孢子化缺陷型德克萨斯侧孢短芽孢杆菌细胞及用于有效且划算灭活和使用它们的方法.pdf

上传人:一**** 文档编号:8586866 上传时间:2020-09-10 格式:PDF 页数:32 大小:3.54MB
返回 下载 相关 举报
摘要
申请专利号:

CN201280020898.8

申请日:

20120228

公开号:

CN103732734B

公开日:

20160120

当前法律状态:

有效性:

有效

法律详情:

IPC分类号:

C12N1/20,A23L1/30,A23K1/16,A61K35/742,A61P31/04,A61P31/14,A61P31/16,A61P1/00,A61P33/02,A61P11/00,A61P13/02,A61P3/04,A61P3/10,C12R1/01

主分类号:

C12N1/20,A23L1/30,A23K1/16,A61K35/742,A61P31/04,A61P31/14,A61P31/16,A61P1/00,A61P33/02,A61P11/00,A61P13/02,A61P3/04,A61P3/10,C12R1/01

申请人:

迈加拉克西有限公司

发明人:

姜亦微

地址:

美国德克萨斯州

优先权:

61/447,703,13/406,202

专利代理机构:

北京市柳沈律师事务所

代理人:

岑晓东

PDF下载: PDF下载
内容摘要

提供了新颖的菌株及其使用方法。具体地,含有孢子化缺陷型短芽孢杆菌(Brevibacillus)菌株的食物和其它口服产品或疗法,其在被对受试者施用时能抑制或减少受试者中的病原体数目并改善受试者的健康状况。

权利要求书

1.孢子化缺陷型德克萨斯侧孢短芽孢杆菌(Brevibacillustexasporus)菌株,其具有小于3.5x10的存活率,其中通过使培养物处于50℃的温度5分钟并测量存活率来测量孢子化缺陷,其中所述菌株是保藏编号为ATCCPTA-12310的德克萨斯侧孢短芽孢杆菌MYG11、保藏编号为ATCCPTA-12309的德克萨斯侧孢短芽孢杆菌MYG107、保藏编号为ATCCPTA-12308的德克萨斯侧孢短芽孢杆菌MYG110或保藏编号为PTA-12307的德克萨斯侧孢短芽孢杆菌MYG113。 2.一种灭活权利要求1的孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株的方法,其包括使德克萨斯侧孢短芽孢杆菌细胞的培养物处于足以灭活细胞的胁迫。 3.权利要求2的方法,其中所述胁迫选自下组:饥饿、温度休克、脱水、pH变化、醇暴露、用去污剂处理、压力处理、酶促破坏、机械力及其组合。 4.权利要求2的方法,其包括将德克萨斯侧孢短芽孢杆菌培养物的存活率降低至小于1x10。 5.权利要求3的方法,其中所述胁迫选自下组:将细胞加热至至少50℃达至少5分钟、将细胞在缺乏冷冻保护剂的情况下冷冻、将细胞脱水至含水量小于80%、添加去污剂、喷雾干燥细胞、施加机械力及其组合。 6.一种增强型动物饲料或饮料,其包含权利要求1的孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株。 7.权利要求1的孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株,其具有按重量计小于10%的含水量。 8.一种改善动物的生长速率和饲料转化的方法,所述方法包括:对动物施用权利要求6的增强型动物饲料或饮料;并相对于接受缺少所述孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株的饲料或饮料的动物,改善所述动物的体重增加或饲料转化。 9.权利要求1的孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株在制备用于预防和/或治疗动物疾病的药物中的用途,其中预防和/或治疗疾病包括减少动物中的病原性微生物数量,其中所述病原体选自下组:不动杆菌属、疏螺旋体属、弯曲杆菌属、梭菌、大肠杆菌、肠球菌属、淋病菌、口蹄疫病毒、嗜血菌属、流感病毒、曼氏杆菌属、分枝杆菌、支原体属、巴斯德氏菌属、假单胞菌属、沙门氏菌属、葡萄球菌属和链球菌属。 10.权利要求1的孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株在制备用于预防和/或治疗动物疾病的药物中的用途,其中所述疾病选自下组:大肠杆菌病、沙门氏菌病、坏死性肠炎、球虫病、流感、口蹄疫、猪生殖与呼吸综合征、牛航运热肺炎、尿路感染、肥胖/代谢综合征和2型糖尿病。

说明书

对相关申请的交叉引用

本申请要求2011年3月1日提交的美国临时申请No.61/447,703的权益,其 完整内容通过提述并入。

发明领域

本发明总体上涉及生物技术领域,更具体地,涉及德克萨斯侧孢短芽孢 杆菌(Brevibacillustexasporus)的胁迫敏感性或孢子化缺陷型菌株、用于德克 萨斯侧孢短芽孢杆菌生物体的有效且划算的细胞灭活的方法、及自这类菌株 衍生的饲料或水添加剂。

发明背景

本文中引用的任何文件并非承认该文件是现有技术或本文中任何权利 要求的可专利性的考虑材料,并且关于任何文件的内容或日期的任何陈述均 基于提交时该申请可用的信息,而不构成证实或承认该陈述是正确的。

健康动物或未被病原性生物体(如病原性细菌)感染的动物较快生长并且 从每千克饲料取得更多的体重增加。因此,自20世纪40年代以来,抗微生物 化合物已被用作家畜中的生长促进剂。通常,抗微生物化合物被以亚治疗剂 量或低剂量在饲料中施用。

尽管已长期使用亚治疗剂量的抗微生物化合物来帮助家畜保持健康并 更快生长,但最近的报告显示了抗生素的使用与从这些动物生产的肉类上药 物抗性细菌的存在之间的联系。因此,欧洲委员会、美国农业部(USDA)以 及美国食品和药品管理局(FDA)均已制定了关于将某些抗生素用作生长促进 剂的禁令和指南。目前,规则通常聚焦于与用于治疗人类的抗生素相同或类 似的抗生素的使用。然而,对使用所有抗生素药物来增强家畜生长的总体性 抵制日益增长。此外,有机生成肉类的市场正在扩大,并且要得到有机认证, 美国肉类必须来自未经抗生素喂养的动物。因此,目前存在对用于家畜饲料 的新型生长增强剂需求。

另外,伴侣动物健康是一个快速增长的市场。经由刺激先天性免疫来保 持伴侣动物(例如老龄伴侣动物)的健康对于伴侣动物的保健是一种有吸引力 的办法,并且口服投递的免疫刺激剂会是高度有价值的。

德克萨斯侧孢短芽孢杆菌(BT)(例如ATCCPTA-5854)是一种最近鉴定 的土壤细菌,其生成一组阳离子非核糖体肽(NRPSpeptides)(参见WO 2005/074626和WU等2005)。这些来自BT的阳离子肽在体外展现出广谱抗细 菌活性,其杀死革兰氏阳性和阴性细菌、真菌和原生动物(WO2005/074626)。

尽管具有体外抗细菌活性,但BT肽似乎缺乏体内抗细菌活性。万古霉素 抗性肠球菌在体外对BT肽是高度敏感的。然而,BT肽在明显超出最小抑制 浓度的浓度不能使共生的VRE自小鼠肠道去定殖化(decolonize)。

然而,分离的肽被显示了在被用作饲料添加剂时有效预防鸡的大肠杆菌 病和沙门氏菌病。另外,还显示了此分离后的肽在鸡中有效促进生长并提高 饲料转化。

可能更重要地,BT肽的体内作用似乎不依赖于其体外抗生素活性,因为 它在低于其体外最小抑制浓度的浓度时有效预防大肠杆菌和沙门氏菌对鸡 的感染(JIANG等2005;KOGUT等2007;KOGUT等2010)。还被注意到的是, 在饲喂BT肽的鸡中,血液异嗜白细胞(heterophil)和单核细胞被预备活化 (primedforactivation),这指向先天性免疫刺激为可能的作用机理。这些特征 使得BT肽成为家畜生产中理想的饲料添加剂和抗生素化合物的替代品。

另外,由于现在还已知先天性免疫在控制病毒性和真菌性感染以及预防 非传染病(如肥胖/代谢综合征和2型糖尿病)中起着关键作用(VIJAY-KUMAR 等2010),因此BT先天性免疫调节剂也应在这些治疗领域中具有重要的应用。

然而,BT肽作为饲料添加剂的经济价值严重受限于肽分离的需要,其使 生产成本增加至其在经济上不再可行的程度。作为纯化该肽的替代方案,有 可能可以将整个生物体(PTA-5854)(如在国际专利公开文本WO2005/074626 中讨论的)直接用来生产饲料添加剂。

通常,直接饲喂微生物(DFM)或益生菌(probiotic)菌株需要以活体形式和 充足数目到达肠道,这需要菌株在饲料加工和消化期间存活(参见美国专利 5,480,641和美国专利公开文本20040247568)。由于饲料颗粒生成通常牵涉足 以显著降低存活力的加热,大多数益生菌菌株都经过目标为其对加热和胃中 测出的pH条件的抗性的筛选。目前,最稳定的益生菌菌株是芽胞杆菌孢子, 因为细菌孢子是热抗性的,并且在长期贮存期间保持存活。

然而,由于BT生物体不被认为是通常在家畜肠道中找到的共生细菌,期 望和/或有必要的是在使用之前灭活其生物体。然而,在能生成孢子的菌株中, 这是有问题的。另外,至少一个政府管理机构在评估涉及微生物来源的新饲 料时考虑以下标准:微生物生产的安全性;微生物产品对人、动物和环境的 安全性;横向基因转移的潜在影响;与胃肠微生物区系的相互作用;在肠中 的持久性;由于活体微生物洒落而对人和环境的潜在影响,尤其是在肉类污 染会被认为有健康影响时(DirectiveonGuidelinesfortheAssessmentofNovel Feeds:MicrobialSources,Draft-June2007,TheCanadianFoodInspection Agency)。因此,在使用微生物作为食品添加剂时,有两种相互冲突的期望 结果。第一种是在整个加工和消化期间将微生物保持为活体状态,而第二种 完全相反的期望是完全或近乎完全地将微生物灭活而不使活性肽失活。灭活 的额外益处是其消除或降低德克萨斯侧孢短芽孢杆菌与肠中及环境中的微 生物之间横向基因转移的机会;消除或限制与胃肠(GI)微生物区系的潜在相 互作用;消除或降低经由活细胞洒落对人和环境的潜在风险;和/或消除或降 低对源自消耗该饲料的动物的肉类的污染。因此,PTA-5854的连续孢子化严 重限制将该菌株用作DFM的能力,因为孢子对用于灭活营养细胞的大多数方 法是极具抗性,要求用严苛且昂贵的方法予以去除。

因此,本领域中需要可作为灭活的DFM有效使用的德克萨斯侧孢短芽孢 杆菌菌株。

发明概述

在一个实施方案中,本发明是饲料或水添加剂,其包含孢子化缺陷型德 克萨斯侧孢短芽孢杆菌细菌菌株的灭活的细胞或灭活的培养物。本发明还涉 及可以添加到一种或多种动物用的饲料或饮用水的本发明的灭活的经干燥 的细胞或培养物(例如冻干或喷雾干燥的细胞或培养物)的用途,所述动物包 括但不限于家禽、牲畜、牛、猪、鸡、马、火鸡、绵羊、山羊、鸭、鹌鹑、 康沃尔游戏母鸡(Cornishgamehen)、鸽、农场饲养的鱼、蟹、虾、淡水龟、 犬和猫。例如,可以经由巴氏消毒法、饥饿、温度(热、冷或冷冻)、脱水(例 如加热干燥、冷冻干燥、喷雾干燥、晒干、风干或真空干燥)、酸化、碱化、 醇、去污剂、溶菌酶、机械力、季铵阳离子、氧化剂(例如氯氧化物、过氧 化氢、次氯酸盐或臭氧)和/或辐射(例如UV、X射线或γ射线)来灭活孢子化缺 陷型德克萨斯侧孢短芽孢杆菌菌株培养物的细胞,然后可以将灭活的细胞或 培养物纳入到饮用水或动物饲料中,如基于谷类的饲料,例如含有至少一种 选自下组的谷类的饲料:大麦、大豆、小麦、小黑麦(triticale)、黑麦(rye)、 玉米及其组合。实际上,可以将本发明添加到极其多种饲料中。可以将本发 明的灭活的细胞或分离肽与选自下组的家畜用饮用水或饲料混合:代乳品 (milkreplacer)、生长饲料(growerfeed)、肥育饲料(finisherfeed)、育雏前饲料 (pre-starterfeed)、育雏饲料(starterfeed)、水及其组合。

本发明还包括用于促进家畜和伴侣动物中的体重增加和饲料转化的方 法,其通过将孢子化缺陷型德克萨斯侧孢短芽孢杆菌细胞或细胞培养物灭活 (例如热处理或脱水),并以足以促进生长的量向动物提供灭活的孢子化缺陷 型德克萨斯侧孢短芽孢杆菌细胞或培养基加细胞进行。另可选择的是,可以 将有效量的孢子化缺陷型德克萨斯侧孢短芽孢杆菌细胞或含有该细胞的培 养基干燥(脱水)和/或通过造粒(一种热处理方式)纳入动物饲料中或添加到饮 用水中。

饲料成分的例子还包括谷类、大豆粉、分离的大豆蛋白、分离的大豆油、 分离的大豆脂肪、脱脂乳、鱼粉、肉粉、骨粉、血粉、血浆蛋白质、乳清、 稻糠、麦麸,并且还可以包含甜味剂、矿物、维生素、盐和草。

在一个例示性的实施方案中,在含有饲料成分(如玉米粉和大豆粉)悬浮 液的培养基中培养孢子化缺陷型德克萨斯侧孢短芽孢杆菌细胞。然后,可以 对培养物进行细胞灭活和/或干燥/脱水以制备饲料添加剂(其中培养物中的 微粒发挥BT肽的载体的功能)或增强型饲料。

本发明还包括用于预防和/或治疗动物中微生物感染的方法,其通过以足 以治疗和/或预防动物中微生物感染的有效量提供灭活的孢子化缺陷型德克 萨斯侧孢短芽孢杆菌细胞或培养物进行。

本发明还包括用于促进正在生长的动物中重量增加和饲料转化的方法, 其通过以足以治疗和/或预防动物中微生物感染的有效量提供灭活的孢子化 缺陷型德克萨斯侧孢短芽孢杆菌细胞或培养物进行。

本发明还包括孢子化缺陷型细胞作为人食物或水添加剂的用途。

在一个例示性实施方案中,本发明提供了德克萨斯侧孢短芽孢杆菌的孢 子化缺陷型菌株,其具有小于约3.5x10-3、小于约1x10-4、小于约1x10-5、 小于约1x10-6、小于约1x10-7、小于约1x10-8或小于约1x10-9的存活率,存 活率可以通过使培养物处于约50℃的温度约5分钟并测定存活率或菌落形成 能力来测量。

在一个例示性实施方案中,当对培养物进行灭活处理时,孢子化缺陷型 德克萨斯侧孢短芽孢杆菌菌株还展现出降低的存活,如小于约1x10-9的存活 率,所述灭活处理如饥饿、冷冻(在缺乏有效量的冷冻保护剂的情况下)、脱 水(于23℃用迅速真空(speedvaccum))、pH极端(例如pH1.0或pH13.0)、饱和 丁醇、添加去污剂(例如1%SDS)或裂解剂(例如溶菌酶)、超声处理、机械力(例 如动物饲料造粒机的弗氏压碎(Frenchpress))或过氧化氢(例如大于或等于1% H2O2)。

本发明还涉及增加德克萨斯侧孢短芽孢杆菌制剂中的BT肽产量的方法, 其通过使用自孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株衍生的细胞进行。 本发明还涉及增加德克萨斯侧孢短芽孢杆菌制剂中BT肽的稳定性和经济效 用的方法,其通过在不纯化或分离BT肽的情况下使用自孢子化缺陷型德克萨 斯侧孢短芽孢杆菌菌株衍生的细胞进行。

本发明还涉及德克萨斯侧孢短芽孢杆菌细胞的粉末状形式,其中粉末基 本上无孢子。在一个例示性实施方案中,在液体培养基中将孢子化缺陷型德 克萨斯侧孢短芽孢杆菌的培养物培养至足够的细胞密度,并将培养物脱水或 干燥以生成基本无孢子的粉末。然后,可以将该粉末与水或饲料成分混合以 生成不含显著量的来自德克萨斯侧孢短芽孢杆菌细菌的活孢子的增强型动 物饮料或食物。

本发明还涉及将德克萨斯侧孢短芽孢杆菌细胞从用于德克萨斯侧孢短 芽孢杆菌生产的装置和/或设施中除去或去污的方法,其如下进行,处理该装 置和/或设施以灭活或杀死孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株,然后 可以简单地将细胞冲洗掉。例如,可以使用蒸汽或高温水来清洁装置和/或设 施,其中水既会除去细胞又会杀死它们(由于温度所致),由此有效从装置和/ 或设施除去德克萨斯侧孢短芽孢杆菌细胞。

本发明还涉及刺激动物或人的免疫系统的方法,其通过施用有效量的孢 子化缺陷型德克萨斯侧孢短芽孢杆菌菌株进行。例如,可以培养孢子化缺陷 型德克萨斯侧孢短芽孢杆菌菌株,可以在有或无培养基的情况下收获细胞, 并且可以将细胞与水或别的食物成分混合以生成增强型饮料或食物,其刺激 受施用动物的免疫系统。例如,可以将孢子化缺陷型德克萨斯侧孢短芽孢杆 菌菌株灭活并直接喂予动物或人以刺激该动物或人的免疫系统。在另一个例 示性实施方案中,本发明涉及增强型食品,其通过对动物或人施用有效量的 孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株和食物载体来刺激动物或人的 免疫系统。

可以培养孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株并与水或食物成 分混合以生成刺激免疫系统的增强型饮料或食物,例如,其可以加强对疫苗 的免疫应答,该疫苗与增强型饮料或食物一起对动物或人施用或在投递增强 型饮料或食物后对动物或人施用。另外,可以将孢子化缺陷型德克萨斯侧孢 短芽孢杆菌菌株灭活并喂予动物或人,例如可以将灭活的细胞干燥、运送到 期望的加工和/或施用地点、并与动物或人要消耗的水或食物混合,其中食物 或水不含来自德克萨斯侧孢短芽孢杆菌菌株的活孢子。

本发明还涉及用于刺激动物(包括人)的免疫系统的组成物,其通过与一 或多种疫苗联合施用有效量的孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株 进行。例如,可以培养孢子化缺陷型菌株,收获细胞(附有或不附有培养基, 例如细胞可以在离心后被清洗),并在接种疫苗之前或与疫苗组合对动物施 用,其中所述细胞预备活化或加强免疫系统对疫苗的应答。

本发明还涉及预防和/或治疗动物中疾病的组成物和/或方法,其包括对 动物施用孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株。例如,所述治疗可以 涉及减少动物体内的病原性微生物群体。可减少的例示性病原体包括但不限 于不动杆菌属(Acinetobacter)、杆菌(Bacilli)、疏螺旋体属(Borrelia)、弯曲杆 菌属(Campylobacter)、梭菌(Clostridia)、大肠杆菌(E.coli)、肠球菌属 (Enterococcus)、口蹄疫(Foot-and-mouthdisease)病毒、淋病菌(Gonorrhea)、嗜 血菌属(Haemophilus)、流感病毒(Influenzavirus)、曼氏杆菌属(Mannheimia)、 分枝杆菌(Mycobacteria)、支原体属(Mycoplasma)、巴斯德氏菌属(Pasteurella)、 假单胞菌属(Pseudomonas)、沙门氏菌属(Salmonella)、葡萄球菌属 (Staphylococcus)和链球菌属(Streptococcus)。例示性疾病包括但不限于大肠杆 菌病(colibacillosis)、沙门氏菌病(salmonellosis)、坏死性肠炎(necrotic enteritis)、球虫病(coccidiosis)、流感(influenza)、口蹄疫(foot-andmouth disease)、猪生殖与呼吸综合征(porcinereproductive&respiratorysyndrome)、 牛航运热肺炎(bovineshippingfeverpneumonia)、尿路感染(urinarytrack infection)、肥胖(obesity)/代谢综合征(MetabolicSyndrome)和2型糖尿病(type2 diabetesmellitus)。

称为PTA-12307(菌株MYG113)、PTA-12308(菌株MYG110)、PTA-12309 (菌株MYG107)和PTA-12310(菌株MYG11)的孢子化缺陷型德克萨斯侧孢短 芽孢杆菌菌株在2011年12月7日被保藏。所有这些菌株均在布达佩斯条约的 条款下被保藏在美国典型培养物保藏中心(ATCC),10801UniversityBlvd., Manassas,Virginia20110-2209,USA),并通过提述并入。

本发明还涉及至少一种选自下组的属于短芽孢杆菌属(Brevibacillus)的 细菌菌株:PTA-12307、PTA-12308、PTA-12309和PTA-12310的至少一种。

一种可用于灭活本发明细胞的办法涉及在合适的培养基中培养细胞,然 后向培养物添加饲料成分或向饲料成分添加培养物以使细胞脱水。

可用于灭活本发明细胞的另一种办法(除热休克外)涉及使细胞处于pH 极端,如约1、约2、约3、约4、约5、约9、约10、约11、约12、约13或约14 的pH。

可以实现足以灭活本发明细胞的pH改变,其通过添加碱、酸和/或其它 组分来有效变换pH而超出生理学耐受范围来实现。例如,可以将二氧化碳溶 解于水以产生碳酸并降低pH以引起细胞灭活。

可用于灭活本发明细胞的另一种办法是高压加工(也称为“高压处理” 或“超高压处理”或“超高压灭菌”),它是一种可涉及施加范围为100-1,000 MPa(14,500-145,000psi)或150-600MPa(25,000至90,000psi)的压力来将细 菌、霉等的营养细胞从有这些细胞的产品中消除的工艺。

高压处理的一个例子是弗氏压碎办法,其通过对细胞悬浮液施加压力 (高达40,000psi),然后突然释放压力来破坏细胞。如此,可以通过施加和释 放约40,000psi、20,000psi、10,000psi、5,000psi、2,000psi、1,000psi或其任意 组合的压力来灭活本发明的孢子化缺陷型菌株。

可用于灭活本发明细胞的又一种办法涉及使细胞处于终浓度为约70%、 约60%、约50%、约40%、约30%、约20%、约10%、约5%、约2%或约1%(v/v) 的醇中。

可用于灭活本发明的细胞的又一种办法涉及使细胞处于终浓度为约 10%、约5%、约2%、约1%、约0.5%、约0.2%或约0.1%(w/v)的去污剂中。

可用于灭活本发明的细胞的又一种办法涉及对细胞进行脱水,其通过将 德克萨斯侧孢短芽孢杆菌细胞周围环境中的含水量降低至低于约80%、约 70%、约60%、约50%、约45%、约40%、约35%、约30%、约25%、约20%、 约15%、约10%、约5%、约2%或约1%的水平来进行。

在一个例示性实施方案中,制备依照本发明的孢子化缺陷型细胞的培养 物,通过一种或多种灭活方法处理,并应用于动物饲料。例如,可以使用高 产量系统培养孢子化缺陷型细胞的培养物,然后将其喷雾干燥以产生粉末。 在此情况下,使用喷雾干燥来灭活细胞并生成产物,然后,可以将该产物添 加到经干燥的饲料原料。或者,可以通过添加热和/或压力(如在制备颗粒化 饲料的过程中)灭活细胞培养物。

在另一个例示性实施方案中,在液体培养基中培养依照本发明的孢子化 缺陷型细胞如MYG107、MYG110或MYG113的培养物,然后添加到基本干 燥的动物饲料成分混合物或动物饲料谷物以产生含有介于约10%和约25% (相对于固体)之间的最终含水量的混合物,然后将经湿润的混合物运行通过 制粒机(pelletmill)以产生合适大小的颗粒,接着将其干燥至最终含水量,例 如约5%。在此例子中,将细胞添加至基本干燥的动物饲料成分的混合物提 供一种脱水方式,然后,其通过添加热并颗粒干燥来加强。在这些条件下, 认为会灭活所有或基本所有细胞。

在另一个例示性实施方案中,使用饲料成分(包括2号黄色玉米、大豆粉、 稻壳、精炼的蛋白质产物、盐、粉末状石灰石磷酸盐、液态动物脂肪和液态 胆碱)来生成含有本发明的灭活细胞的饲料。一般通过将干粉末状或研碎的 成分混合成均质状态,然后添加液体成分来制备一批次的饲料,所述液体成 分可以包含德克萨斯侧孢短芽孢杆菌细胞的孢子化缺陷型培养物(一种脱水 方式)。将经湿润的混合物传送至条件化室,其中添加蒸汽(提供热休克形式), 并且饲料变为醪液。将此醪液彻底混合,之后进入制粒机中造粒。在制粒机 中,迫使软热醪液通过铸模并形成圆柱体形状颗粒。将颗粒送至冷却器/干燥 器,其中排风机将周围空气抽吸通过颗粒床以从颗粒除去湿气(进一步脱水) 和热。然后可以使用传送器和桶式升降器将饲料移送至液体包被流程,其中 将动物脂肪以按重量计约2%在饲料上喷雾。然后,完成的饲料即可使用。

在另一个例示性实施方案中,将孢子化缺陷型德克萨斯侧孢短芽孢杆菌 菌株的约1.0x1010、1.0x1011、1.0x1012、1.0x1013、1.0x1014或1.0x1015 个灭活细胞添加至约1000kg动物饲料。

在又一个例示性实施方案中,对动物施用有效剂量的孢子化缺陷型德克 萨斯侧孢短芽孢杆菌细胞。在又一个例示性实施方案中,孢子化缺陷型德克 萨斯侧孢短芽孢杆菌细胞在水中或饲料中含BT肽的有效剂量介于约5ppm和 约1000ppm之间、介于约15ppm和约1000ppm之间、介于约20ppm和约 1000ppm之间、介于约5ppm和约100ppm之间、介于约10ppm和约100ppm之 间、介于约20ppm和约100ppm之间、介于约5ppm和约75ppm之间、介于约 10ppm和约75ppm之间、介于约20ppm和约75ppm之间、介于约5ppm和约 50ppm之间、介于约10ppm和约50ppm或介于约20ppm和约50ppm之间。

在另一个例示性实施方案中,如下实施本发明的孢子化缺陷型德克萨斯 侧孢短芽孢杆菌菌株的脱水:冷冻干燥、真空干燥、喷雾干燥、渗透性脱水、 流化床脱水、溶剂蒸发脱水、超声辅助脱水、微波辅助脱水、RF辅助脱水和 /或其组合。

在另一个例示性实施方案中,通过添加吸水性物质(例如饲料成分)、热 (如在动物饲料造粒过程中产生)和/或蒸发来完成对孢子化缺陷型德克萨斯 侧孢短芽孢杆菌细胞或培养物的脱水。

附图简述

图1图示了PTA-5854孢子消耗BT肽。将PTA-5854接种到LB中,并在37℃ 空气摇床中培养。每天取样品,提取BT肽,并测定了活性。1个人工单位是 0.8ug/ml的BT肽。在第3天,将培养物分成3个等分试样(#1、#2和#3)。等分试 样#1是未处理的。将等分试样#2在UV交联器中UV照射10分钟。将等分试样 #3煮沸10分钟。然后,将各等分试样在37℃空气摇床中温育。

图2显示了在第1(1)和第2(2)项试验期间禽的生长。

图3显示了从两项试验综合的在第20天的禽的平均重量(均值±标准误差)。 N=每种处理39-42只经攻毒的禽和N=每种处理16-19只未经攻毒的禽。 *p≤0.05。

图4显示了来自两项试验对整个喂养处理测量的平均饲料转化率(均值± 标准误差,N=3个栏/处理/试验经攻毒的禽,N=1个栏/处理/试验未经攻毒的禽) (1=试验1,2=试验2)。*p≤0.05,**p≤0.01。

图5显示了在来自两项试验(1=试验1,2=试验2)的经艾美球虫(Eimeria)攻 毒的禽(N=20-24)和未经攻毒的禽(N=8)的小肠长度平均值(均值±标准误差)。

图6显示了在经艾美球虫攻毒的(N=10-12)和未经攻毒的(N=4)禽中囊重量 与禽重量的平均比率(均值±标准误差)。

图7显示了对照(N=8)和BT肽(N=12)组中的艾美球虫病变评分结果(均值± 标准误差)。在处理间有统计学显著的差异(p=0.098)。

图8显示了在经攻毒的禽中(N=每种处理5-6个集合)和来自未经攻毒的禽 (N=每种处理2个集合)的回肠食糜的干物质的平均百分比(均值±标准误差)。

图9显示了在经攻毒的禽(N=每种处理4-6个集合)和未经攻毒的禽(N=每 种处理2个集合)中盲肠食糜的干物质的平均百分比(均值±标准误差)。

图10显示了来自经攻毒的禽(N=每种处理5-6个集合)和来自未经攻毒的 禽(N=每种处理2个集合)的回肠中总微生物计数(均值±标准误差)。

图11显示了来自经攻毒的禽(N=每种处理5-6个集合)和来自未经攻毒的禽 (N=每种处理2个集合)的盲肠中总微生物计数(均值±标准误差)。

图12显示了来自两项试验的经艾美球虫攻毒的禽(N=每种处理5-6个集合) 的回肠中不同微生物的数量。P值为对照对BT,试验1=0.037。

图13显示了来自两项试验的未经攻毒的禽(N=每种处理2个集合)的回肠 中不同微生物的数量。在组间无显著差异。

图14显示了来自两项试验的经艾美球虫攻毒的禽(N=每种处理5-6个集合) 的盲肠中不同微生物的数量。在组间无显著差异。

图15显示了来自两项试验的未经攻毒的禽(N=每种处理2个集合)的盲肠 中不同微生物的量。在组间无显著差异。

发明详述

如本文中和所附权利要求书中使用的,除非上下文另外清楚指示,单数 形式例如“一/一个/一种”和“该/所述”包括复数。例如,述及“一种德克 萨斯侧孢短芽孢杆菌细菌”包含多种这类细菌,而述及“一个细胞”也是对 多个类似细胞及其等同物的提述。

如本文中使用的,“约”意为合理地接近所述数目或量、大概是所述数 目或量或略微多于或小于所述数目或量。

如本文中使用的,“动物”意指任何无脊椎动物或脊椎动物,包括马、 山羊、绵羊、牛、猪、鸡、火鸡、游戏母鸡(gamehens)、鹅、鸭、犬、猫、 鹦鹉、鱼、蟹、虾、淡水龟、人等。

如本文中使用的,“饲料”或“食物”意指为了对动物或人提供营养需 求的至少一部分,和/或用于预防或治疗动物中的营养性病症的目的,而制备、 销售或提供给动物(如家畜或驯化动物)或人消耗的,含有氨基酸、抗氧化剂、 碳水化合物、调味剂、酶、脂肪、矿物、非蛋白质氮产物、蛋白质、维生素 和/或粘合剂中的任何物质或物质混合物,并且可以含有造粒剂、着色剂、起 泡剂和/或芳香剂。作为至关重要的营养物,水被认为是饲料成分,而且含水 饮料是饲料或食物。

如本文中使用的,“失活”或“灭活”意指一般不能杀死孢子并将培养 物的相对菌落形成效率(存活率)降低至小于约1x10-3、小于约1x10-4、小于 约1x10-5、小于约1x10-6、小于约1x10-7、小于约1x10-8或小于约1x10-9的任何处理或胁迫(stress),如饥饿、温度休克、脱水/冻干/干燥(例如热干燥、 冷冻干燥、喷雾干燥、晒干、风干和/或真空干燥)、pH变化(例如酸化或碱化)、 醇处理、用去污剂处理、过滤、用金属如银和锌处理、压力处理如高压加工、 酶促破坏(例如用溶菌酶处理)、机械力(例如超声处理)、用季铵阳离子处理、 氧化剂(例如氯氧化物、过氧化氢、次氯酸盐和/或臭氧)、盐化、电场处理、 微波处理、电子束处理、辐射和/或其组合。

如本文中使用的,孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株的“灭活 的细胞或培养物”意指不可存活的德克萨斯侧孢短芽孢杆菌细胞、至少部分 释放的细胞内容物和/或培养基成分的混合物。应当注意,取决于使用的灭活 条件,灭活本发明的孢子化缺陷型菌株可能导致许多、大多数或所有细胞的 裂解。因此,“灭活的细胞”、“灭活的培养物”及等同短语在其意义内包括 至少部分通过灭活过程产生的细胞裂解物。

如本文中使用的,“突变”意指核酸序列中的任意变化,包括一或多个 核苷酸的插入、缺失、转换和颠换(transvertion)。缺失或插入的大小可以从 单个核苷酸变化到许多基因。

如本文中使用的,“表型”意指细胞或细胞培养物中观察到的生化、生 理学和/或形态学特征。

如本文中使用的,“孢子化缺陷型”指相比于有完全孢子化能力的野生 型(wt)对应菌株,在孢子形成过程或产物中展现出任何可检测的缺陷的细菌 菌株。如此,术语“孢子化缺陷型”指对降低培养物的相对菌落形成效率(存 活率)(至小于约8.1x10-7、小于约3.5x10-3、小于约1x10-4、小于约1x10-5、 小于约1x10-6、小于约1x10-7、小于约1x10-8或小于约1x10-9)的胁迫(如饥 饿、温度休克、脱水、酸化、碱化、醇、去污剂、溶菌酶、机械力、季铵阳 离子、氧化剂和/或辐射)具有敏感性的任何菌株,其包含无孢子化能力的和 实质性孢子化能力受损的细胞,或换言之,即由于菌株不具能力而不形成孢 子的细胞,或具有降低了的形成孢子能力的细胞,或形成孢子但孢子可能不 具活力或孢子对灭活胁迫敏感并在对其暴露后不能存活的细胞。可以通过本 文中描述的任何方法来测量孢子化缺陷,例如可以使活跃生长的培养物处于 约50℃或约70℃热休克约5分钟,并相对于未处理的培养物或上文未处于热 休克的培养物的等分试样来测量相对菌落形成效率。

“饥饿”是引起活性或营养细胞数目减少(并刺激孢子形成和/或细胞死 亡)的营养剥夺。野生型德克萨斯侧孢短芽孢杆菌细胞至少部分地通过孢子 化挺过饥饿,但孢子化缺陷型德克萨斯侧孢短芽孢杆菌细胞不能避免由饥饿 导致的细胞死亡。所以,可以简单地通过将菌株接种到生长培养基中并将该 菌株温育延长一段时间,从而使得细胞在初始生长期后死于饥饿来获得孢子 化缺陷型德克萨斯侧孢短芽孢杆菌菌株的灭活培养物。

如本文中使用的,“温度休克”意指约50℃至约100℃的热温、约0℃至 约16℃的冷温或冷冻。

“脱水”定义为导致德克萨斯侧孢短芽孢杆菌细胞周围环境中含水量降 低的任何工艺流程或处理,例如渗透性休克,其将周围环境中的含水量降低 至低于约80%、约70%、约60%、约50%、约45%、约40%、约35%、约30%、 约25%、约20%、约15%、约10%、约5%、约2%或约1%的水平。

最好由内科医生或兽医基于各种因素如动物的大小、年龄、重量和/或医 学状况来确定本发明细胞的有效量。

PTA-5854中的孢子形成限制BT肽的产量水平,因为PTA-5854孢子似乎 降解BT肽。不希望受到理论束缚,看起来孢子形成和/或孢子活化降低了 PTA-5854BT肽的产生。如图1中显示的,将PTA-5854在LB培养基中于37℃ 持续培养超过3天(此时营养贫化至少已开始)导致了BT肽的消耗(#1)。此BT 肽消耗可以被在第3天的UV照射阻止,该照射杀死活性(营养)细胞和孢子两 者(#2)。然而,此BT肽消耗不能被在第3天的煮沸阻止,该煮沸仅杀死活性 细胞而不灭活孢子(#3)。

在BT肽水平降低外,PTA-5854中的孢子形成阻止使用该菌株作为饲料 添加剂的最经济方法。具体地,使用BT肽作为饲料添加剂需要低生产成本, 这实际上排除了任何肽纯化步骤。因此,最经济的基于BT的饲料添加剂会是 经脱水的德克萨斯侧孢短芽孢杆菌培养物。脱水仅能灭活德克萨斯侧孢短芽 孢杆菌的营养细胞而非其孢子,因此脱水不能灭活专长孢子化的菌株。此外, 来自这类菌株的孢子能发芽并消耗周围的BT肽,其中发芽的孢子对BT肽的 降解也会造成饲料产品稳定性的严重问题。

最后,含有德克萨斯侧孢短芽孢杆菌孢子的饲料添加剂可能达不到政府 管理标准,并且引起关于扩散生产菌株的担忧。因此,高度期望的是能够有 效灭活或消除孢子。

然而,德克萨斯侧孢短芽孢杆菌连续形成难以消除或灭活的孢子。可用 于灭活德克萨斯侧孢短芽孢杆菌和所得孢子的常用技术包括γ照射、高温高 压灭菌和其它极端处理。尽管γ照射在特定实体背景中有效消除孢子而不损 害BT肽,但工业界一般认为它既不实际也不划算。高压灭菌是另一种有效消 除孢子的方法,但该过程损害BT肽,如此使此方法变得不令人期望。

在工业环境中细胞灭活的最实际和划算的方法是BT肽能承受的短暂的 中等加热处理(如巴氏消毒法,例如70℃持续30分钟)和/或脱水。由于德克萨 斯侧孢短芽孢杆菌孢子对热处理相当有抗性(孢子能承受显著的胁迫水平, 如于100℃煮沸60分钟(表1),和脱水(表2)),因此德克萨斯侧孢短芽孢杆菌的 实际和/或划算的使用(如用于DFM)需要对中等温度和/或脱水敏感的孢子化 缺陷型菌株。本发明提供了可以使用对BT肽安全的技术(如巴氏消毒法、造 粒、冻干和/或干燥)来灭活的孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株, 其中灭活条件能够灭活营养细胞,而一般不灭活非野生型孢子。

可用于灭活营养细胞的技术的例子包括但不限于饥饿、温度休克(加热 如巴氏消毒法或低温如冷冻)、脱水/冻干/干燥(例如热干燥、冷冻干燥、喷雾 干燥、晒干、风干和/或真空干燥)、pH变化(例如酸化或碱化)、醇处理、用 去污剂处理、过滤、用金属如银和锌处理、压力处理(如高压加工)、酶促破 坏(例如用溶菌酶处理)、机械力(例如超声处理)、用季铵阳离子处理、氧化 剂(例如氯氧化物、过氧化氢、次氯酸盐和/或臭氧)、盐化、使用射频(RF)能 量的(脉冲)电场处理、微波处理、电子束处理、辐射(例如UV、X射线或γ射 线)和/或其组合。在一个例示性实施方案中,可以使用这些技术中的一种或 多种来灭活本发明的孢子化缺陷型细胞。

据发明人所知,没有出版物记载满足被认为是灭活DFM政府管理标准 的、胁迫存活率<10-6、<10-7、<10-8或<10-9的孢子化缺陷。例如,在学术出 版物中,10-2的芽孢杆菌胁迫存活率称作孢子化缺陷型(LEE等2001);而已公 告的美国专利4,302,544、4,450,235,4,450,236、4,465,773、6,284,490和7,655,452 中的方法仅可以生成具有10-7级的胁迫存活率的孢子化缺陷型(“不生孢子的 (asporugenous)”或“不产生芽胞的(asporugenic)”)芽孢杆菌菌株。因此,似 乎缺少生成胁迫存活率<10-9的具有孢子化缺陷的芽孢杆菌菌株的技术。考虑 到由于以下两个原因使最有力的基因删除方法不是合适的选项(并且唯一可 用的诱变方法是化学方法,其通常引起沉默或“泄漏”点突变)的事实,很 需要创建这类技术。第一,德克萨斯侧孢短芽孢杆菌是一种非遗传易处理的 生物体,而且无法实施基因删除。第二,所得基因敲除菌株会是经遗传修饰 的生物体(GMO),其在如欧盟等地区中在人用食品中是被禁止的。在另一个 例示性实施方案中,灭活方法足以将依照本发明的孢子化缺陷型菌株的存活 率降低至小于约1x10-4、小于约1x10-5、小于约1x10-6、小于约1x10-7、小 于约1x10-8或小于约1x10-9,但其中灭活方法不足以将有孢子化能力的 PTA-5854的存活率降低至低于约3.3x10-1或低于约4.3x10-1。

实施例1

如下是进行分离PTA-5854孢子化缺陷型突变体的尝试。用EMS诱变了 PTA-5854细胞,然后将其铺板到LB-琼脂上。对约50,000个菌落筛选了对于 75℃处理1小时的敏感性,并分离出42个温度敏感性候选菌株。将这些初始 候选菌株进行了菌落纯化并再测试热敏感性。在液体LB培养基中于37℃将 PTA-5854菌株和温度敏感性候选菌株培养了3天。然后,将细胞以100μl等分 试样分配到无菌微量离心管中,并于多个温度(75、70、65、60、55、50或 37℃)温育了不同长度的时间(5、15、30或60分钟)。将经处理的细胞铺板到 LB-琼脂上,并于37℃过夜温育以测定铺板效率。以热休克后的铺板效率除 以无热休克于37℃的铺板效率计算了热休克处理后的存活率。

在初始的42个分离物中,确认了数个温度敏感性突变体。菌株B7显示最 佳的温度敏感性表型(表1)。于50℃短暂的5分钟处理产生了8.1x10-7(约1x 10–6)的存活率,而更高的温度和更长的温育并未显著降低存活率。就使用德 克萨斯侧孢短芽孢杆菌作为DFM的目的而言,此细胞灭活水平被认为不够充 分。对PTA-5854的重复诱变和突变体分离并未生成具有比B7更好的温度敏 感性表型的菌株。据推断,超过一处突变可能对更坚实的温度敏感性表型(从 而允许更有效的细胞灭活)是必需的。然而,对B7的诱变未产生具有改善了 的温度敏感性表型的突变体,这可能是由于B7(相对于亲本PTA-5854)的不佳 健康状况所致。

表1:德克萨斯侧孢短芽孢杆菌细胞(作为2天龄LB培养物)的温度敏感性

从土壤样品分离到了一个新的细菌菌株(MYG11,登录号PTA-12310)。 对此菌株的S16rDNA测序显示,它与PTA-5854是同一物种的,但就热处理 而言拥有显著不同的表型。MYG11于37℃在LB培养基中快速生长,并且它 显示对高温的初级敏感性或孢子化缺陷。于50℃处理5分钟产生了3.5x10-3的存活率(表1)。于是,对MYG11进行了诱变,并对约50,000个菌落进行了目 标为展现升高了的温度敏感性的突变体的筛选。通过此方法分离出至少3种 突变体MYG107(登录号PTA-12309)、MYG110(登录号PTA-12308)和 MYG113(登录号PTA-12307),并发现其显示严重的孢子化缺陷。与PTA-5854 和B7形成鲜明对比,于50℃的温度处理5分钟对于MYG107、MYG110和 MYG113产生了低于10-9的存活率。如此,本发明提供了在暴露于至少50℃ 的温度达至少5分钟时具有低于约10-8或约10-9的存活率的德克萨斯侧孢短芽 孢杆菌菌株。

MYG107在对数期LB培养物中具有约45分钟的倍增时间,并对其进行了 进一步的表征。鉴于MYG107、MYG110和MYG113的存活率处于或低于在 本实验中使用的培养物的检测限,据信MYG107、MYG110和MYG113在孢 子化中具有根本性缺陷,是高度孢子化缺陷型菌株,这得到以下事实的进一 步支持,即据信来自MYG107的BT产量与PTA-5854相比超过3倍。

此外,典型的侧生内生孢子在几乎所有阶段的PTA-5854培养物中都可被 检出。这类侧生内生孢子没有在任何阶段的MYG107培养物中观察到,这支 持MYG107在孢子形成中具有根本性缺陷的观点。此外,MYG107展现出对 其它灭活营养细胞而非孢子的胁迫类型的敏感性(表2)。

表2:德克萨斯侧孢短芽孢杆菌细胞(以2天龄LB培养物)的胁迫敏感性

在冷冻敏感性测试中,在液体LB培养基中于37℃将野生型PTA-5854菌 株和MYG107培养了2天,然后将细胞以100μl等分试样分配到无菌微量离心 管中,并于-20℃温育了60分钟(或在形成冰后)。将经冷冻处理的和未处理的 细胞铺板到LB-琼脂上,并于37℃温育过夜以测定铺板效率。计算了冷冻的 存活率(经处理的细胞的铺板效率/未处理的细胞的铺板效率)。与PTA-5854 约4.2x10-1的存活率相比,冷冻对于MYG107产生了约小于10-9的存活率。

在酸化敏感性测试中,在液体LB培养基中于37℃将野生型PTA-5854菌 株和MYG107培养了2天,然后将细胞以100μl等分试样分配到无菌微量离心 管中。通过向每份等分试样添加10μl1MHCl将pH调节至约1.0(于室温),然 后立即通过添加10μl1MNaOH来中和。将经酸处理的和未处理的细胞铺板 到LB-琼脂上,并于37℃温育过夜以测定铺板效率。与PTA-5854约4.5x10-1的存活率相比,酸化对于MYG107产生了约小于10-9的存活率。

以类似的方式实施了碱化敏感性测试,只是首先添加NaOH以将pH调节 至13.0,然后添加HCl进行中和。与PTA-5854约5.1x10-1的存活率相比,碱 化对于MYG107产生了约小于10-9的存活率。

以类似的方式实施了醇敏感性测试,只是添加丁醇至1%(v/v)。与 PTA-5854约5.6x10-1的存活率相比,丁醇处理对于MYG107产生了约小于10-9的存活率。

以类似的方式实施了去污剂敏感性测试,只是添加SDS至1%(v/v)。与 PTA-5854约3.3x10-1的存活率相比,SDS处理对于MYG107产生了约小于10-9的存活率。

以类似的方式实施了氧化敏感性测试,只是添加过氧化氢至1%(v/v)。 与PTA-5854约3.3x10-1的存活率相比,过氧化氢处理对于MYG107产生了约 小于10-9的存活率。

在溶菌酶敏感性测试中,在液体LB培养基中于37℃将野生型PTA-5854 菌株和MYG107培养了2天,然后,将细胞以100μl等分试样分配到无菌微量 离心管中。将溶菌酶添加至1mg/ml的浓度,并将细胞于37℃温育60分钟。将 经溶菌酶处理的和未处理的细胞铺板到LB-琼脂上,并于37℃温育过夜以测 定铺板效率。与PTA-5854约7.2x10-1的存活率相比,溶菌酶处理对于MYG107 产生了约小于10-9的存活率。

在压力敏感性测试中,在液体LB培养基中于37℃将野生型PTA-5854菌 株和MYG107培养了2天。将培养物的一部分在弗氏加压器中于室温加压处 理(以40,000psi)3次。计算了弗氏压碎的存活率(经处理的细胞的铺板效率/ 未处理的细胞的铺板效率)。与PTA-5854约1.5x10-1的存活率相比,弗氏压碎 处理对于MYG107产生了约小于10-9的存活率。

在饥饿敏感性测试中,在液体LB培养基中于37℃将野生型PTA-5854菌 株和MYG107培养了7天。计算了对于饥饿的存活率(第7天的铺板效率/第2天 的铺板效率)。与PTA-5854约3.3x10-1的存活率相比,饥饿处理对于MYG107 产生了约小于10-9的存活率。

在脱水敏感性测试中,在液体LB培养基中于37℃将野生型PTA-5854菌 株和MYG107培养了2天,然后,将细胞以100μl等分试样分配到无菌微量离 心管中,并于室温进行迅速真空处理60分钟。将经真空干燥的细胞(用100μl 无菌蒸馏水再水合)和未处理的细胞铺板到LB-琼脂上,并于37℃温育过夜以 测定铺板效率。计算了真空干燥的存活率(经处理的细胞的铺板效率/未处理 的细胞的铺板效率)。与PTA-5854约3.9x10-1的存活率相比,真空干燥对于 MYG107产生了约小于10-9的存活率。

在另一项脱水敏感性测试中,将野生型PTA-5854菌株和MYG107细胞接 种到了分别含有10%和20%大豆粉的生长培养基中。在含有10%大豆粉的培 养基中而非在含有20%大豆粉的培养基中两种菌株都实现了细胞生长。用无 菌蒸馏水稀释(1:1)20%大豆粉培养基对PTA-5854而非MYG107恢复了生长, 这表明孢子化缺陷型德克萨斯侧孢短芽孢杆菌菌株的细胞需要环境中至少 约80%的含水量水平来维持存活力。

MYG107、MYG110和MYG113的特征以及创造这类菌株的方法允许将 德克萨斯侧孢短芽孢杆菌的孢子化缺陷型菌株用作经济上可行的DFM。具体 地,本发明的菌株乃为使用与灭活野生型德克萨斯侧孢短芽孢杆菌细胞不相 容的多种灭活方法(例如巴氏消毒法和/或脱水)而准备,其提供可以用作经济 上可行的DFM的菌株。

灭活的德克萨斯侧孢短芽孢杆菌细胞被与纯化肽进行了比较以证明灭 活的细胞与纯化的肽同等发挥功能。BT肽由活跃分裂的德克萨斯侧孢短芽孢 杆菌细胞生成,表明BT肽不是响应饥饿而生成的“次级代谢物”。在LB培养 物中,106个BT细胞含有约10微克BT肽。换言之,1011个BT细胞会含有约1 克BT肽。

测定了灭活的德克萨斯侧孢短芽孢杆菌细胞中的BT肽浓度,并在研究中 使用了与期望的纯化肽浓度相当的灭活细胞量。用具有不同浓度的纯化BT 肽或灭活德克萨斯侧孢短芽孢杆菌细胞的食料对新孵化的鸡喂养了2天。在 第3天,给鸡接种了侵入性肠沙门氏菌肠炎血清变型(Salmonellaenterica serovarEnteritidis)(SE)菌株。在第4天,将鸡处死。收获了肝和脾并均质化。 测定了匀浆物中SE菌株的存在或缺失。未接受BT肽或细胞的禽被检测到了 60%的SE感染率,接受了12ppm纯化肽或与12ppm相当的灭活细胞量的禽的 SE感染率,对于纯化肽为28%和52%,而对于灭活细胞为35%。接受了24ppm 或相当的灭活细胞的禽的感染率,对于纯化肽为36%和16%,对于灭活细胞 为25%。接受了48ppm或相当的灭活细胞的禽的感染率,对于纯化肽为27% 和24%,对于灭活细胞为10%。

灭活细胞中未纯化的BT肽在防止沙门氏菌器官侵入中展现出了与纯化 的蛋白质相同的体内功效。因此,灭活的德克萨斯侧孢短芽孢杆菌细胞等同 于纯化肽。

实施例2

为了评估兽药级BT肽(包括含有免疫调控性BT阳离子肽的灭活的德克 萨斯侧孢短芽孢杆菌细胞)在防止由产气荚膜梭菌(Clostridiumperfringens) (A型)的口服攻毒引起的坏死性肠炎中的效果,在受攻毒的禽中取得了坏死 性肠炎病变和/或死亡率。

在实验1中,饲料中投递约24ppm和约48ppm兽药级BT肽将坏死性肠炎 病变评分从2.3分别降低到了0.6和0.5,将死亡率从17%分别降低到了6%和 7%,将产气荚膜梭菌从肠道的收回从3.60分别降低到了2.36和2.48(log10cfu/g)(p≤0.05)。

在实验2中,饲料中投递约24ppm和约48ppm兽药级BT肽将坏死性肠炎 病变评分从2.8分别降低到了0.8和0.6,将死亡率从21%分别降低到了5%和 1%,将产气荚膜梭菌从肠道的收回从3.12分别降低到了1.88和1.31(log10cfu/g)(p≤0.05)。

这些结果证明了口服投递的灭活德克萨斯侧孢短芽孢杆菌细胞在预防 肉鸡中的坏死性肠炎中是有效的。

结果:

表3:通过口服投递灭活的德克萨斯侧孢短芽孢杆菌细胞来预防肉鸡中的坏 死性肠炎

1以24和48ppm表示的处理组是从第1天起施用的BT浓度。

2病变评分以处理子集*n=25)的均值及均方差表示。

3死亡率以与阳性对照(对照饮食)相比的发生率数据表示(p<0.05)。

4Log10cfu/g以处理子集(n=10)的均值表示。

A-B没有共同上标的同一栏内的均值显著不同(p<0.05)。

材料和方法:

在孵出日,从Sanderson农场(Bryan)获得了雏鸡,并将其随机分成实验组, 并置于有清洁的松木刨花垫料的各个平饲围栏(floorrearingpens)中。所有动 物均被提供了可随意取用的、满足或超出NRC准则的基于全麦的商业雏鸡初 始食料和水。从第1天到第24天,给禽喂养了对照食料、或含有24ppm或48ppm 兽药级BT肽的食料。

在此研究中使用了从弗吉尼亚、北卡罗来纳和佐治亚的活跃现场病例 (activefieldcase)获得的多个产气荚膜梭菌(A型)分离菌株。在巯基乙酸盐 (thioglycollate)培养基中培养了分离菌株。使用了无菌巯基乙酸盐培养基来接 种鸡;一日一次通过口服强饲(1.5ml/攻毒)对禽攻毒了3天(孵出后第17-19天)。

将为攻毒生成的每批产气荚膜梭菌连续稀释,并在SFP琼脂板上铺板, 然后置于37℃培养箱中24小时。然后,对板计数并记录,以确定给予禽的产 气荚膜梭菌量。为了定量测量产气荚膜梭菌的回收,取出了一段小肠;这块 小肠在麦克尔憩室(Meckel’sdiverticulum)头端。一旦取出肠,将其置于具有 10ml巯基乙酸盐的WhirlPak袋中,并消化了30秒。然后,取出了0.5ml并置 于无氧的巯基乙酸中,连续稀释并置于SFP琼脂上。按照标签说明书制备SFP 了琼脂。此培养基是一种覆盖培养基,在实验前数天倾铺了第一层,并温育 以测试污染。在将样品铺板后,在无氧条件下在尸检当天铺设了第二层。然 后,将板转移到了Coy盒中,并将板温育24小时并在次日进行了审视。

为了评估与NE有关的总体病变,检查了小肠的空肠和回肠。使用了下 列标准来记录病变评分:

0=无总体病变,正常的肠外观。

1=薄壁的或脆性的、灰色外观

2=薄壁的、病灶性坏死,灰色外观,产生少量气体。

3=薄壁的、相当大的坏死斑,气体充满肠,小血斑。

4=严重的大范围坏死,显著出血,肠中大量气体。

本研究证明灭活的德克萨斯侧孢短芽孢杆菌细胞在细菌攻毒前预备活 化动物免疫系统方面的有效性,而且预活化了的免疫系统对这类攻毒响应更 快或更有效。

实施例3

兽药级BT(灭活的德克萨斯侧孢短芽孢杆菌细胞)实际上是非抗生素的, 尽管细胞携带天然的BT肽,其在用体外测定法测量时表现为具有抗生素活 性。然而,据信体外测定法产生了假相。BT在体内不起抗生素作用,而是据 信它增强/预备活化动物的免疫系统,这解释了为何在接受BT肽或细胞处理 的动物中有益和共生的细菌水平保持相对不受影响但有害细菌的水平降低。 这还解释了为何以96ppm口服投递兽药级BT(在灭活的细胞中)对使用体外 测定法表现对BT敏感的、有益和共生肠道细菌在体内没有影响(见实施例4)。

实施例4

本实验的目的是评估在肉鸡中在有或无巨型艾美球虫(Eimeriamaxima) 攻毒胁迫的情况下,以96ppm的高水平喂养兽药级BT(含有BT肽的灭活的德 克萨斯侧孢短芽孢杆菌细胞,称为“BT肽”)的安全性。此喂养试验以两个 前后分开的试验实施。

材料和方法:

在相隔约1个月的分开的两天在商业化孵化场中孵出了Ross508型雏鸡。 在这两项试验中,将66只公鸡运送到了鸡房中。对鸡进行了称重,并以4或5 只的组笼养。在到达鸡房后第13天,将禽移动到了各自具有两个围栏的4间 房间,每个围栏圈养8只禽。每间房间中有一个对照组和一个BT肽组。在将 禽移动至围栏后,将巨型艾美球虫卵囊(对于对照禽为自来水)用管饲法喂到 鸡的嗉囊中。

温度和相对湿度被一天24小时自动测量。在第一个和第二个实验日期 间,温度超过30℃,然后以每天约0.5℃降低,直至其达到20℃。光照程序 为贯穿整个实验的每天24小时光照。

表4:每种处理的禽量

对照 BT肽 试验1 32+2只额外的禽 32 试验2 32+2只额外的禽 32

食料由小麦、大豆粉、大麦、油菜籽粗粉、油菜籽油、维生素、矿物和 氨基酸组成。未改性的饲料自AgrifoodResearchFinlandMTT,Jokioinen获得。 该饲料为碎末形式,并且未添加球虫抑制剂或酶。向饲料添加了兽药级BT 至96ppmBT肽浓度的当量。处理组贯穿整个实验获得了相同的食料。提供 了可随意取用的饲料和水。

表5:饮食组成

饲料1=对照饲料

饲料2=对照饲料+每kg0.096g肽当量的兽药级BT

4间房间的3间中的所有禽在第13天接受了巨型艾美球虫卵囊,而第4间 房间是用于未攻毒禽的对照房间。剂量是每只鸡约25,000个形成孢子的卵囊。 将卵囊在2ml自来水中用管饲法喂到嗉囊中。艾美球虫卵囊从Veterinary LaboratoriesAgency,Surrey,UnitedKingdom购买。一间房间没有攻毒。

在到达时、6、13、17、(试验2中为18和19)和20日龄时以笼为基础对禽 进行了称重。在6、13和20日龄时测量了饲料摄取。以笼或围栏为基础测量 了饲料摄取。至少一天两次检查了禽的状况。记录了死亡率和死禽的重量。 将病得或受损伤很严重的禽人道地实施安乐死。在20日龄时,通过颈脱位杀 死了鸡,并对回肠和盲肠食糜进行了取样,得到了每种处理和试验32份食糜 样品。

对食糜样品的微生物分析以及细胞裂解和分离染色体DNA

通过定量PCR分析了回收的细菌DNA,其允许计算出不同细菌组的量。 分析了以下细菌:双歧杆菌(Bifidobacteriumspp)、大肠杆菌、乳杆菌 (Lactobacillusspp)菌和产气荚膜梭菌组I簇。对于DNA的测定,使用了一式三 份样品,并计算了每克新鲜食糜重量的均值细菌数量。

通过流式细胞术测定了食糜样品中的总细菌细胞计数。

仅对第一项试验实施了艾美球虫病变评分,并且由无偏见的专家鉴定了 病变。对空肠的最后部分和整个回肠做出了艾美球虫病变的鉴定。依照0-4 的计分尺度中对病变进行了评分,其中0指示正常的肠道,而4指示严重受损 的肠道。

从来自每个集合的两只禽中测量了囊的重量。仅对第二项试验对囊进行 了称重。

对每只禽小肠(空肠+回肠)的总长度进行了测量。

计算了T检验并用于衡量处理间的统计学差异。

结果:

艾美球虫攻毒显著降低了对照禽的生长。然而,补充有BT肽的食料指示 相比于对照组,在未经攻毒的和经艾美球虫攻毒的组中禽的生长略微升高(图 2)。20日龄时,BT肽组中的禽似乎略重,但不能确认出统计学显著的差异(图 3)。如果从第一项和第二项试验分开检查未经攻毒禽在20日龄的重量,那么 在与对照组相比时,补充有BT肽的食料显著提高了第二项试验中的禽重量 (p=0.026)。

在艾美球虫攻毒期间(在13日龄和20日龄之间),在与对照组相比时,饲 料转化率(FCR)在BT肽组中得到了改善(对于第一项试验为p=0.02,且对于第 二项试验为p=0.006)(图4)。

艾美球虫攻毒如预期的那样增加了小肠的长度。小肠长度增加可能指示 由于降低的营养物吸收所导致的补偿性生长。然而,在处理间在小肠长度的 平均长度中没有统计学显著出差异(图5)。

法氏囊是仅在禽中发现的上皮和淋巴样器官。囊是造血的部位,并且是 形成B细胞必需的专门器官。囊作为泄殖腔原肛区(proctadaelregion)的背憩 室(dorsaldiverticulum)形成。对于第二项试验,将囊进行了称重,并与禽活 体重量进行了比较。在与禽活体重量相比时囊重量的比例表现为在未经攻毒 的禽中比经艾美球虫攻毒的禽中略大。在补充有BT肽的组和对照组间未注意 到差异。然而,未经攻毒的禽的囊表现为在对照组中比在BT肽组中略大(图 6)。

巨型艾美球虫主要感染小肠的中部区、空肠远端和回肠近端。未检测到 高感染得分,很可能是因为在巨型艾美球虫接种后第7日实施病变评分时已 经度过感染峰期。巨型艾美球虫的平均生命周期介于5天和6天之间。平均评 分在补充有BT肽的禽中更低(p=0.098),作为更快的恢复或降低的炎症的指证 (图7)。

在两项试验中食用任一种食料在未经攻毒的禽中都没有死亡。用艾美球 虫攻毒的禽的死亡率相对较高。在第一项试验期间,死亡率在对照组中最高, 在BT肽组中最低(p=0.011),而在第二项试验中该情况逆转。当组合这两项试 验的死亡率时,总体死亡率表现为在BT肽组中比在对照组中略低,但差异不 显著(表6)。死亡率在试验1而不是试验2中的处理间不同的原因可能是,在试 验2中,将病得非常严重的禽迅速实施了安乐死。在试验1中,将零只来自BT 肽组的禽和来自对照饲料组的三只禽在试验结束前处死。在试验2中,将三 只来自BT肽组的禽和一只来自对照饲料组的禽在试验结束前处死。

表6:死亡率(%)

处理 试验1 试验2 来自两项试验的死亡率 对照 23.5 11.8 17.6 BT 3.13 15.6 9.4

食糜干物质的百分比是一个重要的背景参数,因为它指示肠道健康和微 生物群平衡。艾美球虫攻毒对禽造成了腹泻,并降低了回肠和盲肠食糜的干 物质含量。这些结果表明,经攻毒的禽有了一些肠道健康问题,而且艾美球 虫攻毒影响肠微生物群平衡。BT肽对经艾美球虫攻毒的和未经攻毒的禽的回 肠干物质的影响不显著(图8)。

盲肠的食糜干物质含量在经攻毒的禽中比在未经攻毒的禽中低。已经通 过BT肽补充将经艾美球虫攻毒的禽的盲肠干物质朝正常值略微增加(图9)。

微生物的总数目在盲肠中比在回肠中高。艾美球虫攻毒在对照组和BT 肽补充组两者中都增加了回肠中微生物的总数目。盲肠中的微生物数目由于 艾美球虫攻毒而在这两项试验和这两个处理组中都减少。未能检测到在任一 试验中两种饲料处理之间的统计学上显著的差异(图10和11)。

在这两项试验期间,艾美球虫攻毒倾向于在对照饲料和BT肽补充组两者 中、在回肠食糜和盲肠食糜两者中都增加了乳杆菌和双歧杆菌的数目。在试 验2中,在BT肽组中统计学非显著性趋向回肠中降低了的细菌水平,但在试 验1中,在BT肽组中球形梭菌(C.coccoides)-直肠真杆菌(E.rectal)组的回肠水 平升高(图12)。在未经攻毒的禽中没有观察到差异(图13和15)。盲肠的细菌 含量未受到BT影响(图14和15)。在任一试验中均未检测到沙门氏菌。总体而 言,这些微生物群分析表明,以当前剂量,BT肽对天然的(非病原性)细菌群 体具有很小的影响或没有影响,这指示BT肽被接受处理的动物完全耐受,并 且没有展现出抗生素效应。

本实验证明,在补充有96ppm的BT肽的鸡中未检测到对天然或期望肠道 细菌的不利影响。在与对照组相比时,FCR在经艾美球虫攻毒的肉鸡中在补 充有用BT肽的组中得到了显著改善(对于第一项和第二项试验分别为p=0.02 和p=0.006)。在与对照组相比时,第二项试验中的禽重量通过补充有BT肽的 食料得到了显著(p=0.026)改善。相比于对照组,第一项试验中经艾美球虫攻 毒的雏鸡的死亡率通过BT肽处理得到了显著(p=0.011)降低。此外,给饲料补 充BT肽降低了受感染组织中的平均病变评分(p=0.098)。

实施例5

本研究是为了测试兽药级BT(灭活的德克萨斯侧孢短芽孢杆菌细胞)作 为猪用饲料添加剂的用途(对重量增加、沙门氏菌定殖和白细胞功能的影响)。

材料和方法

实验设计。在断奶时(17-21日龄),将仔猪以5只个体的组随机置于围栏 中,围栏有加热灯提供额外温暖。给仔猪提供了可随意取用的满足国家研究 委员会(1994)准则的水和未加药的I阶段食料。在断奶后第0、3、5和7天记录 了体重。将猪放入4个实验组中。组1和2各包含用对照平衡的、未加药的、 基于玉米和大豆粉的食料喂养的5只猪,所述饮食分别含有0ppm或12ppm(重 复1)或24ppm(重复2、3)BT肽。给组3和4喂养含有0或12ppm(或24ppm)BT 肽的食料,但对这些组中的猪以鼠伤寒沙门氏菌(Salmonellatyphimurium)(ST) 攻毒。贯穿实验给猪饲喂了这些食料。BT肽是以灭活的德克萨斯侧孢短芽孢 杆菌细胞的形式作为预混合物投递的。

肠沙门氏菌鼠伤寒血清变型(SalmonellaentericaserovarTyphimurium) (ST)。使用了一个肠沙门氏菌鼠伤寒血清变型(ST)分离菌株(National VeterinarySciencesLaboratory[NVSL]),Ames,IA(PT24),并且其是针对羧 苄青霉素和新生霉素(CN)抗性选择的菌株,并于4℃在TSB或胰蛋白酶大豆 琼脂上传代。采用了亮绿琼脂(BrilliantGreenAgar)(BGA),一种用于沙门氏 菌的选择性培养基来培养实验研究中的抗性分离菌株,其含有100μg/ml羧苄 青霉素和25μg/ml新生霉素(即BGA+CN)以抑制其它细菌的生长。从于41℃ 传代18至24小时(TSB+CN)培养物制备了用于攻毒的接种物,并在无菌PBS (pH7.2)中进行了稀释。制备了(1x109cfu/ml)的库存溶液,用于攻毒实验。

在断奶后第3天,通过口服强饲对攻毒组中的仔猪施用了107cfuST。在 攻毒后5天(断奶后7天),对猪实施了安乐死,并在无菌条件下收获了来自每 只猪的1.0g盲肠内容物样品。将盲肠样品进行了连续稀释,并在亮绿琼脂 (BGA)板上铺板。然后,将板于37℃温育了24小时,并测定了每克盲肠内容 物的ST的cfu数目。另外,使用已确立的方法针对ST的存在进行了培养组织 (肝、脾、回盲肠淋巴结、盲肠和直肠)。通过生化测试在三重糖琼脂和赖氨 酸铁琼脂上确认了疑似沙门氏菌菌落,并通过使用沙门氏菌O抗血清进一步 确认为ST。以每克盲肠内容物的log10沙门氏菌表示沙门氏菌菌落板计数。

断奶猪中的先天性免疫应答。使用密度梯度分离法分离了白细胞,如之 前描述的(KOGUT等2010)。进行了功能性测定法以评估从接受不同处理的猪 分离出的嗜中性粒细胞能力。调查了嗜中性粒细胞使用的两种微生物杀伤方 法。具体地,测定嗜中性粒细胞脱粒(从嗜中性粒细胞内部颗粒释放杀细菌 性产物)和氧化性爆发(杀细菌性反应性氧种类(ROS)的生成)。这些测定方法 简述如下。

功能性测定。如(HE等2003)所述,通过将DCFH-DA氧化成荧光DCF测 量了白细胞氧化性爆发。在测量前用佛波醇A-豆蔻酸13乙酸盐(phorbol A-myristate13acetate)(PMA[2.0μg/ml],Sigma)或RPMI1640培养基刺激了白 细胞60分钟。将细胞置于96孔板中,并使用了GENiosPlus荧光微板读数器 [(485/530nm)TecanUSInc.,ResearchTrianglePark,NC]来测量荧光。

统计学分析。使用统计学软件(JandelScientific,SanRafael,CA,USA)对数据实施了统计学分析。会使用StudentT检验测定实验组间的差异。P≤0.05被视为统计学显著的。

结果:

从下文呈现的数据看,看来喂养BT细胞的猪比喂养对照饮食的猪具有更 大的平均每日重量增加(ADG),即使在存在沙门氏菌感染的情况下(在24ppm 时)(表7)。

表7:平均每日增重。重复3,24ppmBT。按磅计的值(lb)。对每个时间点合 并在断奶后第0、3、5和7日从各只猪收集的重量数据。数据代表平均增加± 标准偏差。

如在直肠拭样数据中显示的,观察到了ST粪洒落的一些减少(表8)。在 重复1中,除第5天外,在12ppmBT时在粪洒落方面未看到差异。在重复2中, 除了第4天外,对照和24ppmBT在ST脱落方面是类似的,其中BT24ppm组比 对照组具有更多的阳性猪。在重复3中,在所有测量日,24ppmBT组比对照 组具有更少的洒落ST的猪。在重复3中,在感染后追踪猪达7天而非如在重复 1和2中的5天。

表8:每日直肠拭样数据

总体上与对照猪相比,喂养肽的猪在器官(淋巴结、肝、脾)中具有更少 的沙门氏菌,但在肠组织(回肠(除重复3外)、盲肠、直肠)中未显示减少。在 重复1中,12ppmBT组在肝和脾两者中具有较少的ST阳性猪,但ST的回收在 淋巴结和盲肠以及直肠中是相同的(表9)。在重复2中,BT组具有较少的在所 有组织(除了盲肠)中呈阳性的猪。在重复3中,BT组中较少的猪在淋巴结、 脾、回肠、盲肠和直肠中在ST方面呈阳性。由于ST的回收低,定殖数据(CFU) 是不确定的(数据未显示)。看来该肽对断奶猪中的沙门氏菌侵入和定殖具有 一些正面影响。

表9:从组织分离的沙门氏菌

在喂养BT肽的第3、5和7天后,来自喂养BT孢子化缺陷型菌株的猪的白 细胞比来自对照猪的白细胞具有显著更高的氧化性爆发响应(表10) (P<0.05)。

表10:猪白细胞氧化性爆发活性。贯穿研究期给猪喂养相应饮食(24ppmBT)。 在断奶后3、5和7天对猪采血。数据代表从10只猪/组合并的两次重复。数据 以均值±标准偏差表示。RFU=反射荧光单位(以1000计)。

处理 第3天 第5天 第7天 对照 0.8±0.1 1.2±0.1 1.5±0.3 肽 1.5±0.2 1.7±0.3 2.2±0.2 对照PMA 23.0±1.3 14.2±1.0 30.4±3.3 肽PMA 39.2±4.8 38.0±3.5 40.5±5.3

该数据表明,灭活的德克萨斯侧孢短芽孢杆菌细胞是有效的猪用免疫调 控剂,其对体重增加以及肠和组织中的沙门氏菌载荷(carriage)具有潜在的正 面影响。

孢子化缺陷型德克萨斯侧孢短芽孢杆菌细胞及用于有效且划算灭活和使用它们的方法.pdf_第1页
第1页 / 共32页
孢子化缺陷型德克萨斯侧孢短芽孢杆菌细胞及用于有效且划算灭活和使用它们的方法.pdf_第2页
第2页 / 共32页
孢子化缺陷型德克萨斯侧孢短芽孢杆菌细胞及用于有效且划算灭活和使用它们的方法.pdf_第3页
第3页 / 共32页
点击查看更多>>
资源描述

《孢子化缺陷型德克萨斯侧孢短芽孢杆菌细胞及用于有效且划算灭活和使用它们的方法.pdf》由会员分享,可在线阅读,更多相关《孢子化缺陷型德克萨斯侧孢短芽孢杆菌细胞及用于有效且划算灭活和使用它们的方法.pdf(32页珍藏版)》请在专利查询网上搜索。

提供了新颖的菌株及其使用方法。具体地,含有孢子化缺陷型短芽孢杆菌(Brevibacillus)菌株的食物和其它口服产品或疗法,其在被对受试者施用时能抑制或减少受试者中的病原体数目并改善受试者的健康状况。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 >


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1