《获取大胀形高度镁合金成形件的塑性加工成形方法.pdf》由会员分享,可在线阅读,更多相关《获取大胀形高度镁合金成形件的塑性加工成形方法.pdf(11页珍藏版)》请在专利查询网上搜索。
1、10申请公布号CN102773328A43申请公布日20121114CN102773328ACN102773328A21申请号201210285922222申请日20120813B21D26/0620060171申请人江苏大学地址212013江苏省镇江市学府路301号72发明人周建忠谢小江陈寒松黄舒陈松玲季信露杨晶左立党安中伟74专利代理机构南京天华专利代理有限责任公司32218代理人瞿网兰54发明名称获取大胀形高度镁合金成形件的塑性加工成形方法57摘要本发明公开了一种获取大胀形高度镁合金板材成形件的塑性加工成形方法,利用电致塑性激光冲击快速成形技术在室温下增大镁合金板材的成形极限与冲压深度。。
2、当进行激光冲击镁合金板材时,高能脉冲电源产生的高密度电流通过导电夹具进入镁合金板材内,促进镁合金板材内的原子扩散及高密度位错的晶体缺陷运动,减轻了激光冲击镁合金板材的加工硬化现象,降低其变形抗力,提高镁合金塑性成形性能,在高压高应变速率的激光冲击波下实现大曲率塑性成形,大大提高了镁合金板材的成形极限与冲压深度,得到胀形高度较大的成形件;并改善镁合金板材成形件内部的微结构,完成镁合金板材强化,使成形件具有良好的力学性能。51INTCL权利要求书1页说明书6页附图3页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书6页附图3页1/1页21一种获取大胀形高度镁合金成形件的塑性加工。
3、成形方法,其特征是它包括以下步骤首先,采用工业酒精对待成形镁合金板材(6)的表面进行清洁,然后在经过清洁的待成形镁合金板材的上表面贴上柔性贴膜(10);其次,将工作腔(3)置于五轴数控工作台(9)上,五轴数控工作台(9)用计算机控制系统(12)控制;第三,将凹模(7)放在工作腔(3)中,并将凹模(7)通过螺钉(8)固定在五轴数控工作台(9)上,再将待成形镁合金板材(6)置于凹模(7)上,且使贴有柔性贴膜(10)的一面朝上;第四,用两个压边装置(4)对称压装在待成形镁合金板材(6)上表面的柔性贴膜(10)上,同时,将两个导电夹具(5)分别夹在待成形镁合金板材(6)的两端,用导线将导电夹具(5)与。
4、高能脉冲电源(11)连接起来,使五轴数控工作台(9)、激光器(1)与计算机控制系统(12)进行电气连接;第五,将保护气体氮气充入工作腔(3)内,使氮气充满工作腔(3),最后密封;第六,启动计算机控制系统(12),使激光器(1)发出激光能量为300MJ150J,光斑直径为200M10MM、脉宽为2030NS、频率为8HZ,搭接率为75的激光束经过反射镜(2)的作用到达柔性贴膜(10)上,产生高频高压的激光冲击波,按照实现预定好的冲击成形轨迹进行成形;与此同时,启动高能脉冲电源(11),高能脉冲电源11参数为脉冲宽度为302000S、频率为2001500HZ、电流密度幅值为301000A/MM2,。
5、使其产生高密度电流通过导电夹具(5)流入镁合金板材(6)内部,在进行激光冲击镁合金板材6的同时,高能脉冲电源产生的高密度电流通过导电夹具(5)进入镁合金板材(6)内,促进镁合金板材(6)内的原子扩散及高密度位错的晶体缺陷运动,减轻激光冲击镁合金板材(6)的加工硬化现象,降低其变形抗力,提高镁合金塑性成形性能,得到胀形高度为845MM的成形件,并改善镁合金成形件内部的微结构,完成镁合金板材(6)强化,得到成形件;最后,打开工作腔3的密封口,取下柔性贴膜(10)和成形件。2根据权利要求1所述的方法,其特征是所述的镁合金板材(6)的厚度为1MM5MM。3根据权利要求1所述的方法,其特征是所述的镁合金。
6、板材6成形件胀形高度为1042MM。4根据权利要求1所述的方法,其特征是所述的工作腔(3)的顶面用光学玻璃做成,其他几个面用金属材料做成,除顶面外,其他几个面都涂有一层绝缘材料薄膜。5根据权利要求1所述的方法,其特征是所述的柔性贴膜(10)为透明约束层与能量吸收层的集成体,制备方法为将有机硅胶、氰基丙烯酸脂按照23的比例进行配比,并加入活性剂、引发剂等进行聚合反应制作乳液,然后与分散剂、消泡剂在80C反应30MIN,冷却后形成1MM的柔性贴膜。权利要求书CN102773328A1/6页3获取大胀形高度镁合金成形件的塑性加工成形方法技术领域0001本发明提出一种在室温条件下得到较大胀形高度镁合金。
7、成形件的塑性成形方法,具体地说是利用电致塑性激光冲击成形技术增大镁合金板材的成形极限与冲压高度,得到具有较大胀形高度成形件的镁合金板材塑性加工成形方法。背景技术0002镁合金被誉为“21世纪最具有发展前景的绿色工程材料”,在航空航天、汽车、电子领域有着广泛的应用,然而由于镁合金为密排六方晶体结构,在常温下只有基面0001三个滑移系数可以发生变形,因此在室温下塑性加工性能很差,这是镁合金塑性加工成形方法较少的重要原因,也是限制镁合金成形件胀形高度的一个重要原因。因此,如何使镁合金板材在较低温度(100C)下或者在室温下通过塑性成形加工技术来改善镁合金的成形性能,从而增大镁合金成形件的胀形高度并能。
8、同时提高成形的力学性能成为当今国际上一个迫切需要解决的问题,也是近几年竞相研究的热点,更是推进镁合金工业化应用的关键。0003目前镁合金板材需要在高温(200C750C)下进行成形,如采用温热成形、压铸方法来生产,如公开号为CN1193845C的中国专利,其成形方法是先用将镁合金加热到620C720C,使其熔化;然后将熔化的镁合金注入到模具中去,最后通过压铸机来压铸成形,如公开号为CN101386946B的中国专利,其成形方法是先配置好镁合金中各种元素的含量,然后放入熔炼机中进行熔炼;最后压铸成形;虽然上述方法可以制造出大型零件以及各种形状的复杂零件,但是也存在着明显的缺陷1产品规格尺寸受限、。
9、力学性能较差;2各种铸造缺陷如疏孔、气孔、缩孔和夹杂难以避免;3整个成形过程中需要用到众多复杂的模具。0004随着塑性成形技术的出现,在一定程度上改善了压铸方法的不足,但是由于镁合金板材在室温下的成形性能较差,难以完成塑性加工成形。因此,如何提高镁合金的成形性能,得到较大胀形高度的成形件,是发展镁合金塑性加工手段的前提和保障,对于镁合金的产品的广泛应用具有重大意义。国内许多学者进行了研究,如公开号为CN101590501B的中国专利,其采用的方法是温热电磁冲击成形,先将镁合金加热到100C300C,再利用电磁线圈放电产生电磁冲击力对镁合金进行冲击成形,该专利中的技术虽然能够实现在温热条件下对镁。
10、合金板材进行成形,并能增大镁合金的成形极限和成形件胀形高度,相对于传统的温成形很大的进步,克服了单一温成形在成形速度、模具强度、润滑等方面的局限性,成形温度也有大幅度下降,但是该专利所涉及的技术也有着不足1由于电磁冲击产生的冲击力较小,所以导致其成形极限增幅有限,成形件的胀形高度仍然比较小;(2)温热电磁冲击成形中的加载力难以精确控制,工艺过程控制困难;(3)得到的成形件的强度与韧性(塑性)之间存在彼消此长的矛盾,在强度增加的同时,韧性有所下降4该专利的加热方式是通过加热棒把模具加热到100C300C,然后通过热传导将热量传递给镁合金板材,这样模具就长期处于高温状态,不但耗能,而且加速了模具的。
11、磨损,工作寿命减短。如公开号为CN10239223A的中国专利,其成形方法为通过拉伸或者轧制使镁合金板材在临界说明书CN102773328A2/6页4变形(210)内发生变形,然后通过退火处理增大镁合金板材内的晶粒尺寸,进而提高成形性能,最终得到胀形高度较大的成形件。该方法虽然能够在室温下完成镁合金的成形,且成形性能有所提高,但是通过增大镁合金内部的晶粒尺寸来提高镁合金的成形性性能会降低成形件的力学性能。如公开号为CN1014922797的中国专利,其提高镁合金成形性能的方法为通过设定应变速率、变形温度、延伸量等参数后,将镁合金板材置于拉伸设备上沿轧制方向进行拉伸;再进行退火处理。通过拉伸变形。
12、控制镁合金板材内的结构,从而达到提高成形性能的目的,但是成形工艺较复杂,得到的成形件胀形高度有限。0005激光冲击成形技术,作为一种新兴的塑性加工技术,具有高应变速率成形(应变速率大于1067S1)特点,由于材料动力响应的惯性以及高应变速率下材料本构关系的改变,可使很多金属材料包括塑性难加工材料的成形性能得到改善,如果工艺参数及边界条件选择适当,可以使材料得到远超传统静态条件下成形所能达到的变形深度。但是,对于当前的激光冲击成形,也存在这一定的缺陷,如公开号为CN1128689C的中国专利,其成形方法是直接采用激光冲击技术来实现对材料的成形,虽然该专利所涉的技术能够实现对复杂的零件进行成形,但。
13、是也有一定的局限性1由于激光冲击成形时会产生加工硬化现象,降低了镁合金塑性成形加工性能,所以降低了材料的成形极限,导致成形件的胀形高度比较低;2只适用于常温下塑性加工性能较好的金属材料成形,难以用于常温下难变形的金属材料,如镁合金材料的塑性成形;3得到的成形件不具备良好的强韧性特征。0006为了克服激光冲击成形技术带来的加工硬化现象,提高激光冲击镁合金成形件的胀形高度,江苏大学周建忠、谢小江等人提出了激光温喷丸镁合金成形方法,公开号为CN102513440A的专利,借助温成形与激光高应变速率成形,得到了具有优越高温力学性能镁合金成形件。虽然该专利所涉及的技术能够改善镁合金的成形性能,但是由于该。
14、专利所涉及的技术主要是以获得优越耐热性能镁合金成形件为目的,工艺过程中设置的温度局限于材料发生动态应变时效的温度范围,在此温度范围内得到的镁合金的胀形高度有限。发明内容0007本发明的目的是针对现有的镁合金板材室温成形时胀形高度受限,高温成形时对材料的力学性能影响较大的问题,发明一种既能在室温条件下进行成形,又能满足大胀形高度要求和成形件力学性能要求的镁合金板材塑性加工成形方法。0008本发明的技术方案是一种获取大胀形高度镁合金成形件的塑性加工成形方法,其特征是它包括以下步骤首先,采用工业酒精对待成形镁合金板材6的表面进行清洁,然后在经过清洁的待成形镁合金板材6的上表面贴上柔性贴膜10;其次,。
15、将工作腔3置于五轴数控工作台9上,五轴数控工作台9用计算机控制系统12控制;第三,将凹模7放在工作腔3中,并将凹模7通过螺钉8固定在五轴数控工作台9上,再将待成形镁合金板材6置于凹模7上,且使贴有柔性贴膜10的一面朝上;第四,用两个压边装置4对称压装在待成形镁合金板材6上表面的柔性贴膜10上,同时,将两个导电夹具5分别夹在待成形镁合金板材6的两端,用导线将导电夹具5与高能脉冲电源11连接起来,使五轴数控工作台9、激光器1与计算机控制系统12进行电气连接;说明书CN102773328A3/6页5第五,将保护气体氮气充入工作腔3内,使氮气充满工作腔3,最后密封;第六,启动计算机控制系统12,使激光。
16、器1发出激光能量为300MJ150J,光斑直径为200M10MM、脉宽为2030NS、频率为8HZ,搭接率为75的激光束经过反射镜2的作用到达柔性贴膜10上,产生高频高压的激光冲击波,按照实现预定好的冲击成形轨迹进行成形;与此同时,启动高能脉冲电源11,高能脉冲电源11参数为脉冲宽度为302000S、频率为2001500HZ、电流密度幅值为301000A/MM2,使其产生高密度电流通过导电夹具5流入镁合金板材6内部,在进行激光冲击镁合金板材6的同时,高能脉冲电源产生的高密度电流通过导电夹具5进入镁合金板材6内,促进镁合金板材6内的原子扩散及高密度位错的晶体缺陷运动,减轻激光冲击镁合金板材6的加。
17、工硬化现象,降低其变形抗力,提高镁合金塑性成形性能,在高压高应变速率的激光冲击波下实现大曲率塑性成形,提高镁合金的成形极限与冲压深度,得到胀形高度较大的成形件,并改善镁合金成形件内部的微结构,完成镁合金板材强化,得到具有良好力学性能的成形件;最后,打开工作腔3的密封口,取下柔性贴膜10和成形件。0009所述的镁合金板材6的厚度为1MM5MM。0010所述的镁合金板材6成形件胀形高度为845MM,最佳高度为1042毫米。0011所述的工作腔3的顶面用光学玻璃做成,其他几个面用金属材料做成,除顶面外,其他几个面都涂有一层绝缘材料薄膜。0012所述的柔性贴膜10为透明约束层与能量吸收层的集成体,制备。
18、方法为将有机硅胶、氰基丙烯酸脂按照23的比例进行配比,并加入活性剂、引发剂等进行聚合反应制作乳液,然后与分散剂、消泡剂在80C反应30MIN,冷却后形成1MM的柔性贴膜。0013本发明的有益效果本发明首次提出高效电致塑性激光冲击快速成形技术,在室温下利用电致塑性效应与激光冲击高应变速率(1067S1)的双重改善成形性能技术对镁合金板材同时进行成形与强化,增大镁合金的成形极限与冲压高度,得到胀形高度较大的成形件。0014本发明不仅可以对镁合金板材、铝合金板材、铜板材等材料的进行塑性成形,而且可以广泛用于其他在室温下难以塑性成形的金属材料。0015本发明能在室温下大幅度增大镁合金的成形极限与胀形高。
19、(845MM);且结构简单、能同时完成镁合金板材的成形与强化处理,得到的成形件具有良好的强韧性特征。0016本发明采用了防氧化措施,有效的避免了镁合金板材的氧化,保证了镁合金成形的表面质量。0017本发明采用了激光冲击快速成形技术,成形应变速率极高,高达106/S,成形速度快,可以工业化生产;加工灵活性高,只需凹模即可。0018本发明可以实现镁合金板材的微成形(M或亚M量级)。附图说明0019图1为本发明的成形装置的结构示意图。0020图2为常规激光冲击成形技术得到的成形件示意图。0021图3为本发明实施例成形件示意图。0022图4为本发明实施例成形件低温到高温的缺口冲击韧性变化曲线。说明书C。
20、N102773328A4/6页60023图5为镁合金板材在本发明方法和常温激光冲击成形得到的力与位移关系图。0024图中1、激光器;2、反射镜;3、工作腔;4、压边装置;5、导电夹具;6、镁合金板材;7、凹模;8、螺钉;9、五轴数控工作台;10、柔性贴膜;11、高能脉冲电源;12、计算机控制系统。具体实施方式0025下面结合附图和实施例对本发明作进一步的说明。0026如图1所示。0027一种获取大胀形高度镁合金成形件的塑性加工成形方法,具体的实施过程如下(1)根据所需成形工件的形状及成形要求设计好凹模7的形状、激光冲击成形的运动轨迹,激光喷丸成形轨迹为沿镁合金办板材长度方向多次直线往复搭接喷丸。
21、运动,并设置好激光加工参数及高能脉冲电源11参数等存入计算机控制系统12中。同时制作柔性贴膜10将有机硅胶、氰基丙烯酸脂按照23的比例进行配比,并加入活性剂、引发剂等进行聚合反应制作乳液,然后与分散剂、消泡剂在80C反应30MIN,冷却后形成厚度为1MM的柔性贴膜备用。0028(2)用工业酒精清洗镁合金板材6的表面;并在镁合金板材6的上表面贴上柔性贴膜10,将工作腔3置于五轴数控工作台9上。五轴数控工作台9用计算机控制系统12相连,将凹模7放在工作腔内3,并用螺钉8固定凹模7于五轴数控9工作台上,并将镁合金板材6置于凹模7上,将两个压边装置4对称安装在镁合金板材6上表面的柔性贴膜10上,同时,。
22、将两个导电夹具5分别夹在镁合金板材6的两端,用导线将导电夹具5与高能脉冲电源11连接起来,五轴数控工作台9、激光器1与计算机控制系统12用电气相连,再将保护气体氮气充入该工作腔3内,使氮气充满工作腔3内,最后密封。0029(3)启动计算机控制系统12,使激光器1发出激光能量为300MJ150J,光斑直径为200UM10MM、脉宽为2030NS、频率为8HZ,搭接率为75的激光束经过反射镜2的作用到达柔性贴膜10上,产生高频高压的激光冲击波,与此同时,启动高能脉冲电源11,高能脉冲电源11参数为脉冲宽度为302000US、频率为2001500HZ、电流密度幅值为301000A/MM2,使其产生高。
23、密度电流通过导电夹具5流入镁合金板材10内部,镁合金板材10在高压高应变速率的激光冲击波的作用下按照计算机控制系统12事先设计好的轨迹进行冲击成形。0030(4)取下柔性贴膜10与成形件,打开工作腔3的密封口。即可获得胀形高度为845MM的镁合形成形件,本发明的胀形结构如图3所示,它是指向下压延的深度。本发明可对厚度为1MM5MM镁合金板材6在室温下成形得到图3所示的形状。0031下面以AZ91D镁合金作为电致塑性激光冲击快速成形的实验过程作进一步的说明。00321、材料准备实验所用材料为山西精美合金有限公司提供的AZ91D镁合金铸造板材,采用厚度分别为1MM、长宽为100MM120MM的长方。
24、形试样,其化学成分如表1所示,将实验材料进行均匀化退火处理,退火温度为260C,保温1H后随炉冷却。0033表1实验用AZ91D镁合金板材化学元素成分表(,质量分数)ALZNMNCUFENISI杂质MG说明书CN102773328A5/6页7910530200025000040001005001余量2、成形过程A电致塑性激光冲击成形(1)按照图3所示的成形工件的形状及成形要求设计好凹模7的形状、激光冲击成形的运动轨迹,激光喷丸成形轨迹为沿镁合金办板材6长度方向多次直线往复搭接喷丸运动,并设置好激光加工参数及高能脉冲电源11参数。0034(2)用工业酒精清洗镁合金板材6的表面;并在镁合金板材6的。
25、上表面贴上柔性贴膜10,将工作腔3置于五轴数控工作台9上。五轴数控工作台9用计算机控制系统12相连,将凹模7放在工作腔内3,并用螺钉8固定好凹模7,并将镁合金板材6置于凹模7上,将两个压边装置4对称安装镁合金板材6上表面的柔性贴膜10上,同时,将两个导电夹具5分别夹在镁合金板材6的两端,用导线将导电夹具5与高能脉冲电源11连接起来,五轴数控工作台9、激光器1与计算机控制系统12用电气连接,再将保护气体充入该工作腔3内,使氮气充满工作腔3内,最后密封。0035(3)启动计算机控制系统12,使激光器1发出激光能量为100J,光斑直径为10MM、脉宽为25NS、频率为8HZ,搭接率为75的激光束经过。
26、反射镜2的作用到达柔性贴膜10上,产生高频高压的激光冲击波,与此同时,启动高能脉冲电源11,高能脉冲电源11参数为脉冲宽度为1300US、频率为800HZ、电流密度幅值为1000A/MM2,使其产生高密度电流通过导电夹具5流入镁合金板材10内部,镁合金板材10在高压高应变速率的激光冲击波的作用下按照计算机控制系统12事先设计好的轨迹进行冲击成形,成形件如图3所示。0036(4)取下柔性贴膜10,打开工作腔3的密封口。0037B常规激光冲击成形对于常规激光冲击成形,不施加高能脉冲电流,其他步骤一样,成形件结果如图2所示。00383、结果测试(1)成形件胀形高度测量从图2与图3可以发现,利用电致塑。
27、性激光冲击成形技术得到的成形件胀形高度几乎是常规激光冲击技术的5倍。图2为常规激光冲击成形得到的成形件胀形高度为83MM,图3为电致塑性激光冲击成形技术得到的成形件胀形高度为4162MM。改变相关参数,最大胀形高度可达45MM,因此,利用本发明的方法可很轻松地达到实现845MM的胀形量。0039(2)成形极限与成形性能测试。0040从图5可以看到,在电致塑性激光冲击成形技术下,镁合金板材的成形性能显著比常规激光冲击成形技术好,塑性得到显著提高。0041(3)成形件的强度与韧性测试结果如下采用电子万能试验机进行成形件的拉伸实验,测试结果为镁合金成形件的强度由原来的156MPA上升到305MPA。。
28、0042采用缺口冲击实验来测量材料的韧性,用缺口断裂韧性来表征材料的韧性。0043将成形件加工为5MM30MM50MM的试样进行冲击实验,在摆锤式冲击试验机上进行,试验机的最大吸收功为20J,实验温度范围为80C280C,温度间隔10C,缺口冲击韧性变化曲线见图5。说明书CN102773328A6/6页80044从图4可以看到,在80C280C实验温度范围内,镁合金成形件的冲击韧性AKV随着实验温度的下降而逐渐变小,过度比较平缓,很难找到拐点;80C0C范围内,镁合金冲击韧性变化很小,从0C150C范围内,镁合金成形件的冲击韧性值以较小的速率稳步上升,从150C260C范围内,镁合金成形件的冲击韧性提高的很快,到260C280C范围内,镁合金成形件的冲击韧性稍微有点下降,最大冲击韧性达到302JCM2。0045本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。说明书CN102773328A1/3页9图1图2说明书附图CN102773328A2/3页10图3图4说明书附图CN102773328A103/3页11图5说明书附图CN102773328A11。