基于逆动力学模型的自适应PID控制器的设计方法.pdf

上传人:a3 文档编号:830012 上传时间:2018-03-14 格式:PDF 页数:12 大小:543.96KB
返回 下载 相关 举报
摘要
申请专利号:

CN200910190906.3

申请日:

2009.09.21

公开号:

CN101673085A

公开日:

2010.03.17

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止 IPC(主分类):G05B 13/02申请日:20090921授权公告日:20130403终止日期:20140921|||授权|||实质审查的生效IPC(主分类):G05B 13/02申请日:20090921|||公开

IPC分类号:

G05B13/02; G06N7/02

主分类号:

G05B13/02

申请人:

重庆大学

发明人:

王广军; 陈 红; 王志杰

地址:

400044重庆市沙坪坝区沙坪坝正街174号

优先权:

专利代理机构:

重庆中之信知识产权代理事务所

代理人:

袁庆民

PDF下载: PDF下载
内容摘要

基于逆动力学模型的自适应PID控制器的设计方法,该方法通过选择恰当的控制对象逆动力学模型输入向量,实现了PID控制和自适应逆控制的有机结合,通过控制对象逆动力学模型的在线辨识,获得与控制对象相匹配的PID控制特征参数,形成与控制对象特性相适应的自适应PID控制器。与现有的自适应逆控制方法相比,本发明属于闭环控制,明显降低了控制性能对逆动力学模型精度的依赖性,提高了控制系统的鲁棒性;与已有的自适应PID控制算法相比,本发明将自适应PID控制算法概括为控制对象逆动力学模糊规则模型的辨识问题,并采用

权利要求书

1.  基于逆动力学模型的自适应PID控制器的设计方法,其特征在于,该设计方法包括如下步骤:
①构造控制对象逆动力学模糊规则模型结构,以及与PID控制器对应的控制对象的逆动力学模糊规则模型输入向量的结构;建立包含N组数据的控制对象逆动力学模糊规则模型辨识样本集(X);
在所述控制对象的逆动力学模糊规则模型结构中,包括c条模糊规则,其中的第i条模糊规则(Ri)为:
Ri:ifx(k)is[x‾i,μi(k)]thenui(k)=θiT(k)x(k)]]>其中,i=1,2,...,c
该模糊规则中的x(k)是控制对象逆动力学模糊规则模型在当前时刻(k)的输入向量;xi为第i个聚类子空间的聚类中心向量;μi(k)∈[0,1],为该输入向量(x(k))对于第i个聚类子空间的隶属度;c为辨识样本集(X)的模糊聚类数;ui(k)为与该输入向量(x(k))对应的第i条模糊规则的输出重心;该聚类中心向量(xi)和隶属度(μi(k))为待辨识的逆动力学模糊规则模型的前件参数;θi(k)为待辨识的逆动力学模糊规则模型的后件参数向量;
该逆动力学模糊规则模型的输入向量(x(k))的结构由PID控制算法决定,其结构式为:
x(k)=[y(k),y(k-1),y(k-2)]
其中,y(k)、y(k-1)和y(k-2)分别为当前时刻(k)、当前时刻之前一时刻(k-1)和当前时刻之前两个时刻(k-2)的控制对象的输出值;
所述控制对象逆动力学模糊规则模型的辨识样本集(X),包含控制对象在不同时刻的N组数据,该样本集(X)按下式构造:
X={x(k-i),u(k-i-1)}其中,i=1,2,…,N;
②对所建立的控制对象逆动力学模糊规则模型的辨识样本集(X),用FCM算法辨识控制对象逆动力学模糊规则模型的前件,获取所述聚类中心向量(xi)和隶属度(μi(k))的值;
③根据控制对象逆动力学模糊规则模型的误差(e(k-1)),用RLS算法辨识控制对象逆动力学模糊规则模型的后件,获取所述后件参数向量(θi(k))的值;该控制对象逆动力学模糊规则模型的误差(e(k-1))由下式确定:
e(k-1)=u(k-1)-u^(k-1)]]>
其中,u(k-1)为当前时刻之前一时刻(k-1)的控制对象实际输入控制量,为该输入控制量(u(k-1))的反演结果,由下式确定:
u^(k-1)=Σi=1cμi(k)ui(k);]]>
④根据辨识得到的后件参数向量(θi(k)),构造自适应PID控制器的特征参数向量接着根据PID控制算法在线产生当前时刻(k)的控制量(u(k));其中,自适应PID控制器的特征参数向量由下式确定:

当前时刻(k)的控制量(u(k))由下式确定:

式中的r(k)为控制系统的期望输出向量,由下式确定:
r(k)=[rp(k),rp(k-1),rp(k-2)]
其中的rp(k)、rp(k-1)和rp(k-2)分别为当前时刻(k)、当前时刻之前一时刻(k-1)和当前时刻之前两个时刻(k-2)控制系统的期望输出值;
⑤利用在线得到的控制对象的输入输出数据,产生一组新的样本数据{x(k),u(k-1)},并利用该组新的样本数据对已有的控制对象逆动力学模糊规则模型的辨识样本集(X)进行刷新,返回步骤②,重新进行前述步骤②到步骤④的循环,产生新的控制量。

说明书

基于逆动力学模型的自适应PID控制器的设计方法
技术领域
本发明属于工业过程自动控制领域,尤其涉及对工业过程进行自适应PID控制的技术。
背景技术
自适应控制(Adaptive Control)是一类能够自动修正控制规律及控制特性、以适应对象和扰动的动态特性变化的控制方法。自适应PID控制和自适应逆控制是两类典型的自适应控制方式。
PID控制器结构简单、鲁棒性强、可靠性高,在工业过程控制中占有主导地位。自适应PID控制属于一类参数自整定PID控制。自适应PID控制能够根据控制对象特性的变化在线调整PID控制器的特征参数,以提高PID控制器对于控制对象的自适应能力。目前,比较成熟的自适应PID控制方法主要有两种,即基于神经网络的自适应PID控制方法和基于遗传算法的自适应PID控制方法。神经网络具有较强的逼近非线性函数的能力和自适应学习能力,基于神经网络的自适应PID控制方法利用神经网络对PID控制器的特征参数进行在线整定,获得与控制对象特性相匹配的控制规律,以提高PID控制器的自适应能力。但是,由于神经网络在学习过程中收敛速度较慢,且容易陷入局部最小点,严重地影响了基于神经网络的自适应PID控制方法的实际效果。遗传算法是一种全局搜索优化算法,基于遗传算法的自适应PID控制方法可以在全局范围内确定PID控制参数的最佳值。但是,由于其在优化过程的搜索时间将显著增加,从而严重地影响了控制系统的在线自适应能力。
自适应逆控制的基本思想在于,通过在线辨识产生控制对象的逆动力学模型,以该逆动力学模型作为串联控制器对系统进行开环控制。自适应逆控制能够在一定程度上避免因反馈而可能引起的不稳定,同时又能做到对系统动态特性的控制与对象扰动的控制分开处理而互不影响,在近十几年来得到了迅速发展。王广军等发明的控制系统{王广军,陈红,唐胜利等.一种自适应模糊控制系统的设计方法[P].中国专利:CN100489704C,2009-05-20}就是一种自适应逆控制系统,其主要特征在于,将模糊控制规则的获取归结为控制对象逆动力学过程模糊辨识问题,通过控制对象逆动力学模糊规则辨识构造模糊自适应逆控制系统。该发明与已有的自适应逆控制方法一样,本质上属于开环控制,控制系统的鲁棒性较差,控制性能对逆动力学模型的准确性具有十分明显的依赖性,从而直接地影响了此类控制系统的实际应用效果。
发明内容
本发明的目的是,克服现有技术的不足,提供一种基于逆动力学模型的自适应PID控制器的设计方法。依据该设计方法获得的控制器具有良好的自适应能力和良好的鲁棒性。
为实现所述目的,提供这样一种基于逆动力学模型的自适应PID控制器的设计方法,其特征在于,该设计方法包括如下步骤:
①构造控制对象逆动力学模糊规则模型结构,以及与PID控制器对应的控制对象的逆动力学模糊规则模型输入向量的结构;建立包含N组数据的控制对象逆动力学模糊规则模型的辨识样本集X;
控制对象逆动力学模糊规则模型包括c条模糊规则,其中的第i条模糊规则Ri为:
Ri:ifx(k)is[x‾i,μi(k)]thenui(k)=θiT(k)x(k)]]>其中,i=1,2,...,c
该模糊规则中的x(k)是控制对象逆动力学模糊规则模型在当前时刻k的输入向量;xi为第i个聚类子空间的聚类中心向量;μi(k)∈[0,1],为该输入向量x(k)对于第i个聚类子空间的隶属度;c为辨识样本集X的模糊聚类数;ui(k)为与输入向量x(k)对应的第i条模糊规则的输出重心;该聚类中心向量xi和隶属度μi(k)为待辨识的逆动力学模糊规则模型的前件参数;θi(k)为待辨识的逆动力学模糊规则模型的后件参数向量;该逆动力学模糊规则模型的输入向量x(k)的结构由PID控制算法决定,其结构式为:
x(k)=[y(k),y(k-1),y(k-2)]
其中,y(k)、y(k-1)和y(k-2)分别为当前时刻k、当前时刻之前一时刻(k-1)和当前时刻之前两个时刻(k-2)的控制对象的输出值;
控制对象逆动力学模糊规则模型的辨识样本集X,包含控制对象在不同时刻的N组数据,该样本集X按下式构造:
X={x(k-i),u(k-i-1)}
其中,i=1,2,…,N;
②对所建立的控制对象逆动力学模糊规则模型的辨识样本集X,采用FCM算法辨识控制对象逆动力学模糊规则模型的前件,获取聚类中心向量xi和隶属度μi(k)的值;
③根据控制对象逆动力学模糊规则模型的误差e(k-1),采用RLS算法辨识控制对象逆动力学模糊规则模型的后件,获取后件参数向量θi(k)的值;该控制对象逆动力学模糊规则模型的误差e(k-1)由下式确定:
e(k-1)=u(k-1)-u^(k-1)]]>
其中,u(k-1)为当前时刻之前一时刻(k-1)的控制对象实际输入控制量,为该输入控制量u(k-1)的反演结果,由下式确定:
u^(k-1)=Σi=1cμi(k)ui(k);]]>
④根据辨识得到的后件参数向量θi(k),构造自适应PID控制器的特征参数向量根据PID控制算法产生当前时刻k的控制量u(k);其中,自适应PID控制器的特征参数向量由下式确定:

当前时刻k的控制量u(k)由下式确定:

式中的r(k)为控制系统的期望输出向量,由下式确定:
r(k)=[rp(k),rp(k-1),rp(k-2)]
其中的rp(k)、rp(k-1)和rp(k-2)分别为当前时刻k、当前时刻之前一时刻(k-1)和当前时刻之前两个时刻(k-2)控制系统的期望输出值。
⑤利用在线得到的控制对象的输入输出数据,产生一组新的样本数据{x(k),u(k-1)},并利用该组新的样本数据对已有的控制对象逆动力学模糊规则模型的辨识样本集X进行刷新,返回步骤②,重新进行前述步骤②到步骤④的循环,产生新的控制量。
由前述的设计方法可以看出,本发明通过选择恰当的控制对象逆动力学模型输入向量,实现了PID控制和自适应逆控制的有机结合,也即将自适应PID控制算法概括为控制对象的一类逆动力学模型的辨识问题,通过控制对象逆动力学模型的在线辨识,获得与控制对象相匹配的PID控制器的特征参数,形成与控制对象特性相适应的自适应PID控制器。与现有的自适应逆控制方法相比,本发明属于闭环控制,明显降低了控制性能对逆动力学模型精度的依赖性,提高了控制系统的鲁棒性;与已有的自适应PID控制算法相比,本发明将自适应PID控制算法概括为控制对象逆动力学模糊规则模型的辨识问题,并采用RLS算法在线辨识控制对象逆动力学模糊规则模型的后件参数向量,有效地提高了控制过程的自适应能力。
下面结合附图对本发明作进一步的说明。
附图说明
图1为本发明设计方法的基本流程图
图2为根据本发明设计的一种自适应PID控制器的系统结构图
图3为根据本发明设计的一种自适应PID控制器的系统响应特性图
图4为图3中I区域的局部放大图
具体实施方式
一种基于逆动力学模型的自适应PID控制器的设计方法(参考图1、图2),该设计方法包括如下步骤:
①构造控制对象逆动力学模糊规则模型结构,以及与PID控制器对应的控制对象的逆动力学模糊规则模型输入向量的结构;建立包含N组数据的控制对象逆动力学模糊规则模型的辨识样本集X;
控制对象逆动力学模糊规则模型包括c条模糊规则,其中的第i条模糊规则Ri为:
Ri:ifx(k)is[x‾i,μi(k)]thenui(k)=θiT(k)x(k)]]>式(1)
式(1)中,i=1,2,...,c;c为辨识样本集X的模糊聚类数,也即逆动力学模糊规则模型的模糊规则数;x(k)是控制对象逆动力学模糊规则模型在当前时刻k的输入向量;xi为第i个聚类子空间的聚类中心向量;μi(k)∈[0,1],为该输入向量x(k)对于第i个聚类子空间的隶属度;ui(k)为与输入向量x(k)对应的第i条模糊规则的输出重心;该聚类中心向量xi和隶属度μi(k)为待辨识的逆动力学模糊规则模型的前件参数;θi(k)为待辨识的逆动力学模糊规则模型的后件参数向量;该逆动力学模糊规则模型的输入向量x(k)的结构由PID控制算法决定,其结构式为:
x(k)=[y(k),y(k-1),y(k-2)]                    式(2)
式(2)中,y(k)、y(k-1)和y(k-2)分别为当前时刻k、当前时刻之前一时刻(k-1)和当前时刻之前两个时刻(k-2)的控制对象的输出值;
控制对象逆动力学模糊规则模型的辨识样本集X,包含控制对象在不同时刻的N组数据,该样本集X按式(3)构造:
X={x(k-i),u(k-i-1)}                           式(3)
在式(3)中,i=0,1,…,N-1;
②对所建立的控制对象逆动力学模糊规则模型辨识样本集X,采用FCM算法(Fuzzyc-means,模糊c均值聚类算法)来辨识控制对象逆动力学模糊规则模型的前件,获取聚类中心向量xi和隶属度μi(k)的值;
③根据控制对象逆动力学模糊规则模型的误差e(k-1),采用RLS算法(递推最小二乘算法)辨识控制对象逆动力学模糊规则模型的后件,获取后件参数向量θi(k)的值;在采用RLS算法辨识控制对象逆动力学模糊规则模型的后件参数向量θi(k)时,控制对象逆动力学模糊规则模型的误差e(k-1)由下式确定:
e(k-1)=u(k-1)-u^(k-1)]]>式(4)
在式(4)中,u(k-1)为当前时刻之前一时刻(k-1)的控制对象的实际输入控制量,为该实际输入控制量u(k-1)的反演结果,由下式确定:
u^(k-1)=Σi=1cμi(k)ui(k)]]>式(5)
④在进行控制对象逆动力学模糊规则模型的前件辨识和后件辨识后,构造自适应PID控制器的特征参数向量和产生当前时刻k的控制量;具体是:
根据控制对象逆动力学模糊规则模型前件辨识获得的隶属度μi(k),以及后件辨识获得的后件参数向量θi(k),按式(6)构造自适应PID控制器的特征参数向量
式(6)
在构造自适应PID控制器的特征参数向量后,根据PID控制算法按式(7)产生当前时刻k的控制量u(k):
式(7)
式(7)中的r(k)为控制系统的期望输出向量,由式(8)确定:
r(k)=[rp(k),rp(k-1),rp(k-2)]            式(8)
式(8)中的rp(k)、rp(k-1)和rp(k-2)分别为当前时刻k、当前时刻之前一时刻(k-1)和当前时刻之前两个时刻(k-2)控制系统的期望输出值。
⑤利用在线得到的控制对象的输入输出数据,产生一组新的样本数据{x(k),u(k-1)},并利用该组新的样本数据对已有的控制对象逆动力学模糊规则模型的辨识样本集X进行刷新,返回步骤②,重新进行前述步骤②到步骤④的循环,产生新的控制量;
在步骤⑤中所说的对控制对象逆动力学模糊规则模型辨识样本集X进行刷新的具体过程在于,将最新获得的一组新的样本数据{x(k),u(k-1)}加入到样本集X中,同时去除样本集X中最早的一组数据样本,保持总的样本集X中的样本数目N不变。
图2是根据本发明方法所设计的一种基于逆动力学模型的自适应PID控制器的系统结构图。在该控制器中,其自适应PID控制器的特征参数向量由控制对象的逆动力学模型在线辨识的结果确定。TDL1、TDL2和TDL3是3条抽头延迟线,其作用是通过对数据进行储存和延迟等操作,将数据转化为控制系统所需的形式,分别形成控制对象逆动力学模型的输入向量x(k)、控制系统的期望输出向量r(k)和当前时刻之前一时刻控制对象的输入u(k-1);e(k-1)为k-1时刻控制对象的输入的反演结果与其真实值u(k-1)之间的偏差,即e(k-1)=u(k-1)-u^(k-1);]]>rp(k)为给定的系统期望输出。
在披露具体实施方式之后,再给出一个采用本发明方法对非线性系统进行控制的试验验证例,以验证本发明方法的优越性。
在验证实例中,选择的控制对象为如下式所定义的非线性系统:
y(k+1)=y(k)u(k)1+y2(k)-tan[u(k)]]]>式(9)
首先,选择(-1,1)内均匀分布的随机数作为输入,驱动式(8)所示的控制对象,产生包含50组数据的的控制对象逆动力学模糊规则模型的辨识样本集X:
X={x(k-i),u(k-i-1)}
其中,i=0,1,…,49;
取控制对象逆动力学模型的模糊规则数c=4。根据步骤②和步骤③所述方法,产生该控制对象逆动力学模型的聚类中心向量xi、输入向量的隶属度μi(k)和控制对象逆动力学模型的后件参数向量θi(k),其中i=1,2,3,4;
根据步骤④所述方法,按式式(6)由θi(k)和μi(k)构造自适应PID控制器特征参数向量
令控制系统的期望输出为:
rp(k)=0.6sin(2kπ/250)+0.2sin(2kπ/50)
按式(8)确定控制系统的期望输出向量r(k),根据PID控制算法,按式(7)产生当前时刻k的控制量u(k)。
根据步骤⑤所述方法,利用在线得到的控制对象的输入输出数据,对控制对象逆动力学模糊规则模型辨识样本集X进行刷新,返回步骤②,重新进行前述步骤②到步骤④的循环,产生新的控制量。
图3和图4为本验证例的系统响应特性图。图中实线是该控制系统的期望输出值曲线,虚线是控制系统的实际输出值曲线。该验证例表明,本发明所提供的基于逆动力学模型的自适应PID控制器的设计方法,对于非线性系统具有良好的自适应能力和良好的在线跟踪能力。此外,由于本发明属于闭环控制方式,降低了控制性能对控制对象逆动力学模型精度的依赖性,提高了控制系统的鲁棒性。

基于逆动力学模型的自适应PID控制器的设计方法.pdf_第1页
第1页 / 共12页
基于逆动力学模型的自适应PID控制器的设计方法.pdf_第2页
第2页 / 共12页
基于逆动力学模型的自适应PID控制器的设计方法.pdf_第3页
第3页 / 共12页
点击查看更多>>
资源描述

《基于逆动力学模型的自适应PID控制器的设计方法.pdf》由会员分享,可在线阅读,更多相关《基于逆动力学模型的自适应PID控制器的设计方法.pdf(12页珍藏版)》请在专利查询网上搜索。

基于逆动力学模型的自适应PID控制器的设计方法,该方法通过选择恰当的控制对象逆动力学模型输入向量,实现了PID控制和自适应逆控制的有机结合,通过控制对象逆动力学模型的在线辨识,获得与控制对象相匹配的PID控制特征参数,形成与控制对象特性相适应的自适应PID控制器。与现有的自适应逆控制方法相比,本发明属于闭环控制,明显降低了控制性能对逆动力学模型精度的依赖性,提高了控制系统的鲁棒性;与已有的自适应P。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 控制;调节


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1