本发明涉及制备高分子聚合体的聚合反应装置,更具体地说,涉及可以均匀地把聚合反应热去除或者可以均匀地加热聚合反应液而且活塞滑动(ピストンフロ-)性良好的连续聚合反应装置。 制备高分子量的聚合体的方法有各种不同的方法,但是最近从采用封闭系统的低公害型,省资源和节能突出,而且还易于连续生产系统化等角度出发,已经开始对块状聚合法进行重新评价,并广泛地加以采用。
可是,这种块状聚合法在低聚合的初期中,其反应液的粘度一般较低,容易处理,然而随着聚合反应的进行,由于聚合系统内的粘度以几何级数增大,故而需要特别小心地进行处理。然而,一般来说,聚合体如果在聚合反应时的温度随时间的变化不同,则聚合体的分子量分布也随之不同。例如,如果聚合系统内存在滞留的反应液或者聚合反应的热量去除不均匀,则难以获得质量稳定的聚合体。因此,对于这种聚合系统内呈高粘性的聚合法来说,以往一直试图研制以近于不使滞留部分产生的活塞移动的方式,而且可均匀地去除聚合反应热或者可均匀地使聚合反应液加热的聚合反应装置,还以此为目的提出了种种的方案。
例如,美国专利第2,727,884号揭示了一种方法,即由具有环绕的室、横截面为方形的容器;多段的搅拌浆叶,它安装在以轴向贯穿所说的容器内的转轴上;和位于这些各段搅拌浆叶之间,且与上述的环绕的室连通连结,并相互平行配置的多根热交换管构成的装置,并配置在与上下邻接的其他段的热交换管相互成直角相交的方向上,并通过自上述的环绕的室把制冷剂通入上述的各根热交换管中,以去除搅拌下流下来的聚合反应液的反应热。此外,特开昭第57-125,202号揭示了一种聚合装置,即在设置在圆筒型容器内部的转轴上以其轴向安装有多片双列螺旋带型搅拌浆叶,并且在其各片搅拌浆叶之间设有具有分隔效果的挡板或者立式多管式热交换器。
可是,由于前者的方法中是利用平行配置的多根管子作为去除热量的手段,故而传热面积不可能很大,另外,在搅拌不充分的情况下,在聚合体的流向上会产生格子状偏流(沟流),或者易产生滞留,从达到所考望的活塞滑动性和均匀地去除热量来看,也不一定能得到满足。而在后者的情况下,问题在于用挡板和立式多管式热交换器不可能使聚合反应液的单位容积的传热而积达到足够大。
本发明的目的在于提供一种活塞滑动性良好而且聚合反应液的单位容积的传热面积大,均匀地去除热量或者加热效果好的聚合反应装置。
本发明的另一个目的在于提供一种作为用于块状聚合法的反应装置而特别有用的聚合反应装置。
即,本发明的聚合反应装置是这样构成的:它由以下部分构成,在两端部设有聚合反应液的入口和出口的立式筒状容器;在所说的容器内部以其纵向设置的转轴;在所说的转轴上以其轴向相互按一定的间隔安装的、以水平方向延伸的多段的搅拌浆叶;以及从上述容器的内壁凸出在上述各段的搅拌浆叶之间所形成的容器空间内,并在圆周方向上相互保持一定的间隙,同时在转轴的周围以放射状排列,在其内部设有自外壁部来的热介质的通路的多块板状传热体。其结构为从上述容器入口装入的反应液必须通过在多块板状传热体中间形成的间隙。
本发明的聚合反应装置最好形成以下结构即在该容器的外周设有热介质循环的水套,所说的水套中对应于各段的板状传热体的位置上设有分隔壁。以所说的分隔壁划分的各室与各块板状传热体之间相通连结,自热介质入口导入的热介质相互交替地流向各室与各块板状传热体之间,再自其出口流出。
另外,在上述容器内部设置的转轴,最好以其外径d与容器内径D之比(d/D)为0.3~0.6,更理想为由0.5左右的内部中空体形成。若转轴外径与容器内径之比(d/D)小于0.3,则容易在转轴的圆周上产生反应液的滞留部分。此外,由搅拌浆叶引起的剪切力在筒状容器截面的半径方向的内、外部分产生很大的差异、难以获得均匀的聚合反应和活塞滑动性,故不能令人满意。反之,若转轴外径与容器内径之比(d/D)大于0.6,则活塞滑动性变好,但是设备变大型化也不理想。
在上述转轴上安装的搅拌浆叶,若其可以使同一水平面内的反应液以不产生回混下进行搅拌,则它可以是任何形状的浆叶,例如板状、棒状、叶片状、角状、螺旋浆状等形状的浆叶,这些搅拌浆叶每隔一定的间隔,各设置一片或者多片并在多段上设置。对于聚合反应装置来说,搅拌不仅要防止由容器截面内的偏流引起的不均匀的流动和滞留,而且在例如当反应液为含有橡胶苯乙烯系单体等时,要使在预聚合阶段中的橡胶相与聚苯乙烯相的相逆转能高效率地进行,或者在给予和调节为防止主聚合阶段中的橡胶粒径的调节和橡胶的凝集所需的剪切力上也是必须的。
上述的各板状传热体其水平截面形状最好呈自容器的内壁部分向着接近转轴的方向的尖细状,据此,在水平方向上相互邻接的各板状传热体之间的间隙可保持一定。而且,把提高其强度和提高热交换效率作为目的,最好是在各板状传热体的内部以货架状地安装多块增强板,形成热介质的蛇行状通路。
本发明的聚合反应装置所适用的反应液有仅仅含有一种单体的反应液、含有二种以上的单体的反应液、或者含有一种或者二种以上的单体和一部分聚合体的反应液等等,例如苯乙烯、α-甲基苯乙烯等的苯乙烯系单体或含有聚丁二烯、苯乙烯丁二烯系橡胶等的苯乙烯系单体或为制备苯乙烯-丙烯腈共聚合体的单体混合物、或为制备苯乙烯-甲基丙烯酸甲酯共聚合物的单体混合物、或为制备含橡胶的苯乙烯-丙烯腈共聚合体的单体和聚合体的混合物、或为制备聚酰胺的单体、或为制备聚酯的单体、或者其他只要是可以进行块状聚合或者溶液聚合的反应液,则任何反应液也是可以的,再有,对可进行缩合聚合、加成聚合的反应液也是适用的。在溶液聚合反应时,最好使其为反应率在30%(重量)以下的溶液聚合反应。
根据本发明的聚合反应装置,由其容器入口处装入的反应液在其转轴与内壁的空间部分,在通过多个板状传热体之间所形成的间隙的时候进行热交热,特别通过增减其板状传热体的个数和纵向长度,可以任意地调节其传热面积。另外,因为可以使在轴向按一定的间隔以水平方向延伸的搅拌浆叶的各段间隔变狭,故而搅拌所要求的必要动力并不会显著地增加,而且,由于以放射状排列的板状传热群体,还可使其搅拌效果增大,可以达到均匀地去除热量或者加热的效果。此外,由于容器的各水平截面用以放射状排列的板状传热群体作均匀地分隔,故而不会产生由死区引起的滞留,上下方向上的体系内的反应液还显著地提高其活塞滑动性。
图1为有关本发明的一个实施例的聚合反应装置的纵向剖面图;
图2为以图1中的Ⅱ-Ⅱ线截取的剖面图;
图3为表示图1及图2中所示的板状传热体的局部剖面斜视图;
图4(a)和图4(b)为表示实验装置的示踪物的脉冲响应曲线的曲线图。
以下,将按附图中所示的实施例以及试验例,对本发明的聚合反应装置作更具体地说明。
图1至图3所示为本发明实施例中的聚合反应装置。图中符号1为立式的筒状容器,反应液的入口2设置在处于其上端的盖部中央的联接管的侧壁上,而含有尚未反应溶液的聚合体的出口3设置在处于其下端的底部中央的联接管的侧壁上,而且设有热介质的入口4以及出口5的水套6安装在外壁部分上。
在所说的筒状容器1中,反应液的入口2和出口3的位置也可以反向设置,把入口设置在下部,把出口设置在上部。另外,其安装位置也不限于上述的联接管的侧壁,例如还可以把入口及出口分别设置在盖部及底部。而且,所说的筒状容器1,除了可以借助于例如把法兰盘等设置在其上、下两端部上并使其多个相互连结等手段制成任意的长度之外,其截面形状可以呈圆形、四角形、多角形等适宜的形状,最好为圆形。
在上述筒状容器1的内部,最好在其中心部分设置以纵向延伸的转轴7,从其两端分别向上、下方向凸出的小直径轴8及9以能够旋转地保持在轴承部分10及11中,所述轴承安装在筒状容器1的盖部中央及底部中央处所设的各自的联接管上。其任何一端通过图中未画的减速器与电机连结。并由该电机带动旋转。而转轴7的外径d与筒状容器1的内径D之比(d/D)做成0.5,这样的设计使得对于半径方向的反应液的搅拌效果不产生差异。
在上述的转轴7上,装有从该轴到筒状容器1的内壁附近水平延伸的板状搅拌浆叶12,它是在轴向以一定的间隔,各一片或各多片,在多段的范围内倾斜地安装着。当转轴7为中空体时,若使各个搅拌浆叶12从其转轴7的内部水平地凸出固定,则在下述的板状传热体的存在下进行安装也容易。对本实施例来说,目的在于使反应液均匀地流入筒状容器1内,或者从筒状容器1内均匀地流出,则把适宜分散用的搅拌板13设置在从转轴7的上端及下端凸出的小直径轴8及9上。
上述筒状容器1的内壁上安装有多个板状传热体14,它自内壁凸出,并在上述各段的搅拌浆叶12之间所形成的容器空间内以圆周方向相互保持一定的间隙,而且它在转轴7的周围保持一定的间隙并以放射状排列。在这些板状传热体14的每个内部均以货架状相互不同地安装有试图提高强度和提高热交换效率的5块增强板14a,由此形成蛇行状的热介质通路。然而,为了使反应液能在保持活塞滑动性的同时又能平滑地通过各个板状传热体14间的间隙和其尖端与转轴7之间的间隙,希望这些间隙在其半径方向上不要存在过多的差异。为此,各个板状传热体14的水平截面形状形成从筒状容器1的内壁部分向着接近转轴7的方向呈尖细状,由此使水平方向相互邻接的各个板状传热体14之间的间隙保持一定,而且这些板状传热体14的尖端均接近转轴7。
设置在上述筒状容器1的外壁部分、且热介质循环的水套6中设有把所说的水套6内部以上、下方向划分成多个室的分隔壁16。由分隔壁16划分成的各个室和各个板状传热体14之间通过入口联接管17和出口联接管18连结成相通,由热介质的入口4导入的热介质交替流到各室与各个板状传热体14之间,并且由出口5流出。供给各个板状传热体14的热介质由于要把反应液的聚合热去除,故而为低温热介质,但是也可以拆除水套6的分隔壁,用另一种配管将各个板状传热体14之间直接连结成相通,使在各个板状传热体14中循环的热介质与在水套6中循环的热介质构成不同的系统。
以上说明了有关使聚合热去除的情况,本发明的聚合反应装置当然有时候也可适用于用热介质均匀地加热。
以下,为了评价本发明的聚合反应装置在连续处理时的混合特性,用上述实施例中所示的构造,制作由以下所述的尺寸构成的取合反应装置,使用糖水作为模拟液,按表1中所示,改变试验条件进行试验。
容器:内径(D) 1,100毫米,
高度 1800毫米,
转轴:外径(d) 500毫米,
转轴外径与容器内径之比(d/D):0.5,
搅拌浆叶:每段各设置2片或者4片,5段,
板状传热体:把纵向220毫米×横向230毫米×厚度(最大44毫米、最小25毫米)的尖细状的的46个传热体,以分别相互间隔25毫米置于各个搅拌浆叶之间的容器空间部分且以放射状设置在转轴的周围。
由泵使模拟液糖水从本装置在上部入口流入,以一定的转数使转轴旋转,模拟液向下方流下,再向供水箱返回以形成循环液流。
为了评价装置此时的混合特性,由泵从上部入口把模拟液和调整到相同粘度的示踪物注入,在出口测定其浓度,而且,使用完全混合槽列模型,算出混合槽列数来评价混合特性。所谓槽列模型就是由本装置的出口示踪物混合程度来判断,即在把等体积的槽型装置以直列连结时,按相当槽数N来表示在第几个槽型装置呈完全混合状态。因此,N=1时则相当于完全混合系统,而N=∞时则相当于完全活塞滑动。
由此所测定的结果示于表1。而试验No.2及N0.3时的脉冲响应曲线示于图4(A)及图4(B)。
图4中的横座标表示所有槽的平均滞留时间t与示踪物注入后所经过的时间t之比θ,纵座标表示注入示踪物之后瞬间向所有槽中混合扩散时的浓度Co与出口的示踪物浓度C之比Eθ。另外,N为相当的槽数,实线为根据由槽列模型所得的理论计算值绘制的线,X为实测点。
表1:试验条件以及试验结果
如上述表1以及图4(A)及图4(B)所示,本发明的装置由于模拟液的粘度和搅拌浆叶的转数等存在差异,但可知溶液的粘度越高,则越具有其相当槽数约为10这一非常高的活塞滑动性。若用线把图表的测量点之间连结起来看,由其形状看不见右端的衰减尾部,而且可以判断既没有成为问题的短路,也没有死路。
故而,本发明的聚合反应装置能够达到均匀地去除随高粘性聚合反应出现的反应热,或者均匀地加热反应液,改善活塞滑动性,而且通用性广,业已表明作为工业规模的连续的块状聚合反应装置特别有用。