一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及其制备方法.pdf

上传人:利贞 文档编号:8659823 上传时间:2020-10-27 格式:PDF 页数:12 大小:322.51KB
返回 下载 相关 举报
摘要
申请专利号:

CN201810762107.8

申请日:

20180712

公开号:

CN109161144A

公开日:

20190108

当前法律状态:

有效性:

审查中

法律详情:

IPC分类号:

C08L33/26,C08L5/08,C08K3/04,C08B37/08,C08J3/075

主分类号:

C08L33/26,C08L5/08,C08K3/04,C08B37/08,C08J3/075

申请人:

南京林业大学

发明人:

陈楚楚,李大纲,卜香婷,唐雁玲,王怡仁

地址:

210037 江苏省南京市玄武区龙蟠路159号

优先权:

CN201810762107A

专利代理机构:

南京纵横知识产权代理有限公司

代理人:

董建林

PDF下载: PDF下载
内容摘要

本发明涉及一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及该弹性体的制备方法,包括以下步骤:从虾蟹壳中提取甲壳素,机械研磨制备甲壳素纳米纤维,原位聚合法制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体。该复合导电弹性体充分利用甲壳素纳米纤维的高强度,高比表面积和碳纳米管优良的电学、磁学力学性能提高了聚丙烯酰胺的机械强度和导电性。

权利要求书

1.一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法,其特征在于:包括以下步骤S01从虾蟹壳中提取甲壳素,包括a将废弃虾或虾蟹壳清洗,磨粉后浸泡于酸溶液中去除虾或虾蟹壳粉末中的碳酸钙,之后用水洗涤至中性;b将酸处理后的虾或虾蟹壳粉末加入碱溶液中,置于水浴锅中磁力搅拌,以去除粉末中的蛋白质,之后用水洗涤至中性;c将碱处理后的粉末浸泡于乙醇溶液中,以去除虾蟹壳粉末中的有色物质,获得纯化甲壳素;S02机械研磨制备甲壳素纳米纤维,包括d制备S01获得的甲壳素的悬浮液,并将悬浮液置于研磨机中研磨,得到纯化甲壳素纳米纤维悬浮液;S03原位聚合法制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体,包括e配置丙烯酰胺与交联剂的混合溶液,f将甲壳素纳米纤维与碳纳米管加入混合溶液中并进行超声处理,g向超声处理后的混合溶液中加入引发剂,h将加入引发剂的样品置于模具中定型制得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管弹性体。 2.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法,其特征在于:所述酸溶液为质量分数为6-7%的盐酸溶液,酸处理时间为12-24小时。 3.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法,其特征在于:所述a中废弃虾或虾蟹壳磨粉并筛选50-60目粉末。 4.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法,其特征在于:所述碱溶液为质量分数为5-6%的NaOH溶液。 5.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法,其特征在于:所述b中水浴温度为85-95℃,水浴过程中进行磁力搅拌,水浴时间为10-12小时。 6.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法,其特征在于:乙醇溶液浓度为50-95%,乙醇溶液浸泡时间为24-48小时。 7.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法,其特征在于:所述交联剂为N.N-亚甲基双丙烯酰胺,丙烯酰胺与N.N-亚甲基双丙烯酰胺以质量比10:1进行混合。 8.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法,其特征在于:f中以丙烯酰胺单体与甲壳素纳米纤维质量比5~10:1向溶液中添加甲壳素,以碳纳米管质量为丙烯酰胺质量的0.5-2wt%向溶液中添加碳纳米管。 9.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法,其特征在于:所述引发剂为过硫酸钾,所述h具体包括(1)将中空的硅胶板模具放在一块玻璃板上,使硅胶板紧密的贴在玻璃板上,将加入过硫酸钾的样品倒入模具内,然后用另一块玻璃板从边缘开始慢慢压下,避免气泡的产生,(2)将样品放入烘箱内烘干。 10.一种根据权利要求1所述制备方法制得的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体。

说明书

技术领域

本发明涉及一种导电弹性体及其制备方法,尤其涉及一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及其制备方法。

背景技术

聚丙烯酰胺(PAM)是一种线型高分子聚合物,具有典型的三维网络结构、安全无毒、良好的生物相容性等,广泛应用于组织工程及生物医药材料等领域。聚丙烯酰胺结构单元中含有酰胺基、易形成氢键,使其具有良好的水溶性和很高的化学活性,易通过接枝或交联得到支链或网状结构的多种改性物质。然而,由于其机械强度较低,使其在如人工肌肉骨骼、自适应穿戴拉伸、弯曲和移动的“电子皮肤”及生物传感器等研究领域中的应用受到限制。传统用于提高聚丙烯酰胺机械强度的方法包括:提高交联密度、降低凝胶溶胀度、化学改性以及构建互穿网络(IPN)结构等。但是这些方法相对而言实验过程较为繁琐,一定程度上限制了其应用领域。

甲壳素是自然界储存量第二大的天 然可再生生物资源,大量存在于废弃虾蟹的外壳中。经原纤化处理后获得的甲壳素纳米纤维(CNF)具有高强度,高比表面积等特点,使其作为生物增强相广泛用于提高复合材料的力学强度;且因其具有良好的生物相容性及可降解可再生性等,对开拓纳米纤维基复合材料在能够自适应穿戴拉伸、弯曲和移动的“电子皮肤”、“健康检测传感器”、“柔性储能材料”等具有广泛市场前景的生物医药新材料领域的应用具有重要意义。

碳纳米管(CNT)由于其优良的电学、磁学力学等性能,被广泛应用于介电材料、电极材料、纳米电子器件及电磁屏蔽材料等领域。将碳纳米管填充到聚合物基体中可以制备出导电性能优良复合材料。然而,由于碳纳米管具有比较大的长径比和比表面积,管间具有很强的范德华力和 π-π 共轭作用,在聚合物中易发生团聚,导致其在受力过程中易发生滑落而造成应力集中,无法达到增强效果。传统分散碳纳米管的方法需对碳纳米管进行“化学改性”,但这种方法不仅提高了碳纳米管的制备价格,且在改性过程中其电子传输通路易被破坏,致使导电性能下降。

发明内容

本发明的目的在于提高聚丙烯酰胺的机械强度和导电性,制备了一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体,该复合导电弹性体充分利用甲壳素纳米纤维的高强度,高比表面积和碳纳米管优良的电学、磁学力学性能提高了聚丙烯酰胺的机械强度和导电性。

本发明所采取的技术方案为:一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法,包括以下步骤

S01 从虾蟹壳中提取甲壳素,包括

a 将废弃虾或虾蟹壳清洗,磨粉后浸泡于酸溶液中去除虾或虾蟹壳粉末中的碳酸钙,之后用水洗涤至中性;

b将酸处理后的虾或虾蟹壳粉末加入碱溶液中,置于水浴锅中磁力搅拌,以去除粉末中的蛋白质,之后用水洗涤至中性;

c 将碱处理后的粉末浸泡于乙醇溶液中,以去除虾蟹壳粉末中的有色物质,获得纯化甲壳素;

S02 机械研磨制备甲壳素纳米纤维,包括

d制备S01获得的甲壳素的悬浮液,并将悬浮液置于研磨机中研磨,得到纯化甲壳素纳米纤维悬浮液;

S03原位聚合法制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体,包括

e配置丙烯酰胺与交联剂的混合溶液,

f将甲壳素纳米纤维与碳纳米管加入混合溶液中并进行超声处理,

g 向超声处理后的混合溶液中加入引发剂,

h 将将入过硫酸钾的样品置于模具中定型制得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管弹性体。

进一步的,所述交联剂选用N.N-亚甲基双丙烯酰胺,该物质作为交联剂,能够使丙烯酰胺单体通过化学交联的方式聚合为聚丙烯酰胺,引发剂选用过硫酸钾,该物质作为引发剂,加入后,聚合反应开始,或可调控反应的速率。

进一步的,所述酸溶液为质量分数为6-7%的盐酸溶液,酸处理时间为12-24小时。

进一步的,所述a中废弃虾或虾蟹壳磨粉并筛选50-60目粉末。

进一步的,所述碱溶液为质量分数为5-6% 的NaOH溶液。

进一步的,所述b中水浴温度为85-95℃,水浴过程中进行磁力搅拌,水浴时间为10-12小时。

进一步的,乙醇溶液浓度为50-95%,乙醇溶液浸泡时间为24-48 小时。

进一步的,丙烯酰胺与N.N-亚甲基双丙烯酰胺以质量比10:1进行混合。

进一步的,f中以丙烯酰胺单体与甲壳素纳米纤维质量比5~10:1向溶液中添加甲壳素,以碳纳米管质量为丙烯酰胺质量的0.5-2 wt%向溶液中添加碳纳米管。

进一步的,所述h具体包括(1)将中空的硅胶板模具放在一块玻璃板上,使硅胶板紧密的贴在玻璃板上。将加入过硫酸钾的样品倒入模具内,然后用另一块玻璃板从边缘开始慢慢压下,避免气泡的产生,

(2)将样品放入烘箱内烘干。

本发明还提供了一种根据上述制备方法制得的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体。

本发明所产生的有益效果包括:1.以厨余产品废弃虾、虾蟹壳为原材料,清洗后提取甲壳素并制备甲壳素纳米纤维,其原料来源广、成本低,既缓解环境污染,又高值化利用甲壳素,变废为宝,具有可持续发展性。此外,甲壳素纳米纤维作为生物增强相,具有优异的力学性能、生物可降解性和可再生性等特点。

2.聚丙烯酰胺安全无毒,将其与具有优异导电性能的碳纳米管相结合,可制备获得具有电磁干扰屏蔽功能的导电弹性材料,以有效抑制现代社会由于过量使用电子产品而引发的电磁污染。

3.制备所得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶具备良好的力学性能、导电性能、电磁干扰屏蔽性能;对开拓生物质纳米纤维基复合材料在能够自适应穿戴拉伸、弯曲和移动的“电子皮肤”、“健康检测传感器”、“柔性储能材料”等具有广泛市场前景的生物医药新材料、器件领域的应用具有重要意义。

具体实施方式

下面结合具体实施例对本发明做进一步详细的解释说明,但应当理解为本发明的保护范围并不受具体实施例的限制。

聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶的制备的具体的工艺步骤包括:

1. 提取甲壳素

(1)将废弃虾或虾蟹壳清洗后,磨粉并筛选50-60目的废弃虾或虾蟹壳粉末,浸泡于质量分数为6-7%的盐酸溶液中12-24小时,以去除虾或虾蟹壳粉末中的碳酸钙,之后用蒸馏水洗涤至中性;

(2)将酸处理后的粉末置于质量分数为5-6% 的NaOH溶液,置于85-95℃的水浴锅中磁力搅拌10-12小时,以去除虾或虾蟹壳粉末中的蛋白质,之后用蒸馏水洗涤至中性,此过程重复四次,直至蛋白质完全去除;

(3)将(2)处理后的粉末置于质量分数为50-95%的乙醇溶液中浸泡24-48 h,以去除虾蟹壳粉末中的有色物质,用蒸馏水洗涤直至粉末变为白色,获得纯化甲壳素。

2. 机械研磨制备甲壳素纳米纤维

向1中步骤(3)所得甲壳素加入蒸馏水稀释,配置成浓度为0.8 wt%-1wt%的悬浮液,利用研磨机进行机械研磨2-3次,研磨机转速为1500 rpm/min,磨盘间隙为0.2-0.3mm,收集可得纯化甲壳素纳米纤(CNF)维悬浮液。

3.制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶

(1)称取适量丙烯酰胺(AM)置于烧杯内,加入一定质量的水,在搅拌器内搅拌至AM完全溶解,配置质量分数为39 wt%-43wt%的溶液。以丙烯酰胺单体/N.N-亚甲基双丙烯酰胺(MBA)质量比10:1的比例,再称取N.N-亚甲基双丙烯酰胺,倒入已完全溶解的AM溶液中,再次搅拌至MBA完全溶解。

(2)以丙烯酰胺单体/甲壳素纳米纤维质量比10:1的比例取甲壳素纳米纤维;再称取适量碳纳米管(碳纳米管CNT质量为AM质量的0.5-2 wt%)置于烧杯内混合均匀。

(3) 将步骤(1)配置的AM和MBA的混合液倒入步骤(2)相对应烧杯内,然后置于超声波细胞破碎仪(冰水浴)进行超声处理,超声时间10-20mim,超声功率75-85%,将超声处理后得到的混合溶液置于冰水中1h降温。

(4)以丙烯酰胺单体/过硫酸钾(KPS)质量比20:1的比例称取适量过硫酸钾,在搅拌器内搅拌溶解。

(5)将步骤(3)所得的样品置于搅拌器内,加入(4)所得的KPS溶液,慢速搅拌15mim后,静置脱泡。

(6)将中空的硅胶板模具(厚:1.5mm,外尺寸:85mm×55mm,内尺寸:80mm×50mm)放在一块玻璃板上,使硅胶板紧密的贴在玻璃板上。将步骤(5)所得样品倒入模具内,然后用另一块玻璃板从边缘开始慢慢压下,避免气泡的产生。使用硅胶板的目的在于可控制所有样品厚度均为1.5 mm。

(7)将步骤(6)样品放入烘箱内(温度:40℃-50℃),12小时后取出。取小部分所得样品称其质量,再放入烘箱(温度;100℃),10-12小时后取。再称量其烘干后质量,计算样品的含水率,通过计算含水率,以保持所有样品含水率相同,其力学性能才有可比性。

下面通过实例对本发明进行具体描述,本实例只用于对发明做进一步的说明,不能理解为对本发明的保护范围的限制,本领域的技术人员根据上述发明的内容做出一些非本质的改变和调整均属于本发明的保护范围。

对比例1

1.制备聚丙烯酰胺(PAM)凝胶

(1)称取2.84g的聚丙烯酰胺(AM)置于烧杯内,加入6.2g水搅拌至AM完全溶解。再称取0.0284g的N.N-亚甲基双丙烯酰胺(MBA),倒入AM溶液中,再次搅拌至MBA完全溶解。

(2)称取0.0142g过硫酸钾(KPS),再倒入烧杯内,在搅拌器内搅拌溶解,慢速搅拌15min,静置脱泡。

(3)将中空的硅胶板模具(厚:1.5mm,外尺寸:85mm×55mm,内尺寸:80mm×50mm)放在一块玻璃板上,使硅胶板紧密的贴在玻璃板上。将步骤(5)所得样品倒入模具内,然后用另一块玻璃板从边缘开始慢慢压下。

(7)将步骤(6)做好的样品放入烘箱内(温度:50℃),10小时后取出。待测。

经过以上步骤,可制备获得纯聚丙烯酰胺凝胶。在室温下,将样品裁成宽度10mm,长度30mm试样,使用万能力学试验机(传感器量程为1KN,加载速度为20mm/min)表征样品力学性能:制备所得纯聚丙烯酰胺凝胶拉伸强度较低,仅为0.11MPa,断裂伸长率为82.12%。将样品裁成尺寸为1.0mm×1.5mm大小,再将样品置于载玻片上,用另一块载玻片轻轻压一下样品,将样品压平。取1mm×1mm大小的样品,放入电热恒温鼓风干燥箱(温度:60℃,时间:48h),取出样品后称量其烘干后质量;再将样品置于去离子水内(室温),48h后取出轻轻擦拭样品表面的水分,然后称量其质量,计算其溶胀度较高,为7.12 g/g。FE-SEM场发射扫描电子显微镜(JSM-6700F,JEOL Ltd,日本)用于样品的形貌特征(扫描电压1.5kV,电流10µA)。制样方法:将待测样品冷冻干燥后置于导电碳膜上,采用自动喷金仪(AUTO FINE COATER JFC-1600,JEOL,Japan)对样品进行喷金处理。PAM 凝胶表面及断面均呈现典型的凝胶多孔结构。

对比例2

1. 提取甲壳素

(1)将废弃虾或虾蟹壳清洗后,磨粉并筛选60目的废弃虾蟹壳粉末,浸泡于质量分数为7%的盐酸溶液中12小时,以去除虾虾蟹壳粉末中的碳酸钙,之后用蒸馏水洗涤至中性;

(2)加入质量分数为6% 的NaOH溶液,置于95℃的水浴锅中磁力搅拌10小时,以去除虾蟹壳粉末中的蛋白质,之后用蒸馏水洗涤至中性,此过程重复四次,直至蛋白质完全去除;

(3)在质量分数为95%的乙醇溶液中浸泡24 h,以去除虾蟹壳粉末中的有色物质,用蒸馏水洗涤直至粉末变为白色,获得纯化甲壳素。

2. 机械研磨制备甲壳素纳米纤维

向1中步骤(3)所得甲壳素加入蒸馏水稀释,配置成浓度为0.8 wt%的悬浮液,利用研磨机进行机械研磨3次,研磨机转速为1500 rpm/min,磨盘间隙为0.2 mm,收集可得纯化甲壳素纳米纤维悬浮液。

3.制备聚丙烯酰胺/甲壳素纳米纤维(PAM/CNF)复合凝胶

(1)称取2.84g的聚丙烯酰胺(AM)置于烧杯内,加入7.5g水搅拌至AM完全溶解。再称取0.0284g的N.N-亚甲基双丙烯酰胺(MBA),倒入AM溶液中,再次搅拌至MBA完全溶解。

(2)取含甲壳素纳米纤维0.0568g的悬浮液置于烧杯内。

(3) 将步骤(1)配好的AM和MBA的混合液倒入步骤(2)相对应烧杯内,然后置于超声波细胞破碎仪(冰水浴)进行超声处理,超声时间15mim,超声功率80%,将超声处理后得到的混合溶液置于冰水中1h降温。

(4)称取0.0142g过硫酸钾(KPS),再倒入烧杯内,在搅拌器内搅拌溶解。

(5)将步骤(3)所得的样品置于搅拌器内,加入(4)所得的KPS溶液,慢速搅拌15mim。

(6)将中空的硅胶板模具(厚:1.5mm,外尺寸:85mm×55mm,内尺寸:80mm×50mm)放在一块玻璃板上,使硅胶板紧密的贴在玻璃板上。将步骤(5)所得样品倒入模具内,然后用另一块玻璃板从边缘开始慢慢压下。

(7)将步骤(6)做好的样品放入烘箱内(温度:50℃),10小时后取出。待测。

经过以上步骤,可制备获得聚丙烯酰胺/甲壳素纳米纤维复合凝胶,其中甲壳素纳米纤维为丙烯酰胺单体质量的2%。在室温下,将样品裁成宽度10mm,长度30mm试样,使用万能力学试验机(传感器量程为1KN,加载速度为20mm/min)表征样品力学性能:制备所得聚丙烯酰胺/甲壳素纳米纤维拉伸强度为0.34MPa,断裂伸长率为132.17%,说明甲壳素纳米纤维能够有效提高聚丙烯酰胺的力学强度。将样品裁成尺寸为1.0mm×1.5mm大小,再将样品置于载玻片上,用另一块载玻片轻轻压一下样品,将样品压平。取1mm×1mm大小的样品,放入电热恒温鼓风干燥箱(温度:60℃,时间:48h),取出样品后称量其烘干后质量;再将样品置于去离子水内(室温),48h后取出轻轻擦拭样品表面的水分,然后称量其质量,计算其溶胀度为3.78 g/g,与纯聚丙烯酰胺相比(溶胀度为7.12),其溶胀度减小了47%,表明在聚丙烯酰胺凝胶中添加CNF可以有效降低凝胶的溶胀度,提高凝胶的交联度。

对比例3

1.制备聚丙烯酰胺/碳纳米管(PAM/CNT)复合凝胶

(1)称取2.84g的聚丙烯酰胺(AM)置于烧杯内,加入6.7g水搅拌至AM完全溶解。再称取0.0284g的N.N-亚甲基双丙烯酰胺(MBA),倒入AM溶液中,再次搅拌至MBA完全溶解。

(2)取碳纳米管0.0568g置于烧杯内。

(3) 将步骤(1)配好的AM和MBA的混合液倒入步骤(2)相对应烧杯内,然后置于超声波细胞破碎仪(冰水浴)进行超声处理,超声时间15mim,超声功率80%,将超声处理后得到的混合溶液置于冰水中1h降温。

(4)称取0.0142g过硫酸钾(KPS),再倒入烧杯内,在搅拌器内搅拌溶解。

(5)将步骤(3)所得的样品置于搅拌器内,加入(4)所得的KPS溶液,慢速搅拌15mim。

(6)将中空的硅胶板模具(厚:1.5mm,外尺寸:85mm×55mm,内尺寸:80mm×50mm)放在一块玻璃板上,使硅胶板紧密的贴在玻璃板上。将步骤(5)所得样品倒入模具内,然后用另一块玻璃板从边缘开始慢慢压下。

(7)将步骤(6)做好的样品放入烘箱内(温度:50℃),10小时后取出。待测。

经过以上步骤,可制备获得聚丙烯酰胺/碳纳米管复合凝胶,其中碳纳米管为丙烯酰胺单体质量的2%。在室温下,将样品裁成宽度10mm,长度30mm试样,使用万能力学试验机(传感器量程为1KN,加载速度为20mm/min)表征样品力学性能:制备所得聚丙烯酰胺/碳纳米管拉伸强度较差,仅为0.08MPa,断裂伸长率仅为58.32%,说明碳纳米管在聚丙烯酰胺内发生团聚,当施加外加载荷后,由于应力无法均匀分散,导致其力学性能较差。

实施例1

1. 提取甲壳素

(1)将废弃虾或虾蟹壳清洗后,磨粉并筛选50目的废弃虾蟹壳粉末,浸泡于质量分数为6%的盐酸溶液中24小时,以去除虾虾蟹壳粉末中的碳酸钙,之后用蒸馏水洗涤至中性;

(2)加入质量分数为5% 的NaOH溶液,置于85℃的水浴锅中磁力搅拌12小时,以去除虾蟹壳粉末中的蛋白质,之后用蒸馏水洗涤至中性,此过程重复四次,直至蛋白质完全去除;

(3)在质量分数为50%的乙醇溶液中浸泡48 h,以去除虾蟹壳粉末中的有色物质,用蒸馏水洗涤直至粉末变为白色,获得纯化甲壳素。

2. 机械研磨制备甲壳素纳米纤维

向1中步骤(3)所得甲壳素加入蒸馏水稀释,配置成浓度为1wt%的悬浮液,利用研磨机进行机械研磨2次,研磨机转速为1500 rpm/min,磨盘间隙为0.2 mm,收集可得纯化甲壳素纳米纤维悬浮液。

3.制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶

(1)称取2.84g的聚丙烯酰胺(AM)置于烧杯内,加入6.5g水,均匀搅拌至AM完全溶解。再称取0.0284g的N.N-亚甲基双丙烯酰胺(MBA),倒入AM溶液中,再次搅拌至MBA完全溶解。

(2)取含甲壳素纳米纤维0.0284g的悬浮液和碳纳米管0.0142g置于烧杯内。

(3) 将步骤(1)中AM和MBA的混合液倒入步骤(2)相对应烧杯内,然后置于超声波细胞破碎仪(冰水浴)进行超声处理,超声时间10mim,超声功率75%,将超声处理后得到的混合溶液置于冰水中1h降温。

(4)称取0.0142g过硫酸钾(KPS),再倒入烧杯内,在搅拌器内搅拌至完全溶解。

(5)将步骤(3)所得的样品置于搅拌器内,加入(4)所得的KPS溶液,慢速均匀搅拌15mim,静置脱泡。

(6)将中空的硅胶板模具(厚:1.5mm,外尺寸:85mm×55mm,内尺寸:80mm×50mm)放在一块玻璃板上,使硅胶板紧密的贴在玻璃板上。将步骤(5)所得样品倒入模具内,然后用另一块玻璃板从边缘开始慢慢压下。

(7)将步骤(6)做好的样品放入烘箱内(温度:40℃),12小时后取出,待测。

经过以上步骤,可制备获得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶。在室温下,将样品裁成宽度10mm,长度30mm试样,使用万能力学试验机(传感器量程为1KN,加载速度为20mm/min)表征样品力学性能:当纳米纤维素与碳纳米管质量比为2:1时,制备所得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管拉伸强度为0.29 MPa,断裂伸长率为141.85%,弹性模量为0.22 Mpa。与纯聚丙烯酰胺相比,力学强度增加了约3倍。说明纳米纤维素的添加能有效分散碳纳米管,提高其力学性能。使用RST-8型四探针测试仪表征样品导电性能,将样品裁成直径为2.5mm的圆片状,测量样品厚度等参数后置于四探针下进行导电率测试,样品的电导率7.55×10-2 S/m。电磁屏蔽效能为18.5 dB。将样品裁成尺寸为1.0mm×1.5mm大小,再将样品置于载玻片上,用另一块载玻片轻轻压一下样品,将样品压平。取1mm×1mm大小的样品,放入电热恒温鼓风干燥箱(温度:60℃,时间:48h),取出样品后称量其烘干后质量;再将样品置于去离子水内(室温),48h后取出轻轻擦拭样品表面的水分,然后称量其质量,计算其溶胀度为4.18 g/g,与纯聚丙烯酰胺相比(溶胀度为7.12),其溶胀度减小了40%,表明,在聚丙烯酰胺凝胶中添加CNF及CNT可以有效降低凝胶的溶胀度,提高凝胶的交联度。

实施例2

1. 提取甲壳素

(1)将废弃虾虾蟹壳清洗后,磨粉并筛选60目的废弃虾蟹壳粉末,浸泡于质量分数为7%的盐酸溶液中12小时,以去除虾虾蟹壳粉末中的碳酸钙,之后用蒸馏水洗涤至中性;

(2)加入质量分数为6% 的NaOH溶液,置于95℃的水浴锅中磁力搅拌10小时,以去除虾蟹壳粉末中的蛋白质,之后用蒸馏水洗涤至中性,此过程重复四次,直至蛋白质完全去除;

(3)在质量分数为95%的乙醇溶液中浸泡24 h,以去除虾蟹壳粉末中的有色物质,用蒸馏水洗涤直至粉末变为白色,获得纯化甲壳素。

2. 机械研磨制备甲壳素纳米纤维

向1中步骤(3)所得甲壳素加入蒸馏水稀释,配置成浓度为0.8 wt%的悬浮液,利用研磨机进行机械研磨3次,研磨机转速为1500 rpm/min,磨盘间隙为0.2 mm,收集可得纯化甲壳素纳米纤维悬浮液。

3.制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶

(1)称取2.84g的聚丙烯酰胺(AM)置于烧杯内,加入7g水搅拌至AM完全溶解。再称取0.0284g的N.N-亚甲基双丙烯酰胺(MBA),倒入AM溶液中,再次搅拌至MBA完全溶解。

(2)取含甲壳素纳米纤维0.0284g的悬浮液和碳纳米管0.0284g置于烧杯内。

(3) 将步骤(1)配好的AM和MBA的混合液倒入步骤(2)相对应烧杯内,然后置于超声波细胞破碎仪(冰水浴)进行超声处理,超声时间15mim,超声功率80%,将超声处理后得到的混合溶液置于冰水中1h降温。

(4)称取0.0142g过硫酸钾(KPS),再倒入烧杯内,在搅拌器内搅拌溶解。

(5)将步骤(3)所得的样品置于搅拌器内,加入(4)所得的KPS溶液,慢速搅拌15mim。

(6)将中空的硅胶板模具(厚:1.5mm,外尺寸:85mm×55mm,内尺寸:80mm×50mm)放在一块玻璃板上,使硅胶板紧密的贴在玻璃板上。将步骤(5)所得样品倒入模具内,然后用另一块玻璃板从边缘开始慢慢压下。

(7)将步骤(6)做好的样品放入烘箱内(温度:50℃),10小时后取出。待测。

经过以上步骤,可制备获得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶。在室温下,将样品裁成宽度10mm,长度30mm试样,使用万能力学试验机(传感器量程为1KN,加载速度为20mm/min)表征样品力学性能:当纳米纤维素与碳纳米管质量比为1:1时,制备所得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管拉伸强度为0.32MPa,断裂伸长率为140.17%,弹性模量为0.22MPa。与纯聚丙烯酰胺相比,力学强度提高了3倍。且与实施例3相比,当纳米填充物质量分数均为2%时,其力学强度增加了4倍,说明纳米纤维素的添加能有效分散碳纳米管,提高其力学性能。使用RST-8型四探针测试仪表征样品导电性能,将样品裁成直径为2.5mm的圆片状,测量样品厚度等参数后置于四探针下进行导电率测试,样品的电导率8.22×10-2 S/m;电磁屏蔽效能为25.5 dB。将样品裁成尺寸为1.0mm×1.5mm大小,再将样品置于载玻片上,用另一块载玻片轻轻压一下样品,将样品压平。取1mm×1mm大小的样品,放入电热恒温鼓风干燥箱(温度:60℃,时间:48h),取出样品后称量其烘干后质量;再将样品置于去离子水内(室温),48h后取出轻轻擦拭样品表面的水分,然后称量其质量,计算其溶胀度为3.91 g/g,与纯聚丙烯酰胺相比(溶胀度为7.12),其溶胀度减小了45%,表明,在聚丙烯酰胺凝胶中添加CNF及CNT可以有效降低凝胶的溶胀度,提高凝胶的交联度。将样品裁成尺寸为1.0mm×1.5mm大小,再将样品置于载玻片上,用另一块载玻片轻轻压一下样品,将样品压平。然后置于Thermo D×R型激光显微拉曼光谱仪(Themo Fisher,美国)试验台内待测。试验参数:激发波长532 nm,功率10 mw,扫描范围500-3500cm-1,采集时间:6s。拉曼光谱测试结果表明:当CNT与纳米纤维的混合质量比为1:1时,ID/IG为1.076,与未添加纳米纤维的PAM/CNT凝胶ID/IG(1.302)相比,ID/IG值显著降低,可见在PAM /CNT复合凝胶中添加CNF可以提高CNT的有序程度,而当CNT和纳米纤维的混合质量比为1:1时,CNT的有序程度得到最大的改善。FE-SEM场发射扫描电子显微镜(JSM-6700F,JEOL Ltd,日本)用于样品的形貌特征(扫描电压1.5kV,电流10µA)。制样方法:将待测样品冷冻干燥后置于导电碳膜上,采用自动喷金仪(AUTO FINE COATER JFC-1600,JEOL,Japan)对样品进行喷金处理。CNT由于长径比和比表面积较大,管间具有较大的表面能,未使用分散剂的情况下,CNT间的团聚现象较为严重,可清晰观察到大量的聚集体。PAM 凝胶表面呈现多孔结构。当CNF与CNT质量比为1:1时,复合凝胶微观结构可观察到,样品表面呈现多孔结构且纤维与纤维相互交错构成纳米网状结构,无明显纤维聚集现象,表明复合凝胶内CNF与CNT能够相互分散构建均匀混合体系。值得注意的是,CNT在复合材料中所形成的导电网络能够为电子的传输提供了连续通路。

实施例3

1. 提取甲壳素

(1)将废弃虾虾蟹壳清洗后,磨粉并筛选60目的废弃虾蟹壳粉末,浸泡于质量分数为6%的盐酸溶液中18小时,以去除虾虾蟹壳粉末中的碳酸钙,之后用蒸馏水洗涤至中性;

(2)加入质量分数为5% 的NaOH溶液,置于95℃的水浴锅中磁力搅拌12小时,以去除虾蟹壳粉末中的蛋白质,之后用蒸馏水洗涤至中性,此过程重复四次,直至蛋白质完全去除;

(3)在质量分数为80%的乙醇溶液中浸泡36 h,以去除虾蟹壳粉末中的有色物质,用蒸馏水洗涤直至粉末变为白色,获得纯化甲壳素。

2. 机械研磨制备甲壳素纳米纤维

向1中步骤(3)所得甲壳素加入蒸馏水稀释,配置成浓度为1wt%的悬浮液,利用研磨机进行机械研磨3次,研磨机转速为1500 rpm/min,磨盘间隙为0.3mm,收集可得纯化甲壳素纳米纤维悬浮液。

3.制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶

(1)称取2.84g的聚丙烯酰胺(AM)置于烧杯内,加入7.2g水搅拌至AM完全溶解。再称取0.0284g的N.N-亚甲基双丙烯酰胺(MBA),倒入AM溶液中,再次搅拌至MBA完全溶解。

(2)取含甲壳素纳米纤维0.0284g的悬浮液和碳纳米管0.0568g置于烧杯内。

(3) 将步骤(1)配好的AM和MBA的混合液倒入步骤(2)相对应烧杯内,然后置于超声波细胞破碎仪(冰水浴)进行超声处理,超声时间20mim,超声功率75%,将超声处理后得到的混合溶液置于冰水中1h降温。

(4)称取0.0142g过硫酸钾(KPS),再倒入烧杯内,在搅拌器内搅拌溶解。

(5)将步骤(3)所得的样品置于搅拌器内,加入(4)所得的KPS溶液,慢速搅拌15mim,静置脱泡。

(6)将中空的硅胶板模具(厚:1.5mm,外尺寸:85mm×55mm,内尺寸:80mm×50mm)放在一块玻璃板上,使硅胶板紧密的贴在玻璃板上。将步骤(5)所得样品倒入模具内,然后用另一块玻璃板从边缘开始慢慢压下。

(7)将步骤(6)制备所得样品放入烘箱内(温度:40℃),12小时后取出,待测。

经过以上步骤,可制备获得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶。在室温下,将样品裁成宽度10mm,长度30mm试样,使用万能力学试验机(传感器量程为1KN,加载速度为20mm/min)表征样品力学性能:当纳米纤维素与碳纳米管质量比为2:1时,制备所得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管拉伸强度为0.24 Mpa,断裂伸长率为122.2%,弹性模量为0.18MPa。与纯聚丙烯酰胺相比,力学强度增加了2倍。说明纳米纤维素的添加能有效分散碳纳米管,提高其力学性能。使用RST-8型四探针测试仪表征样品导电性能,将样品裁成直径为2.5mm的圆片状,测量样品厚度等参数后置于四探针下进行导电率测试,样品的电导率为7.42×10-2 S/m;电磁屏蔽效能为22.5 dB。将样品裁成尺寸为1.0mm×1.5mm大小,再将样品置于载玻片上,用另一块载玻片轻轻压一下样品,将样品压平。取1mm×1mm大小的样品,放入电热恒温鼓风干燥箱(温度:60℃,时间:48h),取出样品后称量其烘干后质量;再将样品置于去离子水内(室温),48h后取出轻轻擦拭样品表面的水分,然后称量其质量,计算其溶胀度为3.61 g/g,与纯聚丙烯酰胺相比(溶胀度为7.12),其溶胀度减小了50%,表明,在聚丙烯酰胺凝胶中添加CNF及CNT可以有效降低凝胶的溶胀度,提高凝胶的交联度。 将样品裁成尺寸为1.0mm×1.5mm大小,再将样品置于载玻片上,用另一块载玻片轻轻压一下样品,将样品压平。然后置于Thermo D×R型激光显微拉曼光谱仪(Themo Fisher,美国)试验台内待测。试验参数:激发波长532 nm,功率10 mw,扫描范围500-3500cm-1,采集时间:6s。拉曼光谱测试结果表明:当CNT与纳米纤维的混合质量比为2:1时,ID/IG为1.142,与未添加纳米纤维的PAM/CNT凝胶ID/IG(1.302)相比,ID/IG值显著降低,可见在PAM /CNT复合凝胶中添加CNF可以提高CNT的有序程度。

上述仅为本发明的优选实施例,本发明并不仅限于实施例的内容。对于本领域中的技术人员来说,在本发明的技术方案范围内可以有各种变化和更改,所作的任何变化和更改,均在本发明保护范围之内。

一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及其制备方法.pdf_第1页
第1页 / 共12页
一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及其制备方法.pdf_第2页
第2页 / 共12页
一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及其制备方法.pdf_第3页
第3页 / 共12页
点击查看更多>>
资源描述

《一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及其制备方法.pdf》由会员分享,可在线阅读,更多相关《一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及其制备方法.pdf(12页珍藏版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201810762107.8 (22)申请日 2018.07.12 (71)申请人 南京林业大学 地址 210037 江苏省南京市玄武区龙蟠路 159号 (72)发明人 陈楚楚李大纲 卜香婷唐雁玲 王怡仁 (74)专利代理机构 南京纵横知识产权代理有限 公司 32224 代理人 董建林 (51)Int.Cl. C08L 33/26(2006.01) C08L 5/08(2006.01) C08K 3/04(2006.01) C08B 37/08(2006.01) C08J 3/0。

2、75(2006.01) (54)发明名称 一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米 管导电弹性体及其制备方法 (57)摘要 本发明涉及一种聚丙烯酰胺/甲壳素纳米纤 维/碳纳米管导电弹性体及该弹性体的制备方 法, 包括以下步骤: 从虾蟹壳中提取甲壳素, 机械 研磨制备甲壳素纳米纤维, 原位聚合法制备聚丙 烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体。 该复合导电弹性体充分利用甲壳素纳米纤维的 高强度, 高比表面积和碳纳米管优良的电学、 磁 学力学性能提高了聚丙烯酰胺的机械强度和导 电性。 权利要求书2页 说明书9页 CN 109161144 A 2019.01.08 CN 109161144 A 1。

3、.一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方法, 其特征在于: 包括以下步骤 S01 从虾蟹壳中提取甲壳素, 包括 a 将废弃虾或虾蟹壳清洗, 磨粉后浸泡于酸溶液中去除虾或虾蟹壳粉末中的碳酸钙, 之后用水洗涤至中性; b将酸处理后的虾或虾蟹壳粉末加入碱溶液中, 置于水浴锅中磁力搅拌, 以去除粉末中 的蛋白质, 之后用水洗涤至中性; c 将碱处理后的粉末浸泡于乙醇溶液中, 以去除虾蟹壳粉末中的有色物质, 获得纯化 甲壳素; S02 机械研磨制备甲壳素纳米纤维, 包括 d制备S01获得的甲壳素的悬浮液, 并将悬浮液置于研磨机中研磨, 得到纯化甲壳素纳 米纤维悬浮液; S03原位聚合。

4、法制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体, 包括 e配置丙烯酰胺与交联剂的混合溶液, f将甲壳素纳米纤维与碳纳米管加入混合溶液中并进行超声处理, g 向超声处理后的混合溶液中加入引发剂, h 将加入引发剂的样品置于模具中定型制得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管 弹性体。 2.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方 法, 其特征在于: 所述酸溶液为质量分数为6-7%的盐酸溶液, 酸处理时间为12-24小时。 3.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方 法, 其特征在于: 所述a中废弃虾或虾蟹壳磨粉并筛选50-。

5、60目粉末。 4.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方 法, 其特征在于: 所述碱溶液为质量分数为5-6% 的NaOH溶液。 5.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方 法, 其特征在于: 所述b中水浴温度为85-95, 水浴过程中进行磁力搅拌, 水浴时间为10-12 小时。 6.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方 法, 其特征在于: 乙醇溶液浓度为50-95%, 乙醇溶液浸泡时间为24-48 小时。 7.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方 。

6、法, 其特征在于: 所述交联剂为N.N-亚甲基双丙烯酰胺, 丙烯酰胺与N.N-亚甲基双丙烯酰胺 以质量比10: 1进行混合。 8.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方 法, 其特征在于: f中以丙烯酰胺单体与甲壳素纳米纤维质量比510: 1向溶液中添加甲壳 素, 以碳纳米管质量为丙烯酰胺质量的0.5-2 wt%向溶液中添加碳纳米管。 9.根据权利要求1所述的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体的制备方 法, 其特征在于: 所述引发剂为过硫酸钾, 所述h具体包括 (1) 将中空的硅胶板模具放在一块 玻璃板上, 使硅胶板紧密的贴在玻璃板上, 将加入过。

7、硫酸钾的样品倒入模具内, 然后用另一 块玻璃板从边缘开始慢慢压下, 避免气泡的产生, 权利要求书 1/2 页 2 CN 109161144 A 2 (2) 将样品放入烘箱内烘干。 10.一种根据权利要求1所述制备方法制得的聚丙烯酰胺/甲壳素纳米纤维/碳纳米管 导电弹性体。 权利要求书 2/2 页 3 CN 109161144 A 3 一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及其 制备方法 技术领域 0001 本发明涉及一种导电弹性体及其制备方法, 尤其涉及一种聚丙烯酰胺/甲壳素纳 米纤维/碳纳米管导电弹性体及其制备方法。 背景技术 0002 聚丙烯酰胺 (PAM) 是一种线型高分子聚。

8、合物, 具有典型的三维网络结构、 安全无 毒、 良好的生物相容性等, 广泛应用于组织工程及生物医药材料等领域。 聚丙烯酰胺结构单 元中含有酰胺基、 易形成氢键, 使其具有良好的水溶性和很高的化学活性, 易通过接枝或交 联得到支链或网状结构的多种改性物质。 然而, 由于其机械强度较低, 使其在如人工肌肉骨 骼、 自适应穿戴拉伸、 弯曲和移动的 “电子皮肤” 及生物传感器等研究领域中的应用受到限 制。 传统用于提高聚丙烯酰胺机械强度的方法包括: 提高交联密度、 降低凝胶溶胀度、 化学 改性以及构建互穿网络 (IPN) 结构等。 但是这些方法相对而言实验过程较为繁琐, 一定程度 上限制了其应用领域。。

9、 0003 甲壳素是自然界储存量第二大的天 然可再生生物资源, 大量存在于废弃虾蟹的 外壳中。 经原纤化处理后获得的甲壳素纳米纤维(CNF)具有高强度, 高比表面积等特点, 使 其作为生物增强相广泛用于提高复合材料的力学强度; 且因其具有良好的生物相容性及可 降解可再生性等, 对开拓纳米纤维基复合材料在能够自适应穿戴拉伸、 弯曲和移动的 “电子 皮肤” 、“健康检测传感器” 、“柔性储能材料” 等具有广泛市场前景的生物医药新材料领域的 应用具有重要意义。 0004 碳纳米管 (CNT) 由于其优良的电学、 磁学力学等性能, 被广泛应用于介电材料、 电 极材料、 纳米电子器件及电磁屏蔽材料等领域。

10、。 将碳纳米管填充到聚合物基体中可以制备 出导电性能优良复合材料。 然而, 由于碳纳米管具有比较大的长径比和比表面积, 管间具有 很强的范德华力和 - 共轭作用, 在聚合物中易发生团聚, 导致其在受力过程中易发生滑 落而造成应力集中, 无法达到增强效果。 传统分散碳纳米管的方法需对碳纳米管进行 “化学 改性” , 但这种方法不仅提高了碳纳米管的制备价格, 且在改性过程中其电子传输通路易被 破坏, 致使导电性能下降。 发明内容 0005 本发明的目的在于提高聚丙烯酰胺的机械强度和导电性, 制备了一种聚丙烯酰 胺/甲壳素纳米纤维/碳纳米管导电弹性体, 该复合导电弹性体充分利用甲壳素纳米纤维的 高强。

11、度, 高比表面积和碳纳米管优良的电学、 磁学力学性能提高了聚丙烯酰胺的机械强度 和导电性。 0006 本发明所采取的技术方案为: 一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹 性体的制备方法, 包括以下步骤 S01 从虾蟹壳中提取甲壳素, 包括 说明书 1/9 页 4 CN 109161144 A 4 a 将废弃虾或虾蟹壳清洗, 磨粉后浸泡于酸溶液中去除虾或虾蟹壳粉末中的碳酸钙, 之后用水洗涤至中性; b将酸处理后的虾或虾蟹壳粉末加入碱溶液中, 置于水浴锅中磁力搅拌, 以去除粉末中 的蛋白质, 之后用水洗涤至中性; c 将碱处理后的粉末浸泡于乙醇溶液中, 以去除虾蟹壳粉末中的有色物质, 获得。

12、纯化 甲壳素; S02 机械研磨制备甲壳素纳米纤维, 包括 d制备S01获得的甲壳素的悬浮液, 并将悬浮液置于研磨机中研磨, 得到纯化甲壳素纳 米纤维悬浮液; S03原位聚合法制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体, 包括 e配置丙烯酰胺与交联剂的混合溶液, f将甲壳素纳米纤维与碳纳米管加入混合溶液中并进行超声处理, g 向超声处理后的混合溶液中加入引发剂, h 将将入过硫酸钾的样品置于模具中定型制得聚丙烯酰胺/甲壳素纳米纤维/碳纳米 管弹性体。 0007 进一步的, 所述交联剂选用N.N-亚甲基双丙烯酰胺, 该物质作为交联剂, 能够使丙 烯酰胺单体通过化学交联的方式聚合为聚丙烯酰。

13、胺, 引发剂选用过硫酸钾, 该物质作为引 发剂, 加入后, 聚合反应开始, 或可调控反应的速率。 0008 进一步的, 所述酸溶液为质量分数为6-7%的盐酸溶液, 酸处理时间为12-24小时。 0009 进一步的, 所述a中废弃虾或虾蟹壳磨粉并筛选50-60目粉末。 0010 进一步的, 所述碱溶液为质量分数为5-6% 的NaOH溶液。 0011 进一步的, 所述b中水浴温度为85-95, 水浴过程中进行磁力搅拌, 水浴时间为 10-12小时。 0012 进一步的, 乙醇溶液浓度为50-95%, 乙醇溶液浸泡时间为24-48 小时。 0013 进一步的, 丙烯酰胺与N.N-亚甲基双丙烯酰胺以质。

14、量比10: 1进行混合。 0014 进一步的, f中以丙烯酰胺单体与甲壳素纳米纤维质量比510: 1向溶液中添加甲 壳素, 以碳纳米管质量为丙烯酰胺质量的0.5-2 wt%向溶液中添加碳纳米管。 0015 进一步的, 所述h具体包括 (1) 将中空的硅胶板模具放在一块玻璃板上, 使硅胶板 紧密的贴在玻璃板上。 将加入过硫酸钾的样品倒入模具内, 然后用另一块玻璃板从边缘开 始慢慢压下, 避免气泡的产生, (2) 将样品放入烘箱内烘干。 0016 本发明还提供了一种根据上述制备方法制得的聚丙烯酰胺/甲壳素纳米纤维/碳 纳米管导电弹性体。 0017 本发明所产生的有益效果包括: 1.以厨余产品废弃虾。

15、、 虾蟹壳为原材料, 清洗后提 取甲壳素并制备甲壳素纳米纤维, 其原料来源广、 成本低, 既缓解环境污染, 又高值化利用 甲壳素, 变废为宝, 具有可持续发展性。 此外, 甲壳素纳米纤维作为生物增强相, 具有优异的 力学性能、 生物可降解性和可再生性等特点。 0018 2.聚丙烯酰胺安全无毒, 将其与具有优异导电性能的碳纳米管相结合, 可制备获 得具有电磁干扰屏蔽功能的导电弹性材料, 以有效抑制现代社会由于过量使用电子产品而 说明书 2/9 页 5 CN 109161144 A 5 引发的电磁污染。 0019 3.制备所得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶具备良好的力 学性能、 。

16、导电性能、 电磁干扰屏蔽性能; 对开拓生物质纳米纤维基复合材料在能够自适应穿 戴拉伸、 弯曲和移动的 “电子皮肤” 、“健康检测传感器” 、“柔性储能材料” 等具有广泛市场前 景的生物医药新材料、 器件领域的应用具有重要意义。 具体实施方式 0020 下面结合具体实施例对本发明做进一步详细的解释说明, 但应当理解为本发明的 保护范围并不受具体实施例的限制。 0021 聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶的制备的具体的工艺步骤 包括: 1. 提取甲壳素 (1) 将废弃虾或虾蟹壳清洗后, 磨粉并筛选50-60目的废弃虾或虾蟹壳粉末, 浸泡于质 量分数为6-7%的盐酸溶液中12-24小时。

17、, 以去除虾或虾蟹壳粉末中的碳酸钙, 之后用蒸馏水 洗涤至中性; (2) 将酸处理后的粉末置于质量分数为5-6% 的NaOH溶液, 置于85-95的水浴锅中磁 力搅拌10-12小时, 以去除虾或虾蟹壳粉末中的蛋白质, 之后用蒸馏水洗涤至中性, 此过程 重复四次, 直至蛋白质完全去除; (3) 将 (2) 处理后的粉末置于质量分数为50-95%的乙醇溶液中浸泡24-48 h, 以去除虾 蟹壳粉末中的有色物质, 用蒸馏水洗涤直至粉末变为白色, 获得纯化甲壳素。 0022 2. 机械研磨制备甲壳素纳米纤维 向1中步骤 (3) 所得甲壳素加入蒸馏水稀释, 配置成浓度为0.8 wt%-1wt%的悬浮液,。

18、 利 用研磨机进行机械研磨2-3次, 研磨机转速为1500 rpm/min, 磨盘间隙为0.2-0.3mm, 收集可 得纯化甲壳素纳米纤(CNF)维悬浮液。 0023 3.制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶 (1) 称取适量丙烯酰胺 (AM) 置于烧杯内, 加入一定质量的水, 在搅拌器内搅拌至AM完全 溶解, 配置质量分数为39 wt%-43wt%的溶液。 以丙烯酰胺单体/N.N-亚甲基双丙烯酰胺 (MBA) 质量比10: 1的比例, 再称取N.N-亚甲基双丙烯酰胺, 倒入已完全溶解的AM溶液中, 再 次搅拌至MBA完全溶解。 0024 (2) 以丙烯酰胺单体/甲壳素纳米纤维。

19、质量比10: 1的比例取甲壳素纳米纤维; 再称 取适量碳纳米管 (碳纳米管CNT质量为AM质量的0.5-2 wt%) 置于烧杯内混合均匀。 0025 (3) 将步骤 (1) 配置的AM和MBA的混合液倒入步骤 (2) 相对应烧杯内, 然后置于超 声波细胞破碎仪 (冰水浴) 进行超声处理, 超声时间10-20mim, 超声功率75-85%, 将超声处理 后得到的混合溶液置于冰水中1h降温。 0026 (4) 以丙烯酰胺单体/过硫酸钾 (KPS) 质量比20: 1的比例称取适量过硫酸钾, 在搅 拌器内搅拌溶解。 0027 (5) 将步骤 (3) 所得的样品置于搅拌器内, 加入 (4) 所得的KPS。

20、溶液, 慢速搅拌15mim 后, 静置脱泡。 0028 (6) 将中空的硅胶板模具 (厚: 1.5mm, 外尺寸: 85mm55mm, 内尺寸: 80mm50mm) 放 说明书 3/9 页 6 CN 109161144 A 6 在一块玻璃板上, 使硅胶板紧密的贴在玻璃板上。 将步骤 (5) 所得样品倒入模具内, 然后用 另一块玻璃板从边缘开始慢慢压下, 避免气泡的产生。 使用硅胶板的目的在于可控制所有 样品厚度均为1.5 mm。 0029 (7) 将步骤 (6) 样品放入烘箱内 (温度: 40-50) , 12小时后取出。 取小部分所得 样品称其质量, 再放入烘箱 (温度; 100) , 10。

21、-12小时后取。 再称量其烘干后质量, 计算样品 的含水率, 通过计算含水率, 以保持所有样品含水率相同, 其力学性能才有可比性。 0030 下面通过实例对本发明进行具体描述, 本实例只用于对发明做进一步的说明, 不 能理解为对本发明的保护范围的限制, 本领域的技术人员根据上述发明的内容做出一些非 本质的改变和调整均属于本发明的保护范围。 0031 对比例1 1.制备聚丙烯酰胺(PAM)凝胶 (1) 称取2.84g的聚丙烯酰胺 (AM) 置于烧杯内, 加入6.2g水搅拌至AM完全溶解。 再称取 0.0284g的N.N-亚甲基双丙烯酰胺 (MBA) , 倒入AM溶液中, 再次搅拌至MBA完全溶解。

22、。 0032 (2) 称取0.0142g过硫酸钾 (KPS) , 再倒入烧杯内, 在搅拌器内搅拌溶解, 慢速搅拌 15min,静置脱泡。 0033 (3) 将中空的硅胶板模具 (厚: 1.5mm, 外尺寸: 85mm55mm, 内尺寸: 80mm50mm) 放 在一块玻璃板上, 使硅胶板紧密的贴在玻璃板上。 将步骤 (5) 所得样品倒入模具内, 然后用 另一块玻璃板从边缘开始慢慢压下。 0034 (7) 将步骤 (6) 做好的样品放入烘箱内 (温度: 50) , 10小时后取出。 待测。 0035 经过以上步骤, 可制备获得纯聚丙烯酰胺凝胶。 在室温下, 将样品裁成宽度10mm, 长度30mm。

23、试样, 使用万能力学试验机 (传感器量程为1KN, 加载速度为20mm/min) 表征样品力 学性能: 制备所得纯聚丙烯酰胺凝胶拉伸强度较低, 仅为0.11MPa, 断裂伸长率为82.12%。 将 样品裁成尺寸为1.0mm1.5mm大小, 再将样品置于载玻片上, 用另一块载玻片轻轻压一下 样品, 将样品压平。 取1mm1mm大小的样品, 放入电热恒温鼓风干燥箱 (温度: 60, 时间: 48h) , 取出样品后称量其烘干后质量; 再将样品置于去离子水内 (室温) , 48h后取出轻轻擦 拭样品表面的水分, 然后称量其质量, 计算其溶胀度较高, 为7.12 g/g。 FE-SEM场发射扫描 电子。

24、显微镜 (JSM-6700F, JEOL Ltd, 日本) 用于样品的形貌特征 (扫描电压1.5kV, 电流10 A) 。 制样方法: 将待测样品冷冻干燥后置于导电碳膜上, 采用自动喷金仪(AUTO FINE COATER JFC-1600, JEOL, Japan)对样品进行喷金处理。 PAM 凝胶表面及断面均呈现典型的 凝胶多孔结构。 0036 对比例2 1. 提取甲壳素 (1) 将废弃虾或虾蟹壳清洗后, 磨粉并筛选60目的废弃虾蟹壳粉末, 浸泡于质量分数为 7%的盐酸溶液中12小时, 以去除虾虾蟹壳粉末中的碳酸钙, 之后用蒸馏水洗涤至中性; (2) 加入质量分数为6% 的NaOH溶液, 。

25、置于95的水浴锅中磁力搅拌10小时, 以去除虾 蟹壳粉末中的蛋白质, 之后用蒸馏水洗涤至中性, 此过程重复四次, 直至蛋白质完全去除; (3) 在质量分数为95%的乙醇溶液中浸泡24 h, 以去除虾蟹壳粉末中的有色物质, 用蒸 馏水洗涤直至粉末变为白色, 获得纯化甲壳素。 0037 2. 机械研磨制备甲壳素纳米纤维 说明书 4/9 页 7 CN 109161144 A 7 向1中步骤 (3) 所得甲壳素加入蒸馏水稀释, 配置成浓度为0.8 wt%的悬浮液, 利用研磨 机进行机械研磨3次, 研磨机转速为1500 rpm/min, 磨盘间隙为0.2 mm, 收集可得纯化甲壳 素纳米纤维悬浮液。 0。

26、038 3.制备聚丙烯酰胺/甲壳素纳米纤维(PAM/CNF)复合凝胶 (1) 称取2.84g的聚丙烯酰胺 (AM) 置于烧杯内, 加入7.5g水搅拌至AM完全溶解。 再称取 0.0284g的N.N-亚甲基双丙烯酰胺 (MBA) , 倒入AM溶液中, 再次搅拌至MBA完全溶解。 0039 (2) 取含甲壳素纳米纤维0.0568g的悬浮液置于烧杯内。 0040 (3) 将步骤 (1) 配好的AM和MBA的混合液倒入步骤 (2) 相对应烧杯内, 然后置于超 声波细胞破碎仪 (冰水浴) 进行超声处理, 超声时间15mim, 超声功率80%, 将超声处理后得到 的混合溶液置于冰水中1h降温。 0041 。

27、(4) 称取0.0142g过硫酸钾 (KPS) , 再倒入烧杯内, 在搅拌器内搅拌溶解。 0042 (5) 将步骤 (3) 所得的样品置于搅拌器内, 加入 (4) 所得的KPS溶液, 慢速搅拌 15mim。 0043 (6) 将中空的硅胶板模具 (厚: 1.5mm, 外尺寸: 85mm55mm, 内尺寸: 80mm50mm) 放 在一块玻璃板上, 使硅胶板紧密的贴在玻璃板上。 将步骤 (5) 所得样品倒入模具内, 然后用 另一块玻璃板从边缘开始慢慢压下。 0044 (7) 将步骤 (6) 做好的样品放入烘箱内 (温度: 50) , 10小时后取出。 待测。 0045 经过以上步骤, 可制备获得。

28、聚丙烯酰胺/甲壳素纳米纤维复合凝胶,其中甲壳素纳 米纤维为丙烯酰胺单体质量的2%。 在室温下, 将样品裁成宽度10mm, 长度30mm试样, 使用万 能力学试验机 (传感器量程为1KN, 加载速度为20mm/min) 表征样品力学性能: 制备所得聚丙 烯酰胺/甲壳素纳米纤维拉伸强度为0.34MPa, 断裂伸长率为132.17%, 说明甲壳素纳米纤维 能够有效提高聚丙烯酰胺的力学强度。 将样品裁成尺寸为1.0mm1.5mm大小, 再将样品置 于载玻片上, 用另一块载玻片轻轻压一下样品, 将样品压平。 取1mm1mm大小的样品, 放入 电热恒温鼓风干燥箱 (温度: 60, 时间: 48h) , 取。

29、出样品后称量其烘干后质量; 再将样品置 于去离子水内 (室温) , 48h后取出轻轻擦拭样品表面的水分, 然后称量其质量, 计算其溶胀 度为3.78 g/g, 与纯聚丙烯酰胺相比 (溶胀度为7.12) , 其溶胀度减小了47%, 表明在聚丙烯 酰胺凝胶中添加CNF可以有效降低凝胶的溶胀度, 提高凝胶的交联度。 0046 对比例3 1.制备聚丙烯酰胺/碳纳米管 (PAM/CNT) 复合凝胶 (1) 称取2.84g的聚丙烯酰胺 (AM) 置于烧杯内, 加入6.7g水搅拌至AM完全溶解。 再称取 0.0284g的N.N-亚甲基双丙烯酰胺 (MBA) , 倒入AM溶液中, 再次搅拌至MBA完全溶解。 。

30、0047 (2) 取碳纳米管0.0568g置于烧杯内。 0048 (3) 将步骤 (1) 配好的AM和MBA的混合液倒入步骤 (2) 相对应烧杯内, 然后置于超 声波细胞破碎仪 (冰水浴) 进行超声处理, 超声时间15mim, 超声功率80%, 将超声处理后得到 的混合溶液置于冰水中1h降温。 0049 (4) 称取0.0142g过硫酸钾 (KPS) , 再倒入烧杯内, 在搅拌器内搅拌溶解。 0050 (5) 将步骤 (3) 所得的样品置于搅拌器内, 加入 (4) 所得的KPS溶液, 慢速搅拌 15mim。 0051 (6) 将中空的硅胶板模具 (厚: 1.5mm, 外尺寸: 85mm55mm。

31、, 内尺寸: 80mm50mm) 放 说明书 5/9 页 8 CN 109161144 A 8 在一块玻璃板上, 使硅胶板紧密的贴在玻璃板上。 将步骤 (5) 所得样品倒入模具内, 然后用 另一块玻璃板从边缘开始慢慢压下。 0052 (7) 将步骤 (6) 做好的样品放入烘箱内 (温度: 50) , 10小时后取出。 待测。 0053 经过以上步骤, 可制备获得聚丙烯酰胺/碳纳米管复合凝胶,其中碳纳米管为丙烯 酰胺单体质量的2%。 在室温下, 将样品裁成宽度10mm, 长度30mm试样, 使用万能力学试验机 (传感器量程为1KN, 加载速度为20mm/min) 表征样品力学性能: 制备所得聚丙。

32、烯酰胺/碳纳 米管拉伸强度较差, 仅为0.08MPa, 断裂伸长率仅为58.32%, 说明碳纳米管在聚丙烯酰胺内 发生团聚, 当施加外加载荷后, 由于应力无法均匀分散, 导致其力学性能较差。 0054 实施例1 1. 提取甲壳素 (1) 将废弃虾或虾蟹壳清洗后, 磨粉并筛选50目的废弃虾蟹壳粉末, 浸泡于质量分数为 6%的盐酸溶液中24小时, 以去除虾虾蟹壳粉末中的碳酸钙, 之后用蒸馏水洗涤至中性; (2) 加入质量分数为5% 的NaOH溶液, 置于85的水浴锅中磁力搅拌12小时, 以去除虾 蟹壳粉末中的蛋白质, 之后用蒸馏水洗涤至中性, 此过程重复四次, 直至蛋白质完全去除; (3) 在质量。

33、分数为50%的乙醇溶液中浸泡48 h, 以去除虾蟹壳粉末中的有色物质, 用蒸 馏水洗涤直至粉末变为白色, 获得纯化甲壳素。 0055 2. 机械研磨制备甲壳素纳米纤维 向1中步骤 (3) 所得甲壳素加入蒸馏水稀释, 配置成浓度为1wt%的悬浮液, 利用研磨机 进行机械研磨2次, 研磨机转速为1500 rpm/min, 磨盘间隙为0.2 mm, 收集可得纯化甲壳素 纳米纤维悬浮液。 0056 3.制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶 (1) 称取2.84g的聚丙烯酰胺 (AM) 置于烧杯内, 加入6.5g水, 均匀搅拌至AM完全溶解。 再 称取0.0284g的N.N-亚甲基双丙烯。

34、酰胺 (MBA) , 倒入AM溶液中, 再次搅拌至MBA完全溶解。 0057 (2) 取含甲壳素纳米纤维0.0284g的悬浮液和碳纳米管0.0142g置于烧杯内。 0058 (3) 将步骤 (1) 中AM和MBA的混合液倒入步骤 (2) 相对应烧杯内, 然后置于超声波 细胞破碎仪 (冰水浴) 进行超声处理, 超声时间10mim, 超声功率75%, 将超声处理后得到的混 合溶液置于冰水中1h降温。 0059 (4) 称取0.0142g过硫酸钾 (KPS) , 再倒入烧杯内, 在搅拌器内搅拌至完全溶解。 0060 (5) 将步骤 (3) 所得的样品置于搅拌器内, 加入 (4) 所得的KPS溶液, 。

35、慢速均匀搅拌 15mim, 静置脱泡。 0061 (6) 将中空的硅胶板模具 (厚: 1.5mm, 外尺寸: 85mm55mm, 内尺寸: 80mm50mm) 放 在一块玻璃板上, 使硅胶板紧密的贴在玻璃板上。 将步骤 (5) 所得样品倒入模具内, 然后用 另一块玻璃板从边缘开始慢慢压下。 0062 (7) 将步骤 (6) 做好的样品放入烘箱内 (温度: 40) , 12小时后取出, 待测。 0063 经过以上步骤, 可制备获得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝 胶。 在室温下, 将样品裁成宽度10mm, 长度30mm试样, 使用万能力学试验机 (传感器量程为 1KN, 加载速度为。

36、20mm/min) 表征样品力学性能: 当纳米纤维素与碳纳米管质量比为2: 1时, 制备所得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管拉伸强度为0.29 MPa, 断裂伸长率为 141.85%, 弹性模量为0.22 Mpa。 与纯聚丙烯酰胺相比, 力学强度增加了约3倍。 说明纳米纤 说明书 6/9 页 9 CN 109161144 A 9 维素的添加能有效分散碳纳米管, 提高其力学性能。 使用RST-8型四探针测试仪表征样品导 电性能, 将样品裁成直径为2.5mm的圆片状, 测量样品厚度等参数后置于四探针下进行导电 率测试, 样品的电导率7.5510-2 S/m。 电磁屏蔽效能为18.5 dB。 将。

37、样品裁成尺寸为1.0mm 1.5mm大小, 再将样品置于载玻片上, 用另一块载玻片轻轻压一下样品, 将样品压平。 取 1mm1mm大小的样品, 放入电热恒温鼓风干燥箱 (温度: 60, 时间: 48h) , 取出样品后称量 其烘干后质量; 再将样品置于去离子水内 (室温) , 48h后取出轻轻擦拭样品表面的水分, 然 后称量其质量, 计算其溶胀度为4.18 g/g, 与纯聚丙烯酰胺相比 (溶胀度为7.12) , 其溶胀度 减小了40%, 表明, 在聚丙烯酰胺凝胶中添加CNF及CNT可以有效降低凝胶的溶胀度, 提高凝 胶的交联度。 0064 实施例2 1. 提取甲壳素 (1) 将废弃虾虾蟹壳清洗。

38、后, 磨粉并筛选60目的废弃虾蟹壳粉末, 浸泡于质量分数为7% 的盐酸溶液中12小时, 以去除虾虾蟹壳粉末中的碳酸钙, 之后用蒸馏水洗涤至中性; (2) 加入质量分数为6% 的NaOH溶液, 置于95的水浴锅中磁力搅拌10小时, 以去除虾 蟹壳粉末中的蛋白质, 之后用蒸馏水洗涤至中性, 此过程重复四次, 直至蛋白质完全去除; (3) 在质量分数为95%的乙醇溶液中浸泡24 h, 以去除虾蟹壳粉末中的有色物质, 用蒸 馏水洗涤直至粉末变为白色, 获得纯化甲壳素。 0065 2. 机械研磨制备甲壳素纳米纤维 向1中步骤 (3) 所得甲壳素加入蒸馏水稀释, 配置成浓度为0.8 wt%的悬浮液, 利用。

39、研磨 机进行机械研磨3次, 研磨机转速为1500 rpm/min, 磨盘间隙为0.2 mm, 收集可得纯化甲壳 素纳米纤维悬浮液。 0066 3.制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶 (1) 称取2.84g的聚丙烯酰胺 (AM) 置于烧杯内, 加入7g水搅拌至AM完全溶解。 再称取 0.0284g的N.N-亚甲基双丙烯酰胺 (MBA) , 倒入AM溶液中, 再次搅拌至MBA完全溶解。 0067 (2) 取含甲壳素纳米纤维0.0284g的悬浮液和碳纳米管0.0284g置于烧杯内。 0068 (3) 将步骤 (1) 配好的AM和MBA的混合液倒入步骤 (2) 相对应烧杯内, 然后置。

40、于超 声波细胞破碎仪 (冰水浴) 进行超声处理, 超声时间15mim, 超声功率80%, 将超声处理后得到 的混合溶液置于冰水中1h降温。 0069 (4) 称取0.0142g过硫酸钾 (KPS) , 再倒入烧杯内, 在搅拌器内搅拌溶解。 0070 (5) 将步骤 (3) 所得的样品置于搅拌器内, 加入 (4) 所得的KPS溶液, 慢速搅拌 15mim。 0071 (6) 将中空的硅胶板模具 (厚: 1.5mm, 外尺寸: 85mm55mm, 内尺寸: 80mm50mm) 放 在一块玻璃板上, 使硅胶板紧密的贴在玻璃板上。 将步骤 (5) 所得样品倒入模具内, 然后用 另一块玻璃板从边缘开始慢。

41、慢压下。 0072 (7) 将步骤 (6) 做好的样品放入烘箱内 (温度: 50) , 10小时后取出。 待测。 0073 经过以上步骤, 可制备获得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝 胶。 在室温下, 将样品裁成宽度10mm, 长度30mm试样, 使用万能力学试验机 (传感器量程为 1KN, 加载速度为20mm/min) 表征样品力学性能: 当纳米纤维素与碳纳米管质量比为1: 1时, 制备所得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管拉伸强度为0.32MPa, 断裂伸长率为 说明书 7/9 页 10 CN 109161144 A 10 140.17%, 弹性模量为0.22MPa。 与纯。

42、聚丙烯酰胺相比, 力学强度提高了3倍。 且与实施例3相 比, 当纳米填充物质量分数均为2%时, 其力学强度增加了4倍, 说明纳米纤维素的添加能有 效分散碳纳米管, 提高其力学性能。 使用RST-8型四探针测试仪表征样品导电性能, 将样品 裁成直径为2.5mm的圆片状, 测量样品厚度等参数后置于四探针下进行导电率测试, 样品的 电导率8.2210-2 S/m; 电磁屏蔽效能为25.5 dB。 将样品裁成尺寸为1.0mm1.5mm大小, 再将样品置于载玻片上, 用另一块载玻片轻轻压一下样品, 将样品压平。 取1mm1mm大小的 样品, 放入电热恒温鼓风干燥箱 (温度: 60, 时间: 48h) ,。

43、 取出样品后称量其烘干后质量; 再 将样品置于去离子水内 (室温) , 48h后取出轻轻擦拭样品表面的水分, 然后称量其质量, 计 算其溶胀度为3.91 g/g, 与纯聚丙烯酰胺相比 (溶胀度为7.12) , 其溶胀度减小了45%, 表明, 在聚丙烯酰胺凝胶中添加CNF及CNT可以有效降低凝胶的溶胀度, 提高凝胶的交联度。 将样 品裁成尺寸为1.0mm1.5mm大小, 再将样品置于载玻片上, 用另一块载玻片轻轻压一下样 品, 将样品压平。 然后置于Thermo DR型激光显微拉曼光谱仪 (Themo Fisher, 美国) 试验 台内待测。 试验参数: 激发波长532 nm, 功率10 mw,。

44、 扫描范围500-3500cm-1, 采集时间: 6s。 拉曼光谱测试结果表明: 当CNT与纳米纤维的混合质量比为1:1时, ID/IG为1.076, 与未添加 纳米纤维的PAM/CNT凝胶ID/IG (1.302) 相比, ID/IG值显著降低, 可见在PAM /CNT复合凝胶 中添加CNF可以提高CNT的有序程度, 而当CNT和纳米纤维的混合质量比为1:1时, CNT的有序 程度得到最大的改善。 FE-SEM场发射扫描电子显微镜 (JSM-6700F, JEOL Ltd, 日本) 用于样 品的形貌特征 (扫描电压1.5kV, 电流10A) 。 制样方法: 将待测样品冷冻干燥后置于导电碳 膜。

45、上, 采用自动喷金仪(AUTO FINE COATER JFC-1600, JEOL, Japan)对样品进行喷金处理。 CNT由于长径比和比表面积较大, 管间具有较大的表面能, 未使用分散剂的情况下, CNT间的 团聚现象较为严重, 可清晰观察到大量的聚集体。 PAM 凝胶表面呈现多孔结构。 当CNF与CNT 质量比为1:1时, 复合凝胶微观结构可观察到, 样品表面呈现多孔结构且纤维与纤维相互交 错构成纳米网状结构, 无明显纤维聚集现象, 表明复合凝胶内CNF与CNT能够相互分散构建 均匀混合体系。 值得注意的是, CNT在复合材料中所形成的导电网络能够为电子的传输提供 了连续通路。 007。

46、4 实施例3 1. 提取甲壳素 (1) 将废弃虾虾蟹壳清洗后, 磨粉并筛选60目的废弃虾蟹壳粉末, 浸泡于质量分数为6% 的盐酸溶液中18小时, 以去除虾虾蟹壳粉末中的碳酸钙, 之后用蒸馏水洗涤至中性; (2) 加入质量分数为5% 的NaOH溶液, 置于95的水浴锅中磁力搅拌12小时, 以去除虾 蟹壳粉末中的蛋白质, 之后用蒸馏水洗涤至中性, 此过程重复四次, 直至蛋白质完全去除; (3) 在质量分数为80%的乙醇溶液中浸泡36 h, 以去除虾蟹壳粉末中的有色物质, 用蒸 馏水洗涤直至粉末变为白色, 获得纯化甲壳素。 0075 2. 机械研磨制备甲壳素纳米纤维 向1中步骤 (3) 所得甲壳素加。

47、入蒸馏水稀释, 配置成浓度为1wt%的悬浮液, 利用研磨机 进行机械研磨3次, 研磨机转速为1500 rpm/min, 磨盘间隙为0.3mm, 收集可得纯化甲壳素纳 米纤维悬浮液。 0076 3.制备聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝胶 (1) 称取2.84g的聚丙烯酰胺 (AM) 置于烧杯内, 加入7.2g水搅拌至AM完全溶解。 再称取 说明书 8/9 页 11 CN 109161144 A 11 0.0284g的N.N-亚甲基双丙烯酰胺 (MBA) , 倒入AM溶液中, 再次搅拌至MBA完全溶解。 0077 (2) 取含甲壳素纳米纤维0.0284g的悬浮液和碳纳米管0.0568。

48、g置于烧杯内。 0078 (3) 将步骤 (1) 配好的AM和MBA的混合液倒入步骤 (2) 相对应烧杯内, 然后置于超 声波细胞破碎仪 (冰水浴) 进行超声处理, 超声时间20mim, 超声功率75%, 将超声处理后得到 的混合溶液置于冰水中1h降温。 0079 (4) 称取0.0142g过硫酸钾 (KPS) , 再倒入烧杯内, 在搅拌器内搅拌溶解。 0080 (5) 将步骤 (3) 所得的样品置于搅拌器内, 加入 (4) 所得的KPS溶液, 慢速搅拌 15mim, 静置脱泡。 0081 (6) 将中空的硅胶板模具 (厚: 1.5mm, 外尺寸: 85mm55mm, 内尺寸: 80mm50m。

49、m) 放 在一块玻璃板上, 使硅胶板紧密的贴在玻璃板上。 将步骤 (5) 所得样品倒入模具内, 然后用 另一块玻璃板从边缘开始慢慢压下。 0082 (7) 将步骤 (6) 制备所得样品放入烘箱内 (温度: 40) , 12小时后取出, 待测。 0083 经过以上步骤, 可制备获得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电复合凝 胶。 在室温下, 将样品裁成宽度10mm, 长度30mm试样, 使用万能力学试验机 (传感器量程为 1KN, 加载速度为20mm/min) 表征样品力学性能: 当纳米纤维素与碳纳米管质量比为2: 1时, 制备所得聚丙烯酰胺/甲壳素纳米纤维/碳纳米管拉伸强度为0.24 Mpa, 断裂伸长率为 122.2%, 弹性模量为0.18MPa。 与纯聚丙烯酰胺相比, 力学强度增加了2倍。 说明纳米纤维素 的添加能有效分散碳纳米管, 提高其力学性能。 使用RST-8型四探针测试仪表征样品导电性 能, 将样品裁成直径为2.5mm的圆片状, 测量样品厚度等参数后置于四探针下进行导电率测 试, 样品的电导率为7.4210-2 S/m; 电磁屏蔽效能为22.5 dB。 将样品裁成尺。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 >


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1