本发明涉及一种合成丙烯酰胺或甲基丙烯酰胺的方法〔下文合称为“(甲基)丙烯酰胺”〕。其法是在阮内(Raney)铜催化剂的悬浮液相层上,径丙烯腈或甲基丙烯腈的水合反应而制备的〔下文通称为“(甲基)丙烯腈”〕。更具体地说,本发明涉及一种适用於上述反应的阮内铜催化剂的制备方法。 阮内铜能用作(甲基)丙烯腈与水的水合反应的催化剂是众所周知的,如美国专利号4,056,565和日本专利公开号11657/1980。还可以从例如美国专利号3,766,088得知,这种催化剂会逐渐地失去活性,如在丙烯腈的水合反应中,当催化剂连续地经长时期的使用后,要产生越来越多如β-羟基丙腈(下文缩写为“HPN”)的付产物。
根据本发明者的发现,随催化剂使用时间的加长,反应混合物中的催化剂的沉降和过滤性能逐渐劣化。(下文为了叙述简明起见,称为沉降性和过滤性)。这个特点对於它在工业上的应用也是非常不利的。
在上述美国专利号3,766,088中,曾提出用一种化学溶液如烧碱溶液再生劣化了的金属铜催化剂的方法。然而这种方法是不切实际的,不仅因为催化剂的再生活性不够,而且由於需要添置再生设备、化学试剂,使得此法不经济,以及催化剂的沉降性和过滤性因再生反而更劣化了。
由於缺少如上所述的任何合适的再生方法,所以径长期使用后的催化剂,换句话说,就是径反应中使用而已劣化的催化剂必须从反应设备中除去,然后用一定的方法废弃,如对它的弃而不用。至今尚未有一个经济的方法将这样的重金属以无害的状态而废弃。
本发明的一个目的是使用於(甲基)丙烯酰胺工业生产上的催化剂再生,使其恢复活性,同时又减少付产物。
本发明的另一个目的是提供一种方法,通过催化剂的再生,使其沉降性和过滤性得以恢复,从而降低用於再生的设备和化学试剂的高费用,废弃的催化剂耗损量通过再生和回收,有效地减少,甚至为零。
通过以下方法能达到上述本发明的目的:
在由(甲基)丙烯腈与水在阮内铜催化剂的悬浮液相层上的水合反应,制备(甲基)丙烯酰胺的方法中,其改进是阮内铜合金的沥滤可在反应过程中已劣化的阮内铜催化剂存在的条件下进行,然后把生成的混合催化剂继续用於反应。
根据本发明所得到的和使用的混合催化剂的性能(下文为了叙述简明起见,称为沥滤和再生的催化剂)比起用通常方法沥滤同样的阮内铜合金所得到的催化剂(下文为了叙述简明起见,称为普通沥滤的催化剂)更好些。也就是说,本发明具有以下的效果。
(1)与普通沥滤的催化剂相比,此沥滤和再生的催化剂有较高的活性和产生较少的付产物如HPN。此外,以(甲基)丙烯酰胺的选择性来说,与普通沥滤的催化剂一样好。
(2)此沥滤和再生的催化剂与普通沥滤的催化剂一样也具有很好的沉降性和过滤性能,从而此催化剂能按普通沥滤的催化剂相同方法用於工业设备上。
(3)催化剂的制备和再生可同时並经济地实施,除了用於制备阮内铜的通常设备和试剂之外,不需要任何特殊的设备或试剂。
(4)废弃的催化剂的耗损量可以减少,甚至为零。这在经济上是有利的。
因此,可以认为本发明的优越性是非常大的。
本发明将在下文详细叙述。
本发明中,丙烯腈径水合生成丙烯酰胺的反应由下列反应方程式(1)表示,而生成主要付产物之一的HPN时,用下列反应方程式(2)来表示。
甲基丙烯腈与水的水合反应也用类似的反应方程式表示。
用於本文的“阮内铜催化剂”这个术语,意思是一种为了洗脱合金中的可溶性成分,用碱性化合物如氢氧化钠的水溶液沥滤所谓的阮内铜合金而得到的催化剂,然后用水或其他类似试剂洗涤並除去沥滤催化剂产物中的大部分这样洗脱的成分和过量的碱性化合物。催化剂的主要的催化成分被认为是金属铜。作为阮内铜合金的可溶性成分,可用铝、锌或其它类似物,而铝是优先考虑的。
为了提高此催化剂的活性和选择性,可另外含有第二个成分,如镍、钼、银、钯或其它类似物。在镍存在的情况下,如铝-铜-镍体系的三元阮内合金沥滤成铜-镍体系的二元阮内催化剂用於予期的反应。甚至第二种成分如镍的含量比铜还要高(如镍∶铜=7∶3),也不会出现问题或不便。
由於催化剂是以悬浮液相层状态使用的,所以必须是粉末状或颗粒状,一般使用的催化剂的颗粒大小为40目或更小些。为了得到这样大小的颗粒,必须沥滤粉末状或颗粒状的阮内铜合金或沥滤较大粒状的阮内铜合金,随后研磨成较小粒子或颗粒。
在普通方法沥滤阮内铜合金时,简单地在沥滤槽内加入劣化了的催化剂,就能使本发明的沥滤和再生步骤实现。下一步按普通沥滤法加以叙述。实际上也是这样,其法可用於本发明的沥滤和再生法中。
作为可用於沥滤操作的碱性化合物说明性实例可以是无机化合物如氢氧化钠,碳酸钠,氢氧化钾和碳酸钾以及有机化合物如三甲基胺。在这些碱性化合物中,氢氧化钠是最合适的。
顺便提及,在上述美国专利号3,766,088中,披露了把诸如氯化钠、氯化铵和氯化钙的化合物用作金属铜催化剂的再生试剂。这些化合物中的一个或几个可以和上述的碱性化合物结合起来使用。
由於碱性化合物与含在沥滤的阮内铜合金中的可溶性成分的反应,使得每一个这样的碱性化合物都要消耗掉,所以通常所使用的量或者等於反应当量或者是大於反应当量。用氢氧化钠水溶液沥滤和再生铝-铜合金时,最好是每原子当量的铝用1至10摩尔,尤为合适的是1至3摩尔的氢氧化钠。任何小於下限的量都达不到充分沥滤和再生的效果,结果造成如此的不便,以致铝化合物产生沉淀。任何大於上限的量导致氢氧化钠的浪费,因而是不经济的。
通常,这些碱性化合物是用1至50%(重量)浓度的水溶液。例如在氢氧化钠的场合下最好是用10至40%重量百分。即使氢氧化钠的浓度低於下限,也不会引起特别的不便,但是使用这样的低浓度需要配备相当大的沥滤槽。氢氧化钠浓度高於上限,也不会引起特别的不便,除非氢氧化钠或沥滤形成的一个化合物以超过了本身的溶解度和固-液混合物的可流动性而存在,因此它们进行的沥滤和再生将会降低。
因铝和氢氧化钠的反应是放热的,并放出氢气,所以是一个危险的反应。有必要以控制的反应速度来进行反应。控制反应速度的一种方法,一般是一点一点地在沥滤槽中加入阮内铜合金,槽中预先加有烧碱,或者按相反的顺序,在用冷却蛇管或夹套冷却装有合金和水的沥滤槽时,逐渐地加入烧碱。作为在上述体系中加入劣化了的催化剂的一个步骤,可以事先加入,或者是和阮内铜金属或烧碱一起一点一点地加入槽内。由於产生氢气和搅拌的缘故,会生成泡沫,建议必要时使用去沫剂。
对於劣化的催化剂与阮内铜合金的混合比例没有提出特别的限制。例如在铝和铜的合金为1∶1的情况下,大约10∶1至1∶10的重量比是合适的。使用低於上述下限的任何劣化催化剂的量是不经济的。如使用高於上限的任何劣化催化剂的量,那末就可能不见得总能得到具有足够催化性的催化剂。
与普通的沥滤方法相类似,在室温至120℃下,进行0.5至10小时的沥滤和再生操作是合适的。最好是在相似的温度下,使沥滤槽内的物料维持相似的一段时间。也就是说,进行所谓的老化操作。
然后,用通常的方法如用水倾析的方法将残留的氢氧化钠和产生的铝化合物从沥滤和再生的催化剂中除去,这样得到的沥滤和再生的催化剂是处於含水的状态。因而就可用於予期的(甲基)丙烯腈的水合反应。
在上述催化剂的制备过程和储存过程中,最好避免催化剂与氧气或含氧气体相接触。氧气与催化剂要进行反应的。低於反应的一定限度,催化剂活性不减弱,或者,活性反而提高。超出上述的限度,它的活性减弱,並且导致产生较多的付产物如HPN。另外,来自反应混合物的催化剂的沉降性和过滤性由於过多地与氧气接触而劣化。
利用阮内铜催化剂,由丙烯腈合成丙烯酰胺的方法可概括如下:
催化剂保持悬浮在反应混合物中的状态,催化剂或按流动方式或者按间歇式方式使用。原则上,丙烯腈和水可按任何所要求的重量比进行投料,它们的重量比最好在60∶40至5∶95的范围内,或尤为合适的范围在50∶50至10∶95之间。合适的反应温度为70℃至150℃,最合适的反应温度为90℃至140℃。丙烯腈合成丙烯酰胺的较好的转化率为20%至98%,最好为30%至95%。
在上述的丙烯腈与水的重量比、反应温度和丙烯腈的转化率情况下,末反应的丙烯腈、未反应的水和得到的丙烯酰胺会分成二相,而不形成均匀的液相体系。为了避免形成均匀液相体系,上述合成的丙烯酰胺可作为共溶剂而加反应体系中去,或者也可加入另一种惰性的共溶剂。
反应器内部维持的总压应等於在上述的温度、组成下反应物和反应产物的蒸汽压以及惰性气体如氮气压力的总和。总压一般在常压至20个大气压的范围内。由於氧气溶於加入反应器内的含水催化剂、丙烯腈、水、共溶剂和其它类似物的物料中,因而减弱催化剂的活性,反应混合物中的催化剂的沉降性和过滤性劣化,並还增加如上述所提到的HPN付产物,所以需要在加料之前充分地除去氧气。因同样的理由还需要使反应器的内部处於无氧的气氛状态。
然后这样得到的反应混合物通过一般的蒸发或蒸馏步骤,可制得浓缩的丙烯酰胺水溶液,实际上,也同时蒸出和回收了基本上全部未反应的丙烯腈和一部分水。这样回收的丙烯腈和水尽管还可以用作其他的用途,但通常作为原料再次使用。
另一方面,以悬浮状态使用的催化剂,在反应混合物进行上述的蒸发或蒸馏之前与反应混合物分离,或在后来把它与蒸发或蒸馏得到的浓缩液分离而重复用於反应中。大部分这样分离的催化剂为了再次使用,许可留在反应体系中或者在反应体系中再循环,而分离出来的催化剂的剩余部分从反应体系中除去,並进行本发明的沥滤和再生步骤。此反应也可以停止,把整个催化剂按本发明相似的混合比进行沥滤和再生处理。
作为从反应混合物中分离催化剂的方法,一般依赖沉降及过滤。作为一种特殊的沉降法,可提出使用装在反应器内部或外部的增稠器,也可使用离心沉降机或类似设备。另方面,作为一种特殊的过滤法,可提出使用装在反应器内部或外部的过滤器,也可采用离心分离器或其他类似的机械。这些方法也可联合使用。
以上主要对丙烯腈的水合反应进行详细叙述。甲基丙烯腈的水合反应实际上和丙烯腈的水合反应是一样的。並曾用类似的方法制备过。
当长期使用后,阮内铜催化剂的沉降性和过滤性逐渐劣化。为此在上述的沉降步骤中不再有效地沉降,以致催化剂与反应液一起过多地带出。催化剂还变得难以过滤,所以在上述的过滤步骤中,催化剂会通过过滤器,或者堵塞了过滤器,不用说,这些问题阻碍了正常的操作,並导致严重的经济损失。本发明却有效地改进了这些问题。用於上述说明的这个“劣化的催化剂”的术语不一定仅限於普通沥滤的催化剂在(甲基)丙烯腈水合反应中经一段时间使用而得到的催化剂,而且也包括在相同反应中,沥滤和再生的催化剂经一定时间再使用后得到的催化剂。从第一次叙述的沥滤和再生催化剂再使用而得到的沥滤和再生的催化剂的性能和第一次叙述的沥滤和再生的催化剂没有什么不同。用上述方法反复使用劣化的催化剂,有可能减少必须废弃的催化剂的耗损量,实际上可减少至零,並大大地降低昂贵的普通沥滤催化剂的耗损量。因此本发明的方法具有非常突出的优点。
本发明的方法在下文中,通过以下实例加以更详细的叙述。
实例1:
Ⅰ、催化剂等的制备;
(A)催化剂的通常沥滤:
在一个带搅拌器的5升的烧瓶中,装入2.22公斤的25%(重量)浓度的烧碱水溶液。水溶液加热到约50℃。同时把重量比为50∶50的铝和铜合金压碎成粉末和粗颗粒,此颗粒通过80目筛子筛分,最后得到400克粉末状的合金。通过搅拌和外浴冷却此水溶液,使烧瓶内的温度维持在50℃至60℃之间,在大约2小时内将合金粉末一点一点地加到烧瓶中。然后使烧瓶内温度在50℃至60℃维持1小时,使反应产物老化。让反应混合物静止,弃去上层液体,将2升纯化水加到残渣中,然后搅拌30分钟。另外再重复倾析3次。倾析步骤完成后,弃去上层液体得到约200克通常沥滤的浸渍在水中的催化剂。在上述操作和接着的储藏过程中,烧瓶和其它器皿都要保持在氮气氛下,以避免催化剂与空气的接触。
(B)劣化催化剂的制备:
除了制备的规模增大10倍以外,使用与通常沥滤的催化剂的制备(A)法相同的方法制备的催化剂,以本文将叙述的实例2的流动式反应试验相同的方法进行一个45天的连续反应,但反应的规模增大10倍。
然后,停止反应,取出一部分催化剂。用纯化水将催化剂以倾析方式洗涤4次,从而得到约1000克劣化形式的催化剂。催化剂的取出、水洗和以后的储藏过程一直保持在氮气氛中,以避免与空气的接触。
(C)普通再生的催化剂:
以美国专利号3,766,088所述的相同方法再生上述制备的劣化催化剂。也就是说,大约200克劣化的催化剂和2.22公斤的25%(重量)浓度的烧碱水溶液一起装入5升的烧瓶中。整个内容物通过搅拌和内浴加热使温度在50℃至60℃保持3小时,用纯化水反复倾析4次,得到200克再生形式的催化剂。在催化剂的再生、洗涤和以后的储藏中,催化剂保持在氮气氛下,以避免与空气的接触。
(D)催化剂的沥滤和再生:
在5升的带有搅拌的烧瓶中,加入约200克上述制备的劣化催化剂和2.22公斤的25%(重量)浓度的烧碱水溶液,随后加热到约50℃。再准备400克阮内铜合金粉末,其类型与上述通常沥滤的催化剂制备法中所采用的是相同的。然后通过搅拌和外浴冷却,维持烧瓶的内部温在50℃至60℃之间,在2小时内把合金粉末一点一点地加入烧瓶中,然后维持内部温度在50℃至60℃之间1小时,使之有效地老化。以通常沥滤催化剂相同的制备法反复倾析4次,得到400克沥滤和再生形式的催化剂。在上述操作和后来的储藏过程中,催化剂保持在氮气氛下,以避免与空气的接触。
Ⅱ、间歇式反应试验:
利用上述制备的4种类型的催化剂,分别地进行下述的间歇式反应试验。在装有搅拌器,温度计和迴流冷凝管的100毫升烧瓶中,加入6.6克丙烯腈,36克水和7克催化剂。由於催化剂以浸渍在水中的状态制备和储藏的,所以大约有7克水随着加入催化剂中。因而这些水量事先要从单独加入的水量中扣除,这样才能控制整个水量为36克。
烧瓶在外浴上加热至约70℃。然后,控制外浴的温度,使烧瓶维持在70℃至72℃,反应2小时。最后冷却烧瓶,使反应停止。反应混合物经气相色谱分析测定丙烯腈合成丙烯酰胺的转化率和HPN与丙烯酰胺的比例(HPN的付产物率)。结果如表1所示。
溶解在原料、丙烯腈和水中的氧气,事先要除去,整个反应体系保持在氮气氛下,以避免催化剂与氧气在上述的操作过程中相接触。
表1
试验编号 实例1-1 实例1-2 实例1-3 实例1-4
催化剂 普通沥滤 劣化催化剂 普通再生 沥滤和再生
催化剂 催化剂 催化剂
转化率(%) 65 36 57 69
HPN的付产 0.07 0.16 0.15 0.07
物产率(%)
实例2:
利用实例1的4种类型的催化剂分别进行以下流动式反应试验。
在装有搅拌和内嵌催化剂过滤器的不锈钢反应器中,加入150克催化剂。
溶於丙烯腈和水的氧气必须事先验吹入氮气流加以除去。然后分别以每小时300克和700克的速度加入丙烯腈和水。当搅拌、使催化剂悬浮,並维持催化剂体系的温度在120℃时,反应就开始了。硝酸铜作为反应的加速剂,加入原料水中,按反应混合物的无水盐来折算,其加入量使硝酸铜的浓度达到30ppm。反应混合物是许可通过催化剂过滤器的,它实际上是以基本上无催化剂的液体而流出。然后把反应混合物引入反应混合物储藏器,每天一次从储藏器中抽出反应混合物。从反应器流出来的反应混合物,每隔一天抽样一次。抽样的反应混合物用气相色谱分析测定转化率和HPN的付产物率。反应混合物的储存器的压力通过加入或排出氮气一直保持在4公斤/厘米2。在这种情况下,反应器的压力就要略高於4公斤/厘米2。压力差(△P)与催化剂过滤器的过滤表面的阻力是相对应的。虽然△P在反应的初期接近於零,当反应继续进行时,△P就要增加。当△P超过2公斤/厘米2时,试验就停止。
上述反应试验的结果如表2所示。本发明的沥滤和再生的催化剂优於其他所有的催化剂。
实例3:
除了丙烯腈改为甲基丙烯腈之外,按实例1相同方法制备四种类型的催化剂。由於类似实例1所进行的间歇式反应试验的实施,从而测定甲基丙烯腈合成甲基丙烯酰胺的转化率,结果概括於表3。本发明的沥滤和再生的催化剂优於其它所有的催化剂。
表3
试验编号 实例3-1 实例3-2 实例3-3 实例3-4
催化剂 普通沥滤 劣化的催化 普通再生催 沥滤和再生
催化剂 剂 化剂 催化剂
转化率% 53 32 46 56