5mm) 上 [-16/+35] 剔除 : 通过筛 #35[-35]
     将波特兰水泥和水以 0.50(1 ∶ 2) 的水∶水泥比混合 1 分钟。随后加入集料直至 该灰浆到达恰当稠度 ( 即, 覆盖所有集料但保持流动性足够浇铸成灰浆立方块并精整的糊 料 )。
     在第一灰浆样品中, 使用尺寸 3 的集料部分制造包含 5 克波特兰水泥、 2.5 克水和 7.5 克尺寸 3 的集料的样品。所得灰浆样品在 20 分钟后变温热, 达到 31.8℃的温度。
     在第二灰浆样品中, 使用该集料制造包含 309 克波特兰水泥、 155 克水和 338 克集 料 (179 克尺寸 1( 粗 ) 部分和 159 克尺寸 2( 中等 ) 部分 ) 的 2” 立方体。随后浇铸该立方 体并使其在 98%相对湿度室内在 23℃下老化大约 60 小时。
     实施例 6 : 含文石的集料
     在尺寸合适的反应器中装入 2008 年 10 月 10 日从 Moss Landing, CA 收集的 900 加 仑海水并用置顶搅拌器搅拌。以对于 CO25scfm 和对于压缩空气 20scfm 的流速向该海水中 鼓入二氧化碳的气态混合物 (20% CO2 和 80%压缩空气 )。在继续鼓泡下, 缓慢加入 3.4 千 克 ( 干重量 ) 氢氧化镁 ( 来自海水氧化镁工厂的废料, 该氢氧化镁包含 85% Mg(OH)2、 12% CaCO3 和大约 3% SiO2)。
     当 pH 降至大约 pH 7.0(±0.1) 时, 加入 50 % NaOH 溶液 (50 % (w/w)NaOH(aq))。 将该反应混合物的 pH 值调节至大约 pH 7.9, 此后通过在向该反应混合物中连续鼓入气体 混合物的同时通过手动控制 NaOH 的添加, 使 pH 保持在大约 pH 7.9(±0.2)。如果 pH 小于 pH 7.9, 加入 50% NaOH 溶液。如果 pH 大于或等于 7.9, 停止添加 50% NaOH。在加入 43 千 克 50% NaOH 溶液后, 不再添加 50% NaOH 溶液 ; 但是, 该反应混合物继续鼓泡直至 pH 为大 约 pH 7.4(±0.1)。此时, 停止鼓泡。
     随后向该反应混合物中追加 50% NaOH 直至该反应混合物为 pH8.5( 初始海水的 pH)。随后停止置顶搅拌器, 并将该反应器的内容物转移到沉降罐。随后使该反应混合物 ( 浆料 ) 静置大于 1.5 小时, 使该沉淀材料在重力作用下沉降。
     经过时间pH气流状态CO2 流速 (scfm)空气流速 (scfm)基重 (kg)温度 (C)52101952012 A CN 101952017说8.47 7.88 7.94 8.04 7.95 7.94 7.00 8.22 8.00 7.90 8.00 8.44 开 开 开 开 开 开 开 开 开 开 关 关 5 5 5 5 5 5 5 5 5 5 5 5明书20 20 20 20 20 20 20 20 20 20 20 20 0 17.5 25 27.5 30.5 33.5 0 40.5 43 43 45 48.5 15.1 16.6 17.2 17.3 17.6 17.8 15.1 18.2 18.4 18.5 18.5 18.849/55 页0:00 1:05 1:27 1:32 1:43 1:53 2:00 2:00 2:16 2:20 2:28 2:30
     表 [[#]] : 详细反应数据
     在沉降后, 通过过滤 ( 压滤机 ), 将沉淀材料与上清液分离并脱水。随后将一部分 沉淀材料在薄盘中在 110℃下烘箱干燥 48 小时, 用手压碎并在掺合机中研磨。
     如下表 1 中所示, 通过上述方法制成的沉淀材料具有大约 1 ∶ 7 的 Mg ∶ Ca 重量 比。
     Na 重量%
     Mg 4.17Al 0.46Si 0.87S 0.09Cl 1.26K 0.09Ca 28.43Fe 0.261.30表1: MLD6P00006-204 样品的 XRF 元素分析
     该 烘 干 的 沉 淀 材 料 的 XRD 分 析 ( 图 19) 表 明 存 在 文 石 (CaCO3) 作 为 主 要 相, 石 盐 (NaCl) 和 一 些 镁 方 解 石 (MgxCa(1-x)CO3, 其中x~4摩尔%)和水菱镁矿 (Mg5(CO3)4(OH)2·4H2O) 作为次要组分。
     % H2O 重量% 5.58% CO2 38.46表2: % CO2 含量 ( 库仑法 ) 和由 TGA 计算的% H2O
     图 20-22 提供该沉淀材料的光谱和图像 : 图 20 提供该沉淀材料的 TGA ; 图 21 提供 该沉淀材料的 FT-IR ; 和图 22 提供该沉淀材料在 250x( 左 ) 和 4000x( 右 ) 下的 SEM 图像。
     如上文对实施例 2 所述, 清洗 Wabash 水压机的钢模具和预热压板以使压板表面处 于 90℃最少 2 小时。
     随后将该烘干的沉淀材料在掺合器中压碎和研磨以使磨碎的材料通过 8 号筛。随 后将该磨碎的材料与水混合以产生 90%为固体且余量为添加的水的混合物。
     在 Wabash 压机中的 4” x 8” 模具中装入磨碎的沉淀材料的湿混合物并向该沉淀材 料施加 60 吨的压力大约 10 秒。随后释放压力并再打开模具。刮下粘在模具侧面上的沉淀 材料并移向模具中心。随后再关闭模具并施加 60 吨的压力总共 5 分钟。随后释放该压力, 再打开模具, 并将压制的沉淀材料 ( 现在为集料 ) 从模具中取出和在环境条件下冷却。任 选地, 可以将该集料从模具转移到 110℃炉中的干燥架上并干燥 16 小时, 随后在环境条件 下冷却。
     该集料中等容易弄碎和研磨以准备分析。
     图 23-26 提供该集料的光谱和图像 : 图 23 提供该集料和制备该集料用的沉淀材 料的 XRD 谱 ; 图 24 提供该集料的 FT-IR ; 图 25 提供该集料的 TGA ; 和图 25 提供该集料在 1000x( 左 ) 和 4000x( 右 ) 下的 SEM 图像。
     如图 23-25 所示, 该沉淀材料的压制和随后干燥没有造成组成变化。 SEM 图像看似 表明该集料中粒子的填实, 但局限于没有形成基质。
     实施例 7 : 通过挤出该沉淀物而形成的集料
     在此实施例中, 将基本如实施例 1 中所述制成并包含三水菱镁矿和文石和含有大 约 60 重量%水的沉淀碳酸盐样品放入加热的通风的 1.5 英寸直径料筒挤出机中。将该挤 出机加热至大约 220℃, 并将该材料在挤出机中放置大约 5 秒。该挤出机出口模口的开口 为 0.375 英寸。从该挤出机中获得包含水菱镁矿和方解石以及原料矿物的材料, 其水含量 小于 10%。但是, 许多材料在该挤出机内过早岩化以产生结块体 (case mass)。该结块体 随后在 60℃下烘干以产生硬的易碎块, 将其打碎成细集料粒子。
     实施例 8 : 通过用乙醇湿研磨该沉淀物而形成的集料
     在此实施例中, 通过用乙醇湿研磨该沉淀物, 制备集料。在制备这种样品时, 在标 准工业压滤机上过滤基本如上述实施例 1 中所述制成的沉淀碳酸盐样品以制造大约 50% 固含量的滤饼。向该沉淀物中加入 10%乙醇 w/w 溶液并将该混合物球磨 2-24 小时。随后 将该研磨的沉淀物在通风橱中在环境空气中干燥过夜。所得产物是致密的自凝结片, 将其 打碎成适合粗或细集料的碎片。该产物的莫氏硬度为至少 2。
     实施例 9 : 由碳酸盐沉淀物制成的细合成集料
     细 合 成集 料 (FSA) 是 与砂粒类似的 合成集 料 并由 本发明 的 沉淀碳 酸 盐使用 本文所述的方法制备。FSA 掺入混凝土混合物中并可以代替混凝土混合物中的一部分 或所有细集料 ( 砂 ) 以使波特兰水泥排放的碳含量与其封存的碳含量平衡。预计每 立方码使用几百磅, 因为每 100 磅波特兰水泥需要大约 200 磅 FSA 制造碳中和混凝土 (carbon-neutralconcrete)。含 50 %飞灰的 6 袋混合物需要 564 磅 FSA 实现碳中和 ; 在 25%飞灰下, 需要 846 磅 ; 在 100% OPC 下, 需要 1128 磅。 混凝土的典型砂含量为 1100-1600磅。 使用 FSA 制造碳减少 (carbon-reduced) 或碳中和的混凝土有助于混凝土工业符 合日益发展的温室气体减少法规。FSA 的使用可以提供创新的碳信用额以及再生材料信用 额。由于 FSA 是替代另一填料的填料, 预计比替代一部分水泥质材料的产品更快和更容易 获得接受。FSA 可替代砂子用在混凝土、 灰泥、 喷浆 (gunnite) 等中以降低或消除这些产品 的碳足迹。
     FSA 的关键特性包括 :
     ·碳酸钙和碳酸镁组成
     ·最少 45%捕集 CO2 含量
     ·粒度范围, 基于通过该筛子的累积% :
     ○ 100%通过 #4 筛 (4,750u)
     ○ 95-98%通过 #8 筛 (2,360u)
     ○ 65-75%通过 #16 筛 (1,180u)
     ○ 40-50%通过 #30 筛 (600u)
     ○ 10-15%通过 #50 筛 (300u)
     ○ 0-2%通过 #100 筛 (150u)
     ·粒度分布, 批与批之间在 10%内一致
     ·符合 ASTM C-33
     ·在与类似水含量的砂子相比不变或改进的碳中和水平下, 在混凝土中的流动性 质
     ·在与类似水含量的砂子相比不变或改进的碳中和水平下, 在混凝土中的强度性 质。
     ·在与类似水含量的砂子相比不变或改进的碳中和水平下, 在混凝土中的耐久性 (ASR、 冷冻 - 解冻等 )
     ·在与类似水含量的砂子相比不变或改进的碳中和水平下, 在混凝土中的收缩性 质
     ·在与类似水含量的砂子相比不变或改进的碳中和水平下, 混凝土的易精整性
     ·可浸出 NaCl 含量< 0.1%
     ·在储存和运输过程中稳定
     实施例 10 : 由本发明的碳酸盐沉淀物制成的粗合成集料
     粗合成集料 (CSA) 是指粒度范围为 1/4” 至 11/2” 的集料。通过本文所述的方法制 成的 CSA 用于当前使用天然粗集料的情况。最大的用途是在路基、 沥青和混凝土中。使用 CSA 制造碳减少或碳中和的混凝土有助于混凝土工业符合温室气体减少法规, 如 CA AB32。 CSA 的使用可以提供碳信用额以及再生材料信用额。 由于 CSA 是替代另一填料的填料, 比替 代一部分水泥质材料的产品更快和更容易获得接受。
     CSA 可用于使用类似等级的砾石或碎石的情况。在工厂使用飞灰或镁铁质矿物作 为阳离子源制成的硅质 CSA 可能局限于路基和沥青用途。CSA 以当前使用天然粗集料的任 何方式使用。最大用途是在路基、 沥青和混凝土中。
     基于工厂地点和阳离子 / 碱源, 两种等级的 CSA 可供使用。一种是适合所有用途
     的 100%碳酸盐材料 ( 碳酸盐 CSA)。由于用在混凝土中时的碱 - 硅反应性 (ASR) 潜力, 另 一等级 ( 硅质 CSA) 仅用在沥青和路基中。
     FSA 的关键特性包括 :
     ·符合粗石灰石集料的工业标准 (ASTM C033)
     ·符合用于混凝土、 沥青和路基的粗集料的 Caltrans 规格
     ·在所有碳酸盐 CSA 中, 最少 44%的捕集 CO2 含量
     ·在硅质 CSA 中, 最少 30%的捕集 CO2 含量
     ·一致等级
     ·与传统粗集料相比, 不降低路基、 沥青或混凝土的可加工性、 机械性质、 收缩或耐 久性
     ·对用于混凝土用途的碳酸盐 CSA 而言, 可浸出 NaCl 含量< 0.1%
     ·在未覆盖的暴露在自然环境中的设定中, 在储存和运输过程中稳定 13
     实施例 11 : 固体沉淀物的 δ C 值的测量
     由海水通过将市售 CO2(Praxair) 鼓泡通过海水随后调节 pH, 制造包含碳酸盐的固 体沉淀物。在两种不同的程序 (P00361 和 MLD13) 中制造两种沉淀物。不同于大气, 空气分 离不是罐装气体中的二氧化碳的主要来源。尽管其有时直接来自燃料燃烧, 制造二氧化碳 的最经济的方式是作为副产物从其它商业制造工艺或从天然井回收。 随后将其提纯和液化 13 并销往全球。通常, 来自发酵的罐装气体的 δ C =大约 -30‰至 -20‰, 来自石油源的罐装 13 气体的 δ C =大约 -40‰至 -30‰。因此, 罐装气体预计是同位素轻的 ( 类似烟道气 ) 并 且为 -20‰至 -40‰。为了比较, 海水中的 CO2 的 δ13C 值为大约 0, 空气的 CO2 的 δ13C 值不 比 -10‰更负, 对于天然石灰石中的碳酸盐, δ13C 值为 ±3‰。如果该沉淀物中的碳酸盐主 要含有来自罐装气体的 CO2, 它们的 δ13C 值预计在 -20‰至 -40‰范围内, 不像来自海水或 空气的 CO2 或天然石灰石中的碳酸盐那样接近 0。
     通过质谱法测量这两种沉淀物的 δ13C 值。各沉淀物使用一式两份的样品。在沉 淀物中测得不符合天然石灰石和海水的典型值并符合预计在罐装气体中发现的同位素轻 的 CO2 的 δ13C 值, 见下表 ( 也测量 δ18O 值 ) :
     d13C d18O d13C d18O
     (‰ ) (‰ ) (‰ ) (‰ )
     样品 ID uncor StDev uncor StDev corr corr
     P00361-001 -29.42 0.01 0 -11.51 0.01 1 -31.44 -12.44
     P00361-004 -29.73 0.01 0 -7.84 0.01 0 -31.16 -8.32
     MLD13P00001-105 -27.75 0.01 0 -7.25 0.01 0 -28.40 -7.54
     MLD13P00001-006 -27.66 0.01 0 -7.23 0.00 1 -27.42 -7.28
     该样品表明, 可以以高精度测量根据本发明中包含的方法制成的含碳酸盐的沉淀 13 13 物的 δ C 值, 这种 δ C 值在对来自工业源的 CO2 预测的负数范围内, 这使其不同于天然石 灰石中的碳酸盐或来自空气或海水的 CO2。
     实施例 12. 固体沉淀物和原材料的 δ13C 值的测量
     此实施例显示使用罐装二氧化碳 (CO2) 和富镁的工业废料从盐水溶液中沉淀碳酸 盐材料并测定材料和产物的 δ13C 值。在向大气敞开的容器中实施该程序。原材料是市售罐装 CO2 气体、 海水和作为碱的工业废料源来自氢氧化镁生产地的 水镁石尾矿。该水镁石尾矿为大约 85% Mg(OH)2、 12% CaCO3 和 3% SiO2。
     在容器中装入本地可得的海水 ( 在 Santa Cruz, CA 附近 )。将水镁石尾矿添加 到海水中, 提供适合碳酸盐沉淀的 pH( 碱性 ) 和二价阳离子浓度, 并将 CO2 气体鼓泡通入该 碱性海水溶液。给出足够的时间以使反应组分相互作用, 此后将沉淀材料与剩余海水溶液 ( 也称作上清液 ) 分离。不使用升高的温度或其它特殊程序干燥该沉淀碳酸盐材料。使用 δ13C 分析、 X- 射线衍射 (XRD) 分析和扫描电子显微术 (SEM) 表征该碳酸盐材料。
     测量工艺原材料、 沉淀碳酸盐材料和上清液的 δ13C 值。 不测量大气的 δ13C 值, 但 在表 3 中给出来自文献的值。所用分析系统由 Los GatosResearch 制造并使用直接吸收光 谱法以提供含 2%至 20% CO2 的气体的 δ13C 和浓度数据。使用标准气体校准该仪器, 石灰 华和 IAEA 大理石 #20 的测量产生在文献中发现的公认值的测量误差内的值。使用注射器 制备该 CO2 源气体的样品。使该 CO2 气体通过气体干燥器, 随后进入台面市售分析系统。固 体样品, 如水镁石尾矿和沉淀物先用高氯酸 (2MHClO4) 消化。该消化释放 CO2 气体, 随后该 CO2 气体送入气体干燥器。由此, 该气体通入分析系统, 从而产生碳同位素分馏数据。这种 消化过程显示在图 27 中。类似地, 消化该上清液以释放 CO2 气体, 其随后干燥和送往分析 13 仪器, 从而产生 δ C 数据。
     来自 CO2 源、 工业废料 ( 水镁石尾矿 )、 碳酸盐沉淀物和上清液的分析的测量结果 13 列在表 3 中。该沉淀物和上清液的 δ C 值分别为 -31.98‰和 -38.59‰。该反应的这两种 产物的 δ13C 值都反映了 CO2 源的并入 (δ13C = -41.39‰ ) 和包括一些碳酸钙的水镁石尾 矿的影响 (δ13C = -6.73‰ )。这一实施例表明, δ13C 值可用于证实碳酸盐组合物中的碳 的主要来源。
     表3
     用于同位素分馏表征的实验源材料和测得的值
     实 施 例大气 δ13C 值 [O/OO1CO2 源CO2 源 δ13C 值 [O/OO]碱 δ13C 值 碱源 [O/OO]上清液 δ13C 值 [O/OO]沉淀物 δ13C 值 [O/OO]罐装气体, 10 -8 源1 -41.39Mg(OH)2 +Ca(CO)3 尾矿 -6.73 -38.59 -31.9811-8罐装气体, 符合 NIST RM85632-41.56Mg(OH)2 +Ca(CO)3 尾矿-6.73-34.16-30.0457101952012 A CN 101952017说来自丙烷燃 烧器的烟道 气 SO2/CO2 罐 -25.00明书-6.73 -24.854/55 页Mg(OH)2 +Ca(CO)3 尾矿 -19.9212-813-8装气体混合 物-12.45飞灰-17.46-11.70-15.881.Zeebe, R.E. 和 Wolf-Galdrow, E., CO2 in Seawater : Equilibrium, Kinetics, Isotopes(2005)Elsevier, San Diego, g.169.
     2.FROM NIST SPECIFICATION RM8563, CO2 Light Isotopic GasStandard 13
     实施例 13 : 固体沉淀物和原材料的 δ C 值的测量
     在 250,000 加仑容器中进行这种沉淀。原材料是市售罐装 CO2 气体、 海水 ( 来自 Santa Cruz, CA 附近 ) 和作为工业废料的水镁石尾矿。该水镁石尾矿为大约 85% Mg(OH)2、 12% CaCO3 和 3% SiO2。
     在该 250,000 加仑容器中部分装入本地可得的海水。将水镁石尾矿添加到海水 中, 提供适合不将 CO2 释放到大气中的碳酸盐沉淀的 pH( 碱性 ) 和二价阳离子浓度。 以适合 从该碱性海水溶液中沉淀碳酸盐材料的速率和时间鼓泡通入 CO2 气体。留出足够的时间以 使反应组分相互作用, 此后将沉淀材料与剩余海水溶液 ( 也称作上清液 ) 分离。使用 δ13C 分析、 X- 射线衍射 (XRD) 分析和扫描电子显微术 (SEM) 表征该碳酸盐材料。
     测量工艺原材料、 所得材料和上清液的 δ13C 值。不测量大气的 δ13C 值, 但在表 3 中给出来自文献的值。所用分析系统如实施例 12 中所述由 Los Gatos Research 制造。
     来自 CO2 源、 工业废料 ( 水镁石尾矿 )、 碳酸盐沉淀物和上清液的分析的测量结果 13 列在表 3 中。该沉淀物和上清液的 δ C 值分别为 -30.04‰和 -34.16‰。该反应的这两种 产物的 δ13C 值都反映了 CO2 源的并入 (δ13C = -41.56‰ ) 和包括一些碳酸钙的水镁石尾 矿的影响 (δ13C = -6.73‰ )。沉淀碳酸盐材料比上清液更可能从水镁石尾矿中并入碳酸 钙, 因此该沉淀物的 δ13C 值通过比上清液的更负来反映这一点。这一实施例表明, δ13C 值 可用于证实碳酸盐组合物中的碳的主要来源。
     实施例 14 : 固体沉淀物和原材料的 δ13C 值的测量
     使用由燃烧丙烷产生的烟道气和富镁工业废料实施该实验。 在向大气敞开的容器 中实施该程序。
     原材料是来自丙烷燃烧器的烟道气、 海水 ( 来自 Santa Cruz, CA 附近 ) 和作为工 业废料的水镁石尾矿。该水镁石尾矿为大约 85% Mg(OH)2、 12% CaCO3 和 3% SiO2。
     在容器中装入本地可得的海水。 将水镁石尾矿添加到海水中, 提供适合不将 CO2 释 放到大气中的碳酸盐沉淀的 pH( 碱性 ) 和二价阳离子浓度。以适合从该碱性海水溶液中沉 淀碳酸盐材料的速率和时间鼓泡通入烟道气。留出足够的时间以使反应组分相互作用, 此 后将沉淀材料与剩余海水溶液 ( 也称作上清液 ) 分离。
     测 量 工艺 原材料、 所 得沉 淀碳酸盐 材料 和上清液的 δ13C 值。不测量 大气的 δ13C 值, 但在表 3 中给出来自文献的值。所用分析系统如实施例 12 中详述由 Los Gatos
     Research 制造, 并使用直接吸收光谱法以提供含 2%至 20% CO2 的气体的 δ13C 和浓度数 据。
     来自烟道气、 工业废料 ( 水镁石尾矿 )、 碳酸盐沉淀物和上清液的分析的测量结果 13 列在表 3 中。该沉淀物和上清液的 δ C 值分别为 -19.92‰和 -24.8‰。该反应的这两种 产物的 δ13C 值都反映了烟道气的并入, CO2 源, (δ13C = -25.00‰ ) 和包括一些碳酸钙的 水镁石尾矿的影响 (δ13C = -6.73‰ )。这一实施例表明, δ13C 值可用于证实碳酸盐组合 物中的碳的主要来源。
     实施例 15. 固体沉淀物和原材料的 δ13C 值的测量
     该实验使用罐装 SO2 和罐装二氧化碳 (CO2) 气体的混合物和作为工业废料的飞灰 从含盐水溶液中沉淀碳酸化材料 (carbonatedmaterial)。 在向大气敞开的容器中实施该程 序。
     原材料是市售罐装 SO2 和 CO2 气体 (SO2/CO2 气体 ) 的混合物、 海水 ( 来自 Santa Cruz, CA 附近 ) 和作为工业废料的飞灰。
     在容器中装入本地可得的海水。在熟化后, 将飞灰添加到海水中, 提供适合不将 CO2 释放到大气中的碳酸盐沉淀的 pH( 碱性 ) 和二价阳离子浓度。以适合从该碱性海水溶 液中沉淀碳酸盐材料的速率和时间鼓泡通入 SO2/CO2 气体。留出足够的时间以使反应组分 相互作用, 此后将沉淀材料与剩余海水溶液 ( 也称作上清液 ) 分离。
     如实施例 12 中详述测量工艺原材料、 沉淀碳酸盐材料和上清液的 δ13C 值。
     来自 SO2/CO2 气体、 工业废料 ( 飞灰 )、 碳酸盐沉淀物和上清液的分析的测量结果 13 列在表 3 中。该沉淀物和上清液的 δ C 值分别为 -15.88‰和 -11.70‰。该反应的这两种 产物的 δ13C 值都反映了 SO2/CO2 气体的并入 (δ13C = -12.45‰ ) 和包括一些没有完全燃 烧成气体的碳的飞灰 (δ13C = -17.46‰ )。由于飞灰 ( 本身是化石燃料的产物燃烧 ) 具有 比所用 CO2 更负的 δ13C, 该沉淀物的总 δ13C 值通过比 CO2 本身的 δ13C 更负来反映这一点。 这一实施例表明, δ13C 值可用于证实碳酸盐组合物中的碳的主要来源。
     尽管为了清楚理解, 已经通过说明和实施例详细描述了本发明, 但本领域普通技 术人员根据本发明的教导容易看出, 可以在不背离所附权利要求的精神或范围的情况下对 其作出某些变动和修改。
     相应地, 上文仅举例说明本发明的原理。 要认识到, 本领域技术人员能够设计各种 布置, 它们尽管在本文中没有明确描述或展示, 但具体体现本发明的原理并包括在本发明 的精神和范围内。此外, 本文列举的所有实施例和条件用语主要是辅助读者理解本发明的 原理和本发明人为推进本领域而贡献的概念, 并且应该解释为不受这类明确列举的实施例 和条件的限制。 此外, 本文用于列举本发明的原理、 方面和实施方案及其具体实施例的所有 陈述意在涵盖它们的结构同等物和功能同等物。另外, 这类同等物旨在包括目前已知的同 等物和将来开发出的同等物, 即开发出的发挥相同功能 ( 无论结构如何 ) 的任何要素。因 此, 本发明的范围不限于本文展示和描述的示例性实施方案。 相反, 通过所附权利要求具体 体现本发明的范围和精神。

岩石和集料及其制造和使用方法.pdf_第1页
第1页 / 共86页
岩石和集料及其制造和使用方法.pdf_第2页
第2页 / 共86页
岩石和集料及其制造和使用方法.pdf_第3页
第3页 / 共86页
点击查看更多>>
资源描述

《岩石和集料及其制造和使用方法.pdf》由会员分享,可在线阅读,更多相关《岩石和集料及其制造和使用方法.pdf(86页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN101952012A43申请公布日20110119CN101952012ACN101952012A21申请号200980101586822申请日2009052961/05717320080529US61/05697220080529US61/07332620080617US61/07331920080617US12/16320520080627US61/08129920080716US61/08276620080722US61/08834020080812US61/08834720080813US61/09603520080911US61/10163120080930US61。

2、/10162620080930US61/10162920080930US61/10764520081022US61/11614120081119US61/11754220081124US61/11754120081124US61/11754320081124US61/12187220081201USPCT/US08/08824220081223USPCT/US08/08824620081223US12/34401920081224US61/14835320090129US61/14964020090203US61/14963320090203US61/15899220090310US61/16。

3、816620090409US61/17008620090416US61/17847520090514US61/18125020090526USB01D53/1420060171申请人卡勒拉公司地址美国加利福尼亚州72发明人A杨斯B康斯坦茨J奥奈尔K法萨J帕特森J斯塔纳罗R撒切尔C凯米尔74专利代理机构中国专利代理香港有限公司72001代理人段晓玲李连涛54发明名称岩石和集料及其制造和使用方法57摘要提供包含合成岩石,例如集料的组合物及其制造和使用方法。该岩石,例如集料含有CO2和/或工业废物流的其它组分。该CO2可以是二价阳离子碳酸盐,例如碳酸镁和碳酸钙形式。本发明的方法包括使含CO2的气流与。

4、水接触以溶解CO2和将该水置于足以制造含碳酸盐的沉淀产物,例如二价阳离子碳酸盐的沉淀条件下。30优先权数据85PCT申请进入国家阶段日2010062986PCT申请的申请数据PCT/US2009/0457222009052987PCT申请的公布数据WO2009/146436EN2009120351INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求书3页说明书55页附图27页CN101952017A1/3页21包含CO2封存组分的集料。2权利要求1的集料,其中该CO2封存组分包含一种或多种碳酸盐化合物。3权利要求2的集料,其中所述一种或多种碳酸盐化合物构成该集料的至少50W/W。。

5、4权利要求2的集料,其中所述一种或多种碳酸盐化合物构成该集料的至少90W/W。5权利要求2的集料,其中所述一种或多种碳酸盐化合物构成该集料的至少98W/W。6权利要求2的集料,其中该碳酸盐化合物包含碳酸镁、碳酸钙、碳酸镁钙或其组合。7权利要求6的集料,其中该集料中钙与镁的摩尔比为1/1CA/MG至1/10CA/MG。8权利要求6的集料,其中该集料中钙与镁的摩尔比为150/1CA/MG至10/1CA/MG。9权利要求6的集料,其中该集料中钙与镁的摩尔比为2/1CA/MG至1/2CA/MG。10权利要求1的集料,具有比10更负的碳同位素分馏13C值。11权利要求1的集料,具有比20更负的碳同位素分。

6、馏13C值。12权利要求1的集料,具有75LB/FT3至125LB/LB/FT3的堆积密度。13权利要求1的集料,具有90LB/FT3至115LB/LB/FT3的堆积密度。14权利要求2的集料,还包含硫酸盐和/或亚硫酸盐。15权利要求14的集料,其中合并的硫酸盐和/或亚硫酸盐构成该集料的至少01W/W。16包含权利要求1的集料的结构。17权利要求16的结构,其是建筑物、道路或水坝。18权利要求17的结构,其是道路。19权利要求18的道路,其中该道路封存至少1吨CO2/每车道英里的道路。20权利要求18的道路,其中该道路封存至少100吨CO2/每车道英里的道路。21权利要求18的道路,其中该道路。

7、封存至少1000吨CO2/每车道英里的道路。22包含碳的集料,其中该碳具有比10更负的碳同位素分馏13C值。23权利要求22的集料,其中该碳具有比20更负的13C值。24权利要求22的集料,其中该碳具有比30更负的13C值。25权利要求22的集料,其中该集料包含碳酸盐。26权利要求25的集料,其中该集料的碳酸盐含量为至少10W/W。27权利要求25的集料,其中该集料的碳酸盐含量为至少50W/W。28权利要求26的集料,还包含硫酸盐和/或亚硫酸盐。29权利要求28的集料,其中合并的硫酸盐和亚硫酸盐构成该集料的至少01W/W。30权利要求25的集料,其中该碳酸盐包含碳酸钙、碳酸镁、碳酸钙镁或其组合。

8、。31权利要求30的集料,其中钙镁摩尔比为2001至12。32权利要求22的集料,其具有75LB/FT3至125LB/LB/FT3的堆积密度。33权利要求22的集料,其具有90LB/FT3至115LB/LB/FT3的堆积密度。34包含权利要求22的集料的结构。35权利要求34的结构,其是建筑物、道路或水坝。36权利要求35的结构,其是道路。37包含90999碳酸盐、01至10硫酸盐和/或亚硫酸盐的集料。38权利要求37的集料,进一步含有000000001至0000001汞或含汞化合物。权利要求书CN101952012ACN101952017A2/3页339权利要求37的集料,具有比10更负的碳。

9、同位素分馏13C值。40权利要求37的集料,具有75LB/FT3至125LB/LB/FT3的堆积密度。41权利要求40的集料,具有90LB/FT3至115LB/LB/FT3的堆积密度。42包含权利要求37的集料的结构。43权利要求42的结构,其是建筑物、道路或水坝。44权利要求43的结构,其是道路。45封存CO2的方法,包括I由含二价阳离子的水沉淀封存CO2的碳酸盐化合物组合物以形成沉淀物;和II制造包含该封存CO2的碳酸盐化合物组合物的集料;46权利要求45的方法,其中该集料的制造包括对权利要求45的沉淀物施以升高的温度、升高的压力或其组合。47权利要求46的方法,其中所述升高的温度、升高的。

10、压力或其组合由挤出机产生。48权利要求45的方法,进一步包括使含二价阳离子的水与来自工业废气流的CO2接触。49权利要求45的方法,进一步包括使含二价阳离子的水与来自化石燃料燃烧的CO2接触。50权利要求48的方法,其中该工业废气流是发电厂或水泥厂的烟道气。51权利要求50的方法,其中该烟道气是来自发电厂的烟道气。52权利要求51的方法,其中该发电厂是燃煤发电厂。53权利要求45的方法,其中该含二价阳离子的水的二价阳离子至少部分来自咸水。54权利要求53的方法,其中该咸水包含海水或盐水。55权利要求53的方法,其中该咸水包含海水。56权利要求45的方法,其中该集料的制造包括制造预定尺寸和形状的。

11、集料。57制造集料的方法,包括由含二价阳离子的水沉淀碳酸盐化合物和加工该沉淀物以产生集料。58权利要求57的方法,进一步包括使含二价阳离子的水与来自工业废气流的CO2接触。59权利要求58的方法,其中该工业废气流是发电厂或水泥厂的烟道气。60权利要求59的方法,其中该烟道气是来自发电厂的烟道气。61权利要求60的方法,其中该发电厂是燃煤发电厂。62权利要求57的方法,进一步包括使含二价阳离子的水与来自化石燃料燃烧的CO2接触。63权利要求62的方法,其中该化石燃料包含天然气或煤。64权利要求63的方法,其中该化石燃料包含煤。65权利要求57的方法,其中该沉淀物的加工包括用升高的温度、升高的压力。

12、或其组合处理该沉淀物。66权利要求57的方法,其中该沉淀物的加工包括将该沉淀物与粘结材料和水混合,使该混合物凝固以提供固化材料。67权利要求66的方法,进一步包含打碎该固化材料。权利要求书CN101952012ACN101952017A3/3页468制造集料的系统,包括I含二价阳离子的水的输入端;II对该水施以碳酸盐化合物沉淀条件和制造沉淀碳酸盐化合物组合物的碳酸盐化合物沉淀站;和III由该沉淀碳酸盐化合物组合物制造集料的集料制造器。权利要求书CN101952012ACN101952017A1/55页5岩石和集料及其制造和使用方法0001对相关申请的交叉引用0002依据35USC119E,本申。

13、请要求下列申请的提交日优先权2008年5月29日提交的美国临时专利申请序号NO61/056,972;2008年9月30日提交的美国临时专利申请序号NO61/101,626;2008年9月30日提交的美国临时专利申请美国临时专利申请61/101,629;2008年9月30日提交的美国临时专利申请美国临时专利申请61/101,631;2008年6月17日提交的美国临时专利申请序号NO61/073,319;2008年7月16日提交的美国临时专利申请序号NO61/081,299;2008年11月24日提交的美国临时专利申请序号NO61/117,541;2008年11月24日提交的美国临时专利申请序号N。

14、O61/117,543;和2008年10月22日提交的美国临时专利申请NO61/107,645;和2009年2月3日提交的美国临时专利申请NO61/149,633,和2009年3月10日提交的美国临时专利申请NO61/158,992,和2009年5月26日提交的美国临时专利申请61/181,250,这些申请的公开内容经此引用并入本文。本申请也是2008年12月24日提交的序号NO12/344,019的部分继续申请案,其全文经此引用并入本文,我们依据35USC120要求该申请的优先权。0003背景0004二氧化碳CO2排放已被确认为是全球变暖和海洋酸化现象的主要成因。CO2是燃烧副产物,其造成操。

15、作、经济和环境问题。CO2和其它温室气体的提高的大气浓度预计促进大气内的更高储热,造成提高的地表温度和迅速气候变化。气候变化的影响可能是经济上昂贵和环境上危险的。降低气候变化的潜在危险要求封存大气CO2。0005概述0006一方面,本发明提供组合物。在一些实施方案中,本发明提供含有CO2封存组分的集料。该CO2封存组分可含有一种或多种碳酸盐化合物;在一些实施方案中,碳酸盐化合物构成该集料的至少50W/W,或该集料的至少90W/W,或该集料的至少98W/W;任选地,该集料还可能含有硫酸盐和/或亚硫酸盐,例如其中该硫酸盐/亚硫酸盐总共构成该集料的至少01W/W。在一些实施方案中,该碳酸盐化合物包含。

16、碳酸镁、碳酸钙、碳酸镁钙或其组合;在这些实施方案的一些中,该集料中钙与镁的摩尔比为1/1CA/MG至1/10CA/MG,或150/1CA/MG至10/1CA/MG,或2/1CA/MG至1/2CA/MG。在一些实施方案中,本发明提供含有CO2封存组分的集料,其中该集料具有比10更负更小或比20更负的碳同位素分馏13C值。在一些实施方案中,本发明提供含有CO2封存组分的集料,其中该集料具有75LB/FT3至125LB/LB/FT3,或90LB/FT3至115LB/LB/FT3的堆积密度。在一些实施方案中,本发明提供含有含CO2封存组分的集料例如本段中所述的集料之一的结构。本发明的一些示例性结构包括。

17、建筑物、道路或水坝。在一些实施方案中,该结构是道路,例如每车道英里的道路封存至少1吨CO2的道路、或每车道英里的道路封存至少100吨CO2的道路,或每车道英里的道路封存至少1000吨CO2的道路。0007在一些实施方案中,本发明提供含碳的集料,其中该碳具有比10更负更小,或比20更负,或比30更负的碳同位素分馏13C值。在这些实施方案的一些中,该集料含有碳酸盐,例如,至少10W/W碳酸盐,或至少50W/W碳酸盐;该集料可任选进一说明书CN101952012ACN101952017A2/55页6步含有硫酸盐和/或亚硫酸盐,如钙或镁的硫酸盐或亚硫酸盐,在一些情况中,合并的硫酸盐和亚硫酸盐构成该集料。

18、的至少01W/W。在含有碳酸盐的一些实施方案中,该碳酸盐包括碳酸钙、碳酸镁、碳酸钙镁或其组合;例如,钙和镁可以以2001至12的钙镁摩尔比存在。在一些实施方案中,本发明提供含碳的集料,其中该碳具有比10更负更小,或比20更负,或比30更负的碳同位素分馏13C值,其中该集料具有75LB/FT3至125LB/LB/FT3,例如90LB/FT3至115LB/LB/FT3的堆积密度。在一些实施方案中,本发明提供含有含碳的集料的结构,其中该碳具有比10更负更小,或比20更负,或比30更负的碳同位素分馏13C值;在一些实施方案中,该结构是建筑物、道路或水坝。在一些实施方案中,该结构是道路。0008在一些实。

19、施方案中,本发明提供含有90999碳酸盐、01至10硫酸盐和/或亚硫酸盐的集料,在一些实施方案中,该集料进一步含有000000001至0000001汞或含汞化合物。在一些实施方案中,该集料具有比10更负的碳同位素分馏13C值。在一些实施方案中,该集料具有75LB/FT3至125LB/LB/FT3,例如90LB/FT3至115LB/LB/FT3的堆积密度。在一些实施方案中,本发明提供含有含90999碳酸盐、01至10硫酸盐和/或亚硫酸盐的集料的结构,在一些实施方案中,该集料进一步含有000000001至0000001汞或含汞化合物;示例性结构包括建筑物、道路或水坝。在一些实施方案中,该结构是道路。

20、。0009另一方面,本发明提供方法。在一些实施方案中,本发明提供封存CO2的方法,包括I由含二价阳离子的水沉淀封存CO2的碳酸盐化合物组合物以形成沉淀物;和II制造含有该封存CO2的碳酸盐化合物组合物的集料;在一些实施方案中,该方法进一步包括使含二价阳离子的水与来自工业废气流,如发电厂或水泥厂的烟道气,例如燃煤发电厂的烟道气的CO2接触;在一些实施方案中,该方法包括使含二价阳离子的水与来自化石燃料燃烧的CO2接触。在一些实施方案中,该集料的制造包括对该沉淀物施以升高的温度、升高的压力或其组合,如由挤出机产生的升高的温度、升高的压力或其组合。在一些实施方案中,该含二价阳离子的水的二价阳离子至少部。

21、分来自咸水,如海水或盐水,例如海水。在一些实施方案中,该集料的制造包括制造预定尺寸和形状的集料。0010在一些实施方案中,本发明提供通过包括由含二价阳离子的水沉淀碳酸盐化合物和加工该沉淀物以产生集料的方法制造集料的方法;在一些实施方案中,该方法进一步包括使含二价阳离子的水与来自工业废气流,如发电厂或水泥厂的烟道气,例如燃煤发电厂的烟道气的CO2接触。在一些实施方案中,该方法包括使含二价阳离子的水与来自化石燃料,如天然气或煤,例如煤的燃烧的CO2接触。在一些实施方案中,该沉淀物的加工包括用升高的温度、升高的压力或其组合处理该沉淀物。在一些实施方案中,该沉淀物的加工包括将该沉淀物与粘结材料和水混合。

22、,使该混合物凝固SET以提供固化材料并可进一步包括打碎该固化材料。0011在一些实施方案中,本发明提供制造集料的系统,其包括I含二价阳离子的水的输入端INPUT;II对该水施以碳酸盐化合物沉淀条件和制造沉淀碳酸盐化合物组合物的碳酸盐化合物沉淀站;和III由该沉淀碳酸盐化合物组合物制造集料的集料制造器。0012附图简述0013图1提供根据本发明的一个实施方案的沉淀法的流程图。说明书CN101952012ACN101952017A3/55页70014图2提供根据本发明的一个实施方案的系统的示意图。0015图3显示根据本发明的方面的示例性集料结构和集料混合物。3A圆柱体;3B三棱柱;3C球体和桥状物。

23、的混合物;3D间隔分级GAPGRADED的球体;3E棱柱的混合物;3F3H具有管状空隙的中空集料;3I3L具有集料的不同组合的集料混合物。0016图4提供实施例1中制成的沉淀材料的X射线衍射XRD光谱。0017图5提供实施例1中制成的湿沉淀材料的热解重量分析TGA。0018图6提供实施例1中制成的干沉淀材料的TGA。0019图7提供实施例1中制成的沉淀材料的傅里叶变换红外FTIR光谱。0020图8提供实施例1中制成的沉淀材料的扫描电子显微SEM图像。0021图9提供实施例2中制成的集料的XRD光谱。0022图10提供实施例2中制成的集料的FTIR光谱。0023图11提供实施例2中制成的集料的T。

24、GA。0024图12提供实施例2中制成的集料的SEM图像。0025图13提供实施例3中的集料和相关材料的XRD光谱。0026图14提供实施例3中制成的集料的TGA。0027图15提供实施例3中的集料和相关材料的SEM图像。0028图16提供实施例4中的集料和相关材料的XRD光谱。0029图17提供实施例4中的集料和相关材料的TGA。0030图18提供实施例4的集料的SEM图像。0031图19提供实施例6中制成的沉淀材料的XRD光谱。0032图20提供实施例6中制成的沉淀材料的TGA。0033图21提供实施例6中制成的沉淀材料的FTIR光谱。0034图22提供实施例6中制成的沉淀材料的SEM图像。

25、。0035图23提供实施例6中的集料和相关材料的XRD光谱。0036图24提供实施例6中的集料和相关材料的FTIR光谱。0037图25提供实施例6中的集料和相关材料的TGA。0038图26提供实施例6的集料的SEM图像。0039图27显示制备样品和测量样品中的碳同位素值的步骤的图示。0040详述0041引言0042组合物0043A合成岩石和集料00441集料和岩石组合物00452制造本发明的组合物0046B可凝固组合物0047C结构00481道路0049方法0050A制造集料的方法说明书CN101952012ACN101952017A4/55页80051B其它方法0052系统0053用途005。

26、4引言0055本发明提供包含合成岩石、集料和其它材料的组合物,以及结构,和存在于人为环境中的其它材料,以及制造和使用合成岩石、集料、结构和其它人造材料的方法;本发明还提供营业系统和方法。0056在更详细描述本发明之前,要理解的是,本发明不限于所述具体实施方案,因此当然可变。还要理解的是,本文所用的术语仅用于描述具体实施方案并且不是限制性的,因为本发明的范围仅受所附权利要求书的限制。0057在提供数值范围时,要理解的是,在该范围的上限和下限之间的各居间值除非文中明确地另行指明,以下限的单位的1/10为间隔以及在该指定范围内的任何其它指定值或居间值之间包含在本发明内。除在该指定范围内明确排除的任何。

27、界限值外,这些较小范围的上限和下限可独立地包括在这些较小范围内并且也包含在本发明内。如果该指定范围包括界限值之一或两者,排除这些包括的界限值的任一或两者的范围也包括在本发明中。0058对于本文中的某些范围,数值前用术语“大约”修饰。术语“大约”在本文中用于为其后的确切数值以及与该术语后的数值接近或近似的数值提供字面支持。在确定一数值是否接近或近似明确列举的数值时,接近或近似的未列举的数值可以是在其陈述背景中与明确列举的数值基本等效的数值。0059除非另行指明,本文所用的所有技术和科技术语具有与本发明所属领域的普通技术人员的通常理解相同的含义。除非另行指明或从文中显而易见,本文给出的百分比是W/。

28、W。尽管在本发明的实践或测试中也可以使用与本文描述的那些类似或等效的任何方法和材料,但现在描述代表性的示例方法和材料。0060本说明书中引用的所有公开文献和专利都经此引用并入本文,就像各个公开文献或专利明确并逐一被指明经此引用并入本文,和为了公开和描述与引用的公开文献相关的方法和/或材料而经此引用并入本文。任何公开文献的引用是针对其在提交日前的公开内容,并且不应该被视为承认本发明无权利用优先发明先于该公开文献。此外,所提供的公开日可能不同于实际公开日,这可能需要逐一确认。0061要指出的是,除非文中明确地另行指明,本文和所附权利要求中所用的单数形式“A”、“AN”和“THE”包括复数对象。要进。

29、一步指出的是,权利要求书可以起草成排除任何任选要素。因此,这种声明旨在充当与权利要求要素的列举联用的如“只”、“仅”之类的排他性术语的使用或“否定性”限制的使用的先行基础。0062本领域技术人员在阅读本公开后会看出,本文描述和例举的各独立实施方案具有分立的组分和特征,它们可以在不背离本发明的范围或精神的情况下容易地与任何其它几个实施方案的特征分开或联合。任何列举的方法可以以所列举的事件次序进行或以逻辑上可行的任何其它次序进行。0063组合物0064A合成岩石和集料说明书CN101952012ACN101952017A5/55页90065在一些实施方案中,本发明提供无化学粘合剂条件下制成的合成岩。

30、石。在一些实施方案中,本发明提供集料,例如含有从气态工业废物流中封存的CO2的集料和/或具有特定组成的集料,如含有碳酸盐和/或碳酸氢盐矿物的集料、具有特定同位素组成通常表明化石燃料来源的集料、具有特定化学组成的集料、含有新型矿物的集料、具有特定断裂特性的集料、轻型集料和定制的集料组合CUSTOMIZEDAGGREGATESETS。本发明进一步提供含有本发明的合成岩石或集料的可凝固组合物和结构,如道路、建筑物、水坝和其它人造结构。0066术语集料在本文中以其业内公认的方式使用以包括可用在混凝土、灰浆和其它材料,例如路基、沥青和其它结构中的微粒组合物并适用在这类结构中。本发明的集料是在一些实施方案。

31、中可分级为细或粗的微粒组合物。根据本发明的实施方案的细集料是几乎完全通过4号筛ASTMC125和ASTMC33的微粒组合物。根据本发明的实施方案的细集料组合物具有0001英寸IN至025IN,如005IN至0125IN,和包括001IN至008IN的平均粒度。本发明的粗集料是大部分留在4号筛上ASTMC125和ASTMC33的组合物。根据本发明的实施方案的粗集料组合物是具有0125IN至6IN,如0187IN至30IN,和包括025IN至10IN的平均粒度的组合物。本文所用的“集料”在一些实施方案中还可以包括更大尺寸,如3IN至12IN或甚至3IN至24IN,或更大,如12IN至48IN,或大。

32、于48IN,例如乱石基RIPRAP等中所用的尺寸。在一些实施方案中,如制造海洋防波浪结构,尺寸甚至可以更大,如超过48IN,例如超过60IN,或超过72IN。00671集料和岩石组合物0068可以通过本文所述的合成方法制造本发明的组合物,该方法能够很好地控制该组合物的性质。如本文中更充分描述的那样,该组合物的重要性质包括硬度、抗磨性、密度、孔隙率、化学组成、矿物组成、同位素组成、粒度、形状、耐酸性、耐碱性、可浸出氯化物含量、CO2的留存、反应性或其缺乏中的一种或多种。在一些实施方案中,可以为本发明的组合物,例如集料,专门设计这些性质中的一种或多种,如两种或更多种,三种或更多种,或甚至四种或更多。

33、种,或五种或更多种。0069本发明的集料具有可变密度,只要该集料提供其用途所需的性质,例如使用其的建筑材料所需的性质。在某些情况中,集料粒子的密度为11至5克/立方厘米,如13克/立方厘米至315克/立方厘米,包括18克/立方厘米至27克/立方厘米。本发明的实施方案中的其它粒子密度,例如轻型集料的粒子密度,可以为11至22克/立方厘米,例如12至20G/CC或14至18G/CC。在一些实施方案中,本发明提供堆积密度单位重量为50LB/FT3至200LB/FT3,或75LB/FT3至175LB/FT3,或50LB/FT3至100LB/FT3,或75LB/FT3至125LB/FT3,或90LB/F。

34、T3至115LB/FT3,或100LB/FT3至200LB/FT3,或125LB/FT3至175LB/FT3,或140LB/FT3至160LB/FT3,或50LB/FT3至200LB/FT3的集料。本发明的一些实施方案提供轻型集料,例如堆积密度单位重量为75LB/FT3至125LB/FT3的集料。本发明的一些实施方案提供轻型集料,例如堆积密度单位重量为90LB/FT3至115LB/FT3的集料。0070构成本发明的集料组合物的集料粒子的硬度也可变,在某些情况中,以莫氏硬度标表示的硬度为10至9,如1至7,包括1至6或1至5。在一些实施方案中,本发明的集料的莫氏硬度为25,或24。在一些实施方案。

35、中,该莫氏硬度为26。也可以使用其它硬度说明书CN101952012ACN101952017A6/55页10标表征集料,如ROCKWELL、VICKERS或BRINELL硬度标,并可以使用与莫氏硬度标对等的值表征本发明的集料;例如250的VICKERS硬度级相当于3的莫氏硬度级;硬度标之间的转换是本领域已知的。0071集料的抗磨性也可能重要,例如用于道路表面,其中具有高抗磨性的集料可用于防止表面磨光。抗磨性与硬度有关联,但不相同。如通过业内公认的方法,如ASTMC13103测量,本发明的集料包括抗磨性与天然石灰石类似的集料,或抗磨性优于天然石灰石的集料,以及抗磨性低于天然石灰石的集料。在一些实。

36、施方案中,在通过ASTMC13103测量时,本发明的集料具有低于50,或低于40,或低于35,或低于30,或低于25,或低于20,或低于15,或低于10的抗磨性。0072本发明的集料也可以具有在特定范围内的孔隙率。本领域技术人员会认识到,在一些情况中,需要非常多孔的集料,在另一些情况中,需要具有中等孔隙率的集料,而在另一些情况下,需要具有低孔隙率或无孔隙率的集料。通过在烘箱干燥接着完全浸渍60分钟后的水吸收测得的以干重量表示的本发明的一些实施方案的集料的孔隙率可以为140,如220,或215,包括210或甚至39。0073本发明的集料的化学、矿物和/或同位素组成随制造方法、原材料等而变。在一些。

37、实施方案中,一些或所有的碳酸盐化合物是如下文更详细描述的那样从水如盐水中沉淀的亚稳碳酸盐化合物;在一些实施方案中,进一步加工这些亚稳化合物以提供本发明的集料中的稳定化合物。0074该碳酸盐化合物在本发明的实施方案中包括沉淀的结晶和/或非晶碳酸盐化合物,和在一些实施方案中碳酸氢盐化合物。可用的具体碳酸盐矿物包括,但不限于碳酸钙矿物、碳酸镁矿物和碳酸钙镁矿物。可用的碳酸钙矿物包括,但不限于方解石CACO3、文石CACO3、球霰石VATERITECACO3、六水方解石IKAITECACO36H2O和非晶碳酸钙CACO3NH2O。可用的碳酸镁矿物包括,但不限于球碳镁石DYPINGITEMG5CO34O。

38、H25H2O;术语球碳镁石在本文中用于包括该公式的球碳镁石矿物、菱镁矿MGCO3、二菱镁矿BARRINGTONITEMGCO32H2O、三水菱镁矿MGCO33H2O、五水菱镁矿LANFORDITEMGCO35H2O和非晶碳酸镁钙MGCO3NH2O。可用的碳酸钙镁矿物包括但不限于白云石CAMGCO3、高镁白云石HUNTITTECAMGCO34和水碳钙镁石SERGEEVITECA2MG11CO313H2O。在某些实施方案中,也可以与上列矿物一起形成非碳酸盐化合物,如水镁石MGOH2。如上所述,该碳酸盐化合物的化合物可以是在咸水中比在淡水中更稳定的亚稳碳酸盐化合物并可以包括一种或多种亚稳氢氧化物化合。

39、物,以致在与淡水接触时,它们溶解并再沉淀成其它淡水稳定的化合物,例如矿物,如低MG方解石。0075在一些实施方案中,本发明的集料完全或部分由本文所述的亚稳化合物形成,该亚稳化合物暴露在淡水中并硬化成稳定化合物,如果必要,其随后进一步加工以使粒子适当地形成所需类型的集料。在一些实施方案中,本发明的集料由暴露在将它们转化成稳定化合物的温度和/或压力条件下的亚稳化合物形成。0076在一些实施方案中,二氧化硅矿物可能与碳酸盐化合物共存,从而形成碳酸盐硅酸盐化合物。这些化合物在性质上可以是非晶或结晶的。在某些实施方案中,该二氧化硅可能是燧石中常见的蛋白石A非晶二氧化硅形式。可能在上列碳酸盐矿物的结晶区内。

40、形成碳酸硅酸钙镁非晶化合物。也可能形成非碳酸盐的硅酸盐矿物。海泡石是粘土矿说明书CN101952012ACN101952017A7/55页11物复合硅酸镁,其典型化学式是MG4SIO15OH26H2O。其可以以纤维、细粒和固体形式存在。也可能形成硅酸盐碳酸盐矿物。在这些条件下可形成碳硅碱钙石CARLETONITE,KNA4CA4CO34SI8O18F,OHH2O水合碳酸硅酸钾钠钙。类似页硅酸盐子类的任何成员,碳硅碱钙石的结构以交替的硅酸盐层和钾、钠和钙层成层。与其它页硅酸盐不同,碳硅碱钙石的硅酸盐层由互连的四元和八元环构成。这些层可以被认为像具有交替的八边形和正方形孔的铁丝网CHICKENWI。

41、RE。八边形和正方形都具有四重对称,正是这赋予碳硅碱钙石正方对称TETRAGONALSYMMETRY;4/M2/M2/M。只有碳硅碱钙石和鱼眼石族的其它成员具有这种独特的互连四元和八元环结构。0077本发明的集料的碳酸盐和/或碳酸氢盐化合物通常由二价阳离子的水溶液如下文更详细描述生成,例如沉淀。由于该集料的碳酸盐和/或碳酸氢盐化合物组合物由二价阳离子的水溶液沉淀,它们会包括该溶液它们从中生成中存在的一种或多种组分。例如,如果该二价阳离子的水溶液是咸水,该碳酸盐和/或碳酸氢盐化合物和包括它们的集料可包括该阳离子水溶液源中存在的一种或多种化合物。这些化合物与源于该阳离子水溶液源的组分相互关联,其中。

42、这些鉴别组分及其量在本文中统称为阳离子溶液源鉴别剂。例如,如果该阳离子溶液源是海水,沉淀的矿物组合物中可能存在的鉴别化合物包括,但不限于氯化物、钠、硫、钾、溴化物、硅、锶等。任何这样的源鉴别或“标识”成分通常以小量存在,例如以百万分之20,000份PPM或更低的量,如2000PPM或更低的量。在某些实施方案中,该“标识”化合物是锶,其可能存在于包含碳酸盐和/或碳酸氢盐的沉淀组合物中。锶可并入文石碳酸钙晶格并构成10,000PPM或更低,在某些实施方案中为3至10,000PPM,如5至5000PPM,包括5至1000PPM,例如5至500PPM,包括5至100PPM。另一“标识”化合物是镁,其可。

43、能以取代碳酸盐化合物中最多20摩尔的钙的量存在PRESENTINAMOUNTSOFUPTO20MOLESUBSTITUTIONFORCALCIUMINCARBONATECOMPUNDS。该组合物的阳离子水溶液源鉴别剂可以随用于制造咸水衍生的包含碳酸盐和/或碳酸氢盐的沉淀物组合物的特定阳离子水性溶液源而变。在某些实施方案中,该集料的碳酸钙含量为5、10、15、20或25W/W或更高,如30W/W或更高,包括40W/W或更高,例如50W/W或甚至60W/W或更高、70W/W或更高、80W/W或更高、90W/W或更高,或95W/W或更高。在某些实施方案中,该集料的碳酸镁含量为5、10、15、20或2。

44、5W/W或更高,如30W/W或更高,包括40W/W或更高,例如50W/W或甚至60W/W或更高、70W/W或更高、80W/W或更高、90W/W或更高,或95W/W或更高。0078该集料在某些实施方案中具有受其从中沉淀的水源,例如海水其所含的镁多于钙或例如某些盐水其钙含量通常为海水的100倍影响并因此反映该水源的钙/镁比;该钙/镁比也反映如下因素含钙和/或镁的物质在生产过程中的添加,例如飞灰、红泥、矿渣,或其它含钙和/或镁的工业废料的使用,或如本文进一步描述的含钙和/或镁的矿物,如镁铁质矿物和超镁铁质矿物,如蛇纹石、橄榄石等,或硅灰石的使用。由于原材料以及在生产过程中添加的材料的大变化,该钙/镁。

45、摩尔比在本发明的组合物和方法的各种实施方案中可广泛变化,在某些实施方案中,确实可根据该集料的预期用途调节该比率。因此,在某些实施方案中,该集料中的钙/镁摩尔比为200/1CA/MG至1/200CA/MG。在一些实施方案中,该钙镁摩尔比为150/1CA/MG至1/100CA/MG。在一些实施方案中,该钙镁摩尔比为150/1CA/MG至1/50CA/MG。在一些实施方案中,该钙镁摩尔比为150/1CA/MG至1/10CA/说明书CN101952012ACN101952017A8/55页12MG。在一些实施方案中,该钙镁摩尔比为150/1CA/MG至1/5CA/MG。在一些实施方案中,该钙镁摩尔比为。

46、150/1CA/MG至1/1CA/MG。在一些实施方案中,该钙镁摩尔比为150/1CA/MG至5/1CA/MG。在一些实施方案中,该钙镁摩尔比为150/1CA/MG至10/1CA/MG。在一些实施方案中,该钙镁摩尔比为100/1CA/MG至10/1CA/MG在一些实施方案中,该钙镁摩尔比为1/1CA/MG至1/100CA/MG。在一些实施方案中,该钙镁摩尔比为1/1CA/MG至1/50CA/MG。在一些实施方案中,该钙镁摩尔比为1/1CA/MG至1/25CA/MG。在一些实施方案中,该钙镁摩尔比为1/1CA/MG至1/10CA/MG。在一些实施方案中,该钙镁摩尔比为1/1CA/MG至1/8CA。

47、/MG。在一些实施方案中,该钙镁摩尔比为1/1CA/MG至1/5CA/MG。在一些实施方案中,该钙镁摩尔比为10/1CA/MG至1/10CA/MG。在一些实施方案中,该钙镁摩尔比为8/1CA/MG至1/8CA/MG。在一些实施方案中,该钙镁摩尔比为6/1CA/MG至1/6CA/MG。在一些实施方案中,该钙镁摩尔比为4/1CA/MG至1/4CA/MG。在一些实施方案中,该钙镁摩尔比为2/1CA/MG至1/2CA/MG。在一些实施方案中,该钙/镁摩尔比为20/1或更大,如50/1或更大,例如100/1或更大,或甚至150/1或更大。在一些实施方案中,该钙/镁摩尔比为1/10或更低,如1/25或更低。

48、,例如1/50或更低,或甚至1/100或更低。在一些实施方案中,CA/MG比范围为2/1至1/2,3/2至2/3,或5/4至4/5。在一些实施方案中,CA/MG比范围为1/7至200/1、1/15至12/10、1/10至5/1、1/7至1/2,或1/9至2/5。在一些实施方案中,CA/MG比范围为1/200至1/7、1/70至1/7,或1/65至1/40。在一些实施方案中,CA/MG范围为1/10至50/1、1/5至45/1、1/6至6/1、6/5至45/1、1/4至11/3,或13/2至19/2。在一些实施方案中,CA/MG范围为1/3至3/1或1/2至2/1。在一些实施方案中,CA/MG范。

49、围为2/1至全钙、3/1至200/1、5/1至200/1,或10/1至200/1。0079在一些实施方案中,提供集料,其中该组合物含有例如二价阳离子,如钙或镁的碳酸盐和碳酸氢盐;在一些情况中,该集料基本完全含有碳酸盐,或基本完全含有碳酸氢盐,或含有一定比率的碳酸盐与碳酸氢盐。碳酸盐与碳酸氢盐的摩尔比可以为任何合适的比率,如100/1至1/100,或50/1至1/50,或25/1至1/25,或10/1至1/10,或2/1至1/2,或大约1/1,或基本全是碳酸盐或基本全是碳酸氢盐。在一些实施方案中,本发明提供含有钙或镁或其组合的碳酸盐和/或碳酸氢盐的集料。在一些实施方案中,本发明提供仅含钙或镁或其组合的碳酸盐而不含碳酸氢盐或仅含痕量碳酸氢盐的集料。另一些实施方案提供仅由钙或镁或其组合的碳酸氢盐构成的集料。0080在某些实施方案中,集料的特征在于具有一定的碳酸盐/氢氧化物比率,其中在某些实施方案中该比率为100比1,如10比1,包括1比1。0081在存在二氧化硅时,钙/镁与二氧化硅的比率可以为1001至11,如501至101。0082此外,本发明的集料可进一步包括或。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般的物理或化学的方法或装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1