树脂磁性混合料 本发明涉及包含作为粘结剂的聚亚苯基硫醚树脂的树脂磁性混合料及其具有高耐热骤变和优良磁力的模塑制品。
包含聚亚苯基硫醚树脂和磁粉的混合料反映出主要是聚亚苯基硫醚树脂的特性,例如耐热性、耐化学性和低吸水性等,且在汽车,电器和电子部件及工业机械诸领域中的重要性已日益增大。用聚亚苯基硫醚对脂/磁粉混合料所制得的模塑制品的突出向题是耐热骤变性能令人不满意,即在温度变化骤烈时此类模塑制品常会龟裂。
如JP-A-62-176103和JP-A-4-44304(这里术语“JP-A”其意为未审的已公开的日本专利申请)所述,此混合料的耐热骤变性可通过加入玻璃纤维予以改善。然而,当加入的玻璃纤维的量足以使耐热骤变性得到可观改进时。干扰了磁粉的分散,且使此混合料的流动性极度劣化,其结果导致磁力降低。
本发明的一个目的是提供一种树脂磁性混合料,即使混入的玻璃纤维的量比惯常技术高,由此混合料制得的模塑制品的耐热骤变性也好,而又不会伴随磁力下降。
本发明的另一目的是提供由此树脂混合料制成的模塑制品。
本发明提供一种包含下述(ⅰ)、(ⅱ)和(ⅲ )的树脂磁性混合料:
(ⅰ)经用0.01-5%重量(以磁粉为基准计)的下式(Ⅰ)所代表的巯基硅烷或此巯基硅烷的水解产物进行过表面处理的磁粉(65-77%重量),
(RO)
nR′
(3-n)SiR″SH (Ⅰ)
式中,R和R′各自为含1或2个碳原子的烷基,R″为含2-6个碳原子的亚烷基;而n为整数2或3;
(ⅱ)14-30%重量的聚亚苯基硫醚树脂:和
(ⅲ)9-21%重量的玻璃纤维。
本发明还提供了一种用此树脂磁性混合料制得的模塑制品。
可用于本发明的磁粉是已用(Ⅰ)式所代表的特殊巯基硅烷或此琉基硅烷水解产物进行过表面处理的磁粉。
(Ⅰ)式中的R和R′的例子包括甲基和乙基,而R″的例子包括亚乙基、亚丙基和三亚甲基。
(Ⅰ)式代表的巯基硅烷优选包括3-巯基丙基甲基二甲氧基硅烷、3-巯基丙基甲基二乙氧基硅烷、3-巯基丙基三甲氧基硅烷和3-巯基丙基三乙氧基硅烷。更优选3-巯基丙基甲基二甲氧基硅烷和3-巯基丙基甲基二乙氧基硅烷。
按磁粉计,此巯基硅烷或其水解产物的用量为0.01-5%重量,优选0.5-2%重量,如巯基硅烷的用量低于0.01%重量,树脂的流动性将会明显降低,这引起磁力的降低;如高于5%重量,模塑时将会有泡沫发生。
对用琉基硅烷或其水解产物进行表面处理的方法的要求并不特别严格。进行此表面处理的优选方法是,将在巯基硅烷的醇(如甲醇,乙醇,异丙醇)水溶液中,或pH已调至3-7,优选4.5-5的琉基硅烷水溶液中的磁粉进行搅拌后,再干燥。
如使用3-巯基丙基甲基二甲氧基硅烷或3-巯基丙基甲基二乙氧基硅烷,无需进行上述水解,仅需通过与聚亚苯基硫醚树脂,磁粉和玻璃纤维进行简单混合,即可得到机械强度和流动性优异的混合料。
对被处理的磁粉无特殊的限制,但优选磁性铅酸盐型铁氧体,如钡铁氧体和锶铁氧体,以及稀土磁粉,如钐钴合金磁粉和钕-铁-硼磁粉。
本发明的混合料含65-77%重量(优选67-76%重量,更优选68-74%重量)磁粉。如磁粉的量低于65%重量,所得模塑制品的磁性就会降低。如超过77%重量,模塑时混合料的流动性即会降低。
本发明的混合料含14-30%重量、优选15-28%重量、更优选16-26%重量的聚亚苯基硫醚树脂。如聚亚苯基硫醚树脂的量低于14%重量,混合料的流动性将会降低,使模塑难于进行。如该量超过30%重量,所得模塑制品则不具有足够的磁性。
能用于本发明的作为粘接剂的聚亚苯基硫醚树脂既包括包含对亚苯基硫醚单元的均聚物类,也包括主要包含亚苯基硫醚单元的共聚物。聚亚苯基硫醚树脂共聚物优选含有60%重量或60%重量以上,更优选90%重量或90%重量以上的对亚苯基硫醚单元。
聚亚苯基硫醚对脂中,实际上含有由主要含双官能单体而制得的线性结构的那些聚亚苯基硫醚树脂是特别优选的,这是因为这类树脂具有优异的韧性。就聚亚苯基硫醚树脂的机械性能被保持来说,可以使用部分交联聚亚苯基硫醚树脂,或由于氧化交联(即固化)而使熔融粘度有所提高的聚亚苯基硫醚树脂。
只要聚亚苯基硫醚树脂可以稳定地同磁粉捏合在一起,生成一种适宜于熔融加工(如熔融挤塑或注塑)的混合料,对聚亚苯基硫醚树脂的熔融粘度无特别要求。在310℃,200秒
-1的条件下测得的聚亚苯基硫醚树脂的熔融粘度优选15-500帕(Pa.S),更优选20-400帕(Pa.S)。
可用于本发明的玻璃纤维一般的直径为6-13μm。本发明的混合料中所含的玻璃纤维的量为9-21%重量(优选10-18%重量,更优选11-16%重量)。如玻璃纤维的量低于9%重量,所得模塑制品的耐热骤变性将不够,且耐热性能也低。如果大于21%重量,混合料的流动性将会降低,所得模塑制品的磁性也将降低。
下面将通过实施例来对本发明作很详细的说明,但应明白,本发明并不是限于这些实施方案。
模塑制品的物理性质是采用下述方法来测定的:1)耐热骤变性:
把树脂磁性混合料在150℃下模塑成外径为16mm、内径为8mm、厚度为5mm的空心管,把此管绕于直径为8mm、长度为20mm的金属样上,以制成进行热骤变试验的试样。将每种样品的10个试样浸于液相中并进行500个热循环,每个循环包括-65℃下5分钟,然后在150℃下5分钟。试验了10个试样,得到了经历500个热循环后龟裂的试样数。2)挠曲强度
按ASTMD-790测定长方形平行管状试样(3mm×13mm×130mm)的挠曲强度。3)最大能量产生
按JISC2501测定模塑制品的最大能量产生。
实施例1
将3-巯基丙基三甲氧硅烷与等量的水和二倍的甲醇进行混合以水解此巯基硅烷。把其量为此琉基硅烷100倍的锶铁氧体粉(NipponBengara Kogyo Co.,Ltd.产的“NP-20”)倒入20升的汉歇尔混合器中,边搅拌边住其中加入此已水解的琉基硅烷。
于20升的汉歇尔混合器中,将2.4Kg线性聚亚苯基硫醚、上述制备的经硅烷处理的锶铁氧体10.35Kg,及直径为9μm玻璃纤维2.25Kg进行混合,把此混合料送入直径为45mm的双螺杆挤塑机中以制备供测物理性质的样品,测定结果列于表1中。
实施例2
重复实施例1的相同步骤,但锶铁氧体和玻璃纤维的用量分别变为10.95Kg和1.65Kg。测定结果列于下表1中。
实施例3
重复实施例1的相同步骤,但是把线性聚亚苯基硫醚,锶铁氧体和玻璃纤维的量分别改为3.0Kg,10.35Kg和1.65Kg。测定结果列于下表1中。
实施例4
于20升的汉歇尔混合器中,加入2.4Kg线性聚亚苯基硫醚,10.25Kg锶铁氧体和2.25Kg直径为9μm的玻璃纤维,随着搅拌,向其中加入100g3-琉基丙基甲基二甲氧基硅烷。把所得混合料装入直径为45mm的双螺杆挤塑机中以制备样品。测量结果列于下表1中。
实施例5
重复实施例1的相同步骤,但其中的3-琉基丙基三甲氧基硅烷用3-巯基丙基甲基二甲氧基硅烷代替。测量结果列于表1中。
比较例1
重复实施例1的相同步骤,但锶铁氧体和玻璃纤维的量分别变为11.85Kg和0.75Kg。测定结果列于下表1。
比较例2
步骤同实施例1,但锶铁氧体和玻璃纤维的量分别改为11.4Kg和1.2Kg。测量结果见下表1。
比较例3
步骤与实施例1同,但其中的聚亚苯基硫醚树脂,锶铁氧体和玻璃纤维的量分别改为5.25Kg、8.25Kg和1.5Kg。测量结果见下表1。
比较例4
步骤与实施例1同,但其中的磁粉不用琉基硅烷处理。测量结果见下表1。
表1混合料(wt%)实施例号PPS
1)磁粉 玻璃纤维 琉基硅烷 混合方法 挠曲强度 耐热骤变性 最大能量产生 熔融粘度(MPA)龟裂样品数(KJ/m
3)(10Pa.s)实施例1 16 69 15 MPTMS
3) A
4) 178 0 8 39实施例2 16 73 11 MPTMS A 166 0 10 38实施例3 20 69 11 MPTMS A 162 0 8 37实施例4 16 69 15 MPDMS
5) B
6) 186 0 8 29实施例5 10 69 15 MPDMS A 183 0 8 32比较例1 16 79 5 MPTMS A 146 10 11 39比较例2 16 76 8 MPTMS A 157 2 10 38比较例3 35 55 10 MPTMS A 155 0 2 31比较例4 16 69 15 - B 142 10 7 59注:1)PPS:聚亚苯基硫醚均聚物;
2)在330℃和1000秒
-1的条件下测定;
3)MPTMS:3-琉基丙基三甲氧基硅烷;
4)MPDMS:3-巯基丙基甲基二甲氧基硅烷;
5)A:用巯基硅烷的醇水溶液对磁粉进行喷涂,搅拌,然后干燥;
6)B:用机械将聚亚苯基硫醚、磁粉和玻璃纤维与巯基硅烷(未水解的)予以混合。
上述实施例中,挠曲强度的实用范围是147MPa或147MPa以上,最大能量产生的实用范围是4.8KJ/m
3或4.8KJ/m
3以上。当热骤变性实验中龟裂样品的数目为0或1时,模塑制品是实用的
从表1中可以清楚看出,根据本发明的树脂磁性混合料制得的模塑制品的热骤变性、磁性质和耐热性能均优异。此树脂磁性混合料及其模塑制品适宜作需要耐热骤变性、磁性质和耐热的部件,如汽车旋转传感器、速度传感器和各种马达的位置传感器。
虽然本发明参照具体的实施例作了详细说明,但很明显,所属领域技术熟练人可以在不背离本发明精神和在本发明范围内进行各种变更和改进。