一种儿科护理专用心电监护仪.pdf

上传人:狗** 文档编号:8049813 上传时间:2019-12-18 格式:PDF 页数:11 大小:337.31KB
返回 下载 相关 举报
摘要
申请专利号:

CN201610338194.5

申请日:

20160520

公开号:

CN106562782A

公开日:

20170419

当前法律状态:

有效性:

审查中

法律详情:

IPC分类号:

A61B5/0402,A61B5/0476,A61B5/16

主分类号:

A61B5/0402,A61B5/0476,A61B5/16

申请人:

彭慧敏

发明人:

彭慧敏

地址:

276200 山东省临沂市蒙阴县人民医院

优先权:

CN201610338194A

专利代理机构:

北京志霖恒远知识产权代理事务所(普通合伙)

代理人:

刘子成

PDF下载: PDF下载
内容摘要

本发明公开了一种儿科护理专用心电监护仪,监护仪设置有体温感知模块、情绪感知模块、脑电波感知模块、远程诊疗单元、心电波智能分析模块;脑电波感知模块包括多个脑电波传感器和脑电波处理单元。T 波交替幅度值检测方法形态直观且计算简单,对心电信号的噪声水平进行评估分析可避免错误的诊断结果,避免给病人带来不必要的精神和经济损失,利用本发明的方法进行心电信号动力特征分析,利用替代数据算法对采集来的信号进行动力特征识别,通过情绪感知模块、脑电波感知模块可以实时监测儿童生命体征,通过心电波智能分析模块准确分析心电波,并通过远程诊疗单元实现远程监控,工作效率高,智能化程度高。

权利要求书

1.一种儿科护理专用心电监护仪,其特征在于,该儿科护理专用心电监护仪的监护方法包括:步骤一、选取心电信号,记为:{xi},i=1,2,3,...,n;其中:i表示采样点数;并进行心电信号预处理;步骤二、脑电波感知模块将采集到的模拟脑电波信号进行放大、滤波、域转变处理得到脑电波指标;步骤三、将心电信号映射为加权的网络,对每次采集的心电信号,以R波波峰位置为分割点将目标心电信号段切成若干数据段{s1,s2,...sm},每个数据段对应所述复杂网路中的一个结点;然后,定义一对数据段之间的简单距离,该简单距离即两个数据段之间si与sj之间距离;步骤四、计算心电信号每个心拍周期反映R波附近噪声水平的噪声指数,设定噪声指数阈值,将计算所得的噪声指数与噪声指数阈值进行比较,统计连续N个心拍的比较结果;步骤五、采用T波窗口分析法,对X个心拍进行采样,每一个心拍采用T波窗口法选定Y个采样点,将X*Y个相邻心拍的采样点作一次差分,绘制一次差分的T波散点图;步骤六、利用快速傅立叶变换将采样点的幅度转化成能量谱并进行叠加平均得到其功率谱曲线图并计算T波交替幅度值;步骤七、根据心拍比较结果、噪声水平、T波交替幅度值、脑电波指标对心电信号水平进行分类,划分噪声等级;所述儿科护理专用心电监护仪,包括:电源线、监护仪、显示装置、开关、数据线、纤维面魔术贴;监护仪的一侧设置有电源线,监护仪的正面设置有显示装置,显示装置的右上角设置有开关,监护仪的另一侧设置有数据线,数据线与捆绑布连接在一起,捆绑布的一端设置有大块的纤维面魔术贴,捆绑布的另一端的背面设置有刺毛面魔术贴;所述的纤维面魔术贴设置有体温感知模块;所述的监护仪设置有电子医疗信息端、情绪感知模块、脑电波感知模块、远程诊疗单元、心电波智能分析模块;所述的脑电波感知模块包括多个脑电波传感器和脑电波处理单元;心电波智能分析模块包括智能分析单元及与所述智能分析单元连接的心电信号噪声分析单元、T波交替散点图法心电信号分析单元;所述的智能分析单元包括远程服务器、由病患随身携带的诊断请求器和由心电图工作者使用的上位监控机;脑电波感知模块将采集到的模拟脑电波信号进行放大、滤波、域转变的具体方法为:步骤一、将采集到的模拟脑电波信号进行放大、滤波,得到0.5Hz-100Hz范围内的包括α波、β波、θ波和δ波的模拟脑电波信号;步骤二、将模拟脑电波信号进行模数转换成数字脑电波信号后进行傅里叶变换分别得到α波、β波、θ波和δ波的傅里叶谱,将信号从空间域变换至频率域;步骤三、对包括α波、β波、θ波和δ波的数字脑电波信号进行凯泽窗处理,经幅值分析、时间域分析和频率域分析得到脑电波信号的各项指标参数;T波交替散点图法心电信号分析单元对心电信号中N个连续ST-T心动周期的一组采样点进行FFT快速傅里叶变换分析,其功率谱的计算公式如下:其中,l为整数,且0≤l≤127,N=128,m=7,b为第i个样点的值;0.46~0.49周期/心拍内的噪声视为背景噪声,其平均频率值用Sn表示;0.5周期/心拍处的频率值用S表示,T波交替的功率值记作S,S的计算公式如下:S=S-Sn;当S<0时,说明0.5周期/心拍处的频率值小于背景噪声频率值,S完全被背景噪声覆盖,则T波交替幅度值V=0,判定T波交替不存在;当S>0,T波交替幅度值为:;判定T波交替存在;两个数据段之间si与sj之间距离,采用以下公式:;其中:li为si的长度,lj为sj的长度,设li≤lj,si,k,sj,k+l分别为si,sj数据段上第k,第k+l个点;并将此距离对应为网络中相应结点间边的权值;获取所得网络的点强度分布图;对得到的点强度分布图进行高斯拟合,在此基础上定义统计量R。 2.如权利要求1所述的儿科护理专用心电监护仪,其特征在于,所述心电信号的利用阈值法去噪包括:对信号进行分解,得到尺度系数和小波系数;由噪声能量及分布对每个的尺度选择合适的阈值,对小波系数进行阈值操作得到新的小波系数;由新的小波系数和尺度系数进行重构得到去噪后的信号。 3.如权利要求2所述的儿科护理专用心电监护仪,其特征在于,所述阈值函数有软阈值和硬阈值两种,W是小波系数,Wλ是施加阈值后的小波系数大小:硬阈值函数,当小波系数的绝对值小于给定阈值时,令其为0,而大于时,保持不变,即:Wλ=W,|W|≥λ;0,|W|<λ软阈值函数当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即:阈值函数:Wλ=sgn(W)(|W|-β(λ-|W|)λ),|W|≥λ0,|W|<λ其中,β为正实数且β-1;λ=σ2lgN/lg(j+1)克服软硬阈值法的上述缺点,λ是预先给定的阈值,采用固定阈值进行处理[2、8、11-12],即取λ=σ2lgN,N为ECG信号采样点个数,σ=medican|dj,k|)/0.6745,dj,k为第j层小波变换系数。

说明书

技术领域

本发明属于医疗设备技术领域,尤其涉及一种儿科护理专用心电监护仪。

背景技术

目前,能同时监护病人的动态心电图形、呼吸、体温、血压、血氧饱和度、脉率等生理参数。可存储无创血压数据及测量血压时的心率值、体温、呼吸率、血氧饱和度,并可列表查看; 高精度的无创血压测量模块,精度高、重复性好;独特的血氧饱和测量装置,保证血氧饱和度值和脉率测量更准确;另有丰富的报警上、下限设置功能。心电监护时需要将电极贴片粘贴在身体的相应部位,但儿科护理工作中对于病患儿童的心电监护,粘贴电极贴片会刺激儿童细嫩的皮肤,临床中常常出现皮肤过敏甚至溃疡,另外病患儿童粘贴电极片以后由于自律性差,活动频繁,也经常出现将电极贴片刮蹭脱落的情况,引起监控波形异常,或造成误诊,并且儿童对医疗设备具有抵触情绪,不会很好的配合医疗监护。

发明内容

本发明为解决公知技术中存在的粘贴电极贴片会刺激儿童细嫩的皮肤,临床中常常出现皮肤过敏甚至溃疡,另外病患儿童粘贴电极片以后由于自律性差,活动频繁,也经常出现将电极贴片刮蹭脱落的情况,引起监控波形异常,或造成误诊,并且儿童对医疗设备具有抵触情绪,不会很好的配合医疗监护问题而提供一种结构简单、安装使用方便、提高工作效率的儿科护理专用心电监护仪。

本发明为解决公知技术中存在的技术问题所采取的技术方案是:

一种儿科护理专用心电监护仪包括电源线、监护仪、显示装置、开关、数据线、纤维面魔术贴;

监护仪的一侧设置有电源线,监护仪的正面设置有显示装置,显示装置的右上角设置有开关,监护仪的另一侧设置有数据线,数据线与捆绑布连接在一起,捆绑布的一端设置有大块的纤维面魔术贴,捆绑布的另一端的背面设置有刺毛面魔术贴;

所述的纤维面魔术贴设置有体温感知模块;

所述的监护仪设置有电子医疗信息端、情绪感知模块、脑电波感知模块、远程诊疗单元、心电波智能分析模块;

所述的脑电波感知模块包括多个脑电波传感器和脑电波处理单元。

进一步,所述心电波智能分析模块包括智能分析单元及与所述智能分析单元连接的心电信号噪声分析单元、T 波交替散点图法心电信号分析单元;

所述的智能分析单元包括远程服务器、由病患随身携带的诊断请求器和由心电图工作者使用的上位监控机。

进一步,儿科护理专用心电监护方法包括:

步骤一、选取心电信号,记为:{xi},i=1,2,3,...,n ;其中:i 表示采样点数;并进行心电信号预处理;

步骤二、脑电波感知模块将采集到的模拟脑电波信号进行放大、滤波、域转变处理得到脑电波指标;

步骤三、将心电信号映射为加权的网络,对每次采集的心电信号,以R 波波峰位置为分割点将目标心电信号段切成若干数据段{s1,s2,...sm},每个数据段对应所述复杂网路中的一个结点;然后,定义一对数据段之间的简单距离, 该简单距离即两个数据段之间si 与sj 之间距离;

步骤四、计算心电信号每个心拍周期反映R 波附近噪声水平的噪声指数,设定噪声指数阈值,将计算所得的噪声指数与噪声指数阈值进行比较,统计连续N 个心拍的比较结果;

步骤五、采用T 波窗口分析法,对X个心拍进行采样,每一个心拍采用T 波窗口法选定Y个采样点,将X*Y个相邻心拍的采样点作一次差分,绘制一次差分的T 波散点图;

步骤六、利用快速傅立叶变换将采样点的幅度转化成能量谱并进行叠加平均得到其功率谱曲线图并计算T 波交替幅度值;

步骤七、根据心拍比较结果、噪声水平、T 波交替幅度值、脑电波指标对心电信号水平进行分类,划分噪声等级。

进一步,所述脑电波感知模块将采集到的模拟脑电波信号进行放大、滤波、域转变的具体方法为:

步骤一、将采集到的模拟脑电波信号进行放大、滤波,得到0.5Hz-100Hz 范围内的包括α波、β波、θ波和δ波的模拟脑电波信号;

步骤二、将模拟脑电波信号进行模数转换成数字脑电波信号后进行傅里叶变换分别得到α波、β波、θ波和δ波的傅里叶谱,将信号从空间域变换至频率域;

步骤三、对包括α波、β波、θ波和δ波的数字脑电波信号进行凯泽窗处理, 经幅值分析、时间域分析和频率域分析得到脑电波信号的各项指标参数。

进一步,所述的T 波交替散点图法心电信号分析单元对心电信号中N 个连续ST-T心动周期的一组采样点进行FFT 快速傅里叶变换分析,其功率谱的计算公式如下:

其中,l 为整数,且0 ≤l ≤127,N =128,m=7,bi 为第i 个样点的值;

设定0.46 ~0.49 周期/ 心拍内的噪声视为背景噪声,其平均频率值用Sn 表示;0.5 周期/ 心拍处的频率值用S0.5 表示,T 波交替的功率值记作STWA,STWA 的计算公式如下:STWA=S0.5-Sn;

当STWA<0 时,说明0.5 周期/ 心拍处的频率值小于背景噪声频率值,S0.5 完全被背景噪声覆盖,则T 波交替幅度值VTWA=0,判定T 波交替不存在;当STWA>0,T 波交替幅度值为

判定T 波交替存在。

进一步,两个数据段之间si 与sj 之间距离,采用以下公式:

其中:li 为si 的长度,lj 为sj 的长度,设li ≤ lj,si,k,sj,k+l 分别为si,sj 数据段上第k,第k+l 个点;并将此距离对应为网络中相应结点间边的权值;获取所得网络的点强度分布图;对得到的点强度分布图进行高斯拟合,在此基础上定义统计量Rs。

进一步,所述心电信号的利用阈值法去噪包括:

对信号进行分解,得到尺度系数和小波系数;

由噪声能量及分布对每个的尺度选择合适的阈值,对小波系数进行阈值操作得到新的小波系数;

由新的小波系数和尺度系数进行重构得到去噪后的信号。

进一步,所述阈值函数有软阈值和硬阈值两种, W是小波系数,Wλ 是施加阈值后的小波系数大小:

硬阈值函数,当小波系数的绝对值小于给定阈值时,令其为0,而大于时,保持不变,即:

Wλ=W, |W|≥λ;

0, |W|<λ

软阈值函数 当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即:

阈值函数:

Wλ=sgn(W)( |W|-β(λ-|W|)λ),|W|≥λ

0, |W|<λ

其中,β为正实数且β-1 ;λ=σ2lg N/ lg(j+1)克服软硬阈值法的上述缺点,

λ是预先给定的阈值,采用固定阈值进行处理[2、8、11-12],即取λ=σ2lg N, N 为ECG信号采样点个数,σ=medican|dj,k|)/ 0.6745, dj,k为第j层小波变换系数。

T 波交替幅度值检测方法形态直观且计算简单,对心电信号的噪声水平进行评估分析可避免错误的诊断结果,避免给病人带来不必要的精神和经济损失,利用本发明的方法进行心电信号动力特征分析,首先,利用替代数据算法对采集来的信号进行动力特征识别,通过情绪感知模块、脑电波感知模块可以实时监测儿童生命体征,通过心电波智能分析模块准确分析心电波,并通过远程诊疗单元实现远程监控,工作效率高,智能化程度高。发明克服了软硬阈值法的上述缺点,并且为了抑制Gibbs现象,提出将平移不变法和改进阈值法相结合的去噪方法,去噪结果明显优于硬阈值和软阈值法且有效的抑制了Gibbs现象的产生。

附图说明

图1是本发明实施例提供的儿科护理专用心电监护仪的结构示意图;

图2是本发明实施例提供的捆绑布的结构示意图;

图中:1、电源线;2、监护仪;3、显示装置;4、开关;5、数据线;6、纤维面魔术贴;7、捆绑布;7-1、弹性面;7-2、绒毛面;8、刺毛面魔术贴。

具体实施方式

为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:

请参阅图1、图2所示:该儿科护理专用心电监护仪包括:电源线1、监护仪2、显示装置3、开关4、数据线5、纤维面魔术贴6、捆绑布7、刺毛面魔术贴8;监护仪2的一侧设置有电源线1,监护仪2的正面设置有显示装置3,显示装置3的右上角设置有开关4,监护仪2的另一侧设置有数据线5,数据线5与捆绑布7连接在一起,捆绑布7的一端设置有大块的纤维面魔术贴6,捆绑布7的另一端的背面设置有刺毛面魔术贴8。

所述的捆绑布7设置有两层,分别为弹性面7-1和绒毛面7-2,两个面中间为空。

所述的数据线5末端分为三个接线端,分别为:红色电极贴、黄色电极贴、黑色电极贴。

所述的电源线1的末端设置有插头。

所述的纤维面魔术贴设置有体温感知模块;

所述的监护仪设置有电子医疗信息端、情绪感知模块、脑电波感知模块、远程诊疗单元、心电波智能分析模块;

所述的体温感知模块内置有非接触式红外温度传感器,该非接触式红外温度传感器分别与温差热电堆放大电路以及温度补偿及放大电路相连,温差热电堆放大电路以及温度补偿及放大电路相连分别连接到AD 转换电路,所述的AD 转换电路为一个多路AD 转换电路,AD 转换电路与主控电路相连,主控电路与显示电路以及报警电路相连;所述的非接触式红外温度传感器采用热电堆红外温度传感器实现对体温信号和环境温度信号即温差热电堆微弱的电压信号和电热调节器的热敏电阻信号的非接触检测;

所述的脑电波感知模块包括多个脑电波传感器和脑电波处理单元;

所述的远程诊疗单元包括:

一问诊端,其与电子医疗信息端连接;

至少一专家端,其通过互联网与所述问诊端远程连接;

一数据截取转发器组件,其与所述电子医疗信息端连接,所述数据截取转发器组件无损截取电子医疗信息端内的数据信息后进行无损或有损压缩;

一网络安全传输组件,其与所述数据截取转发器组件连接,将接收自数据截取转发器组件的数据信息进行解密和加密;

一数据中转服务器组件,其与所述网络安全传输组件连接,所述数据中转服务器组件接收网络安全传输组件发送的数据信息,并将该数据信息发送到相应的专家端;

一远程会诊管控服务器,其分别通过互联网与问诊端和至少一专家端连接,对会诊端和专家端的用户进行管理;

所述心电波智能分析模块包括智能分析单元及与所述智能分析单元连接的心电信号噪声分析单元、T 波交替散点图法心电信号分析单元;

所述的智能分析单元包括远程服务器、由病患随身携带的诊断请求器和由心电图工作者使用的上位监控机。

进一步,所述的捆绑布设置有两层,分别为弹性面和绒毛面,两个面中间为空。

进一步,所述的情绪感知模块测量紧张情绪的紧张值T=k1×E1(HRV)+k×E(P)+k×E(R),其中,

k1+ k2+ k3=1 ;

E1(HRV)=φ(HRV)/H0,0<E1(HRV)<1;

φ(HRV)=HRV(t-2)+HRV(t-1)+HRV(t);

E2(P)=(P(t)- P(t-1))/P0,0<E2(P)<1;

E3(R)=(A–R(t))/A,0<E3(R)<1 ;

HRV、P 和R 分别代表心率变化值、血压值和表皮导电阻值,k1,k2,k3为加权系数,分别体现心率变化、血压和表皮导电性对情绪紧张程度度量值的贡献,E1 (HRV)为根据心率变化计算出的情绪紧张程度,E2(P)为根据血压变化计算出的情绪紧张程度,E3 (R)为根据皮肤导电性变化计算出的情绪紧张程度,t 为当前时刻,t-1 为当前时刻的前一时刻,t-2 为当前时刻的前两时刻,φ(HRV) 为t-2 时刻、t-1 时刻与当前时刻的心率变化值之和,HRV(t-2)为t-2 时刻的心率变化值,HRV(t-1) 为t-1 时刻的心率变化值,HRV(t) 为当前时刻的心率变化值,H0 为被测对象正常情绪状态下的心率值,P(t) 为当前时刻的血压值,P(t-1) 为t-1时刻的血压值,P0 为被测对象在正常情绪状态下的血压值,A为被测对象预先测量的皮肤电阻参考值,R(t) 为当前时刻皮肤电阻值。

进一步,所述远程服务器包括内部存储有多种类型心电图测试信号相对应的多种详细诊断方案的存储单元、对诊断请求器所发送的请求诊断心电图测试信号与存储单元内所存储多种类型心电图测试信号进行对比分析并做出未找到对应匹配诊断方案或者匹配到对应诊断方案的匹配结果的诊断方案匹配模块、将诊断方案匹配模块输出的未找到对应匹配诊断方案的匹配结果同步传送至上位监控机且将匹配到对应诊断方案的匹配结果同步传送至诊断请求器的处理器和与处理器相接的参数设置单元,所述参数设置单元、存储单元和诊断方案匹配模块均与处理器相接;所述处理器与诊断请求器之间以无线通信方式进行双向通信,且处理器与上位监控机之间以有线通信方式或无线通信方式进行双向通信。

儿科护理专用心电监护方法包括:

步骤一、选取心电信号,记为:{xi},i=1,2,3,...,n ;其中:i 表示采样点数;并进行心电信号预处理;

步骤二、脑电波感知模块将采集到的模拟脑电波信号进行放大、滤波、域转变处理得到脑电波指标;

步骤三、将心电信号映射为加权的网络,对每次采集的心电信号,以R 波波峰位置为分割点将目标心电信号段切成若干数据段{s1,s2,...sm},每个数据段对应所述复杂网路中的一个结点;然后,定义一对数据段之间的简单距离, 该简单距离即两个数据段之间si 与sj 之间距离;

步骤四、计算心电信号每个心拍周期反映R 波附近噪声水平的噪声指数,设定噪声指数阈值,将计算所得的噪声指数与噪声指数阈值进行比较,统计连续N 个心拍的比较结果;

步骤五、采用T 波窗口分析法,对X个心拍进行采样,每一个心拍采用T 波窗口法选定Y个采样点,将X*Y个相邻心拍的采样点作一次差分,绘制一次差分的T 波散点图;

步骤六、利用快速傅立叶变换将采样点的幅度转化成能量谱并进行叠加平均得到其功率谱曲线图并计算T 波交替幅度值;

步骤七、根据心拍比较结果、噪声水平、T 波交替幅度值、脑电波指标对心电信号水平进行分类,划分噪声等级。

进一步,所述脑电波感知模块将采集到的模拟脑电波信号进行放大、滤波、域转变的具体方法为:

步骤一、将采集到的模拟脑电波信号进行放大、滤波,得到0.5Hz-100Hz 范围内的包括α波、β波、θ波和δ波的模拟脑电波信号;

步骤二、将模拟脑电波信号进行模数转换成数字脑电波信号后进行傅里叶变换分别得到α波、β波、θ波和δ波的傅里叶谱,将信号从空间域变换至频率域;

步骤三、对包括α波、β波、θ波和δ波的数字脑电波信号进行凯泽窗处理, 经幅值分析、时间域分析和频率域分析得到脑电波信号的各项指标参数。

进一步,所述的T 波交替散点图法心电信号分析单元对心电信号中N 个连续ST-T心动周期的一组采样点进行FFT 快速傅里叶变换分析,其功率谱的计算公式如下:

其中,l 为整数,且0 ≤l ≤127,N =128,m=7,bi 为第i 个样点的值;

设定0.46 ~0.49 周期/ 心拍内的噪声视为背景噪声,其平均频率值用Sn 表示;0.5 周期/ 心拍处的频率值用S0.5 表示,T 波交替的功率值记作STWA,STWA 的计算公式如下:STWA=S0.5-Sn;

当STWA<0 时,说明0.5 周期/ 心拍处的频率值小于背景噪声频率值,S0.5 完全被背景噪声覆盖,则T 波交替幅度值VTWA=0,判定T 波交替不存在;当STWA>0,T 波交替幅度值为

判定T 波交替存在。

进一步,两个数据段之间si 与sj 之间距离,采用以下公式:

其中:li 为si 的长度,lj 为sj 的长度,设li ≤ lj,si,k,sj,k+l 分别为si,sj 数据段上第k,第k+l 个点;并将此距离对应为网络中相应结点间边的权值;获取所得网络的点强度分布图;对得到的点强度分布图进行高斯拟合,在此基础上定义统计量Rs。

进一步,所述心电信号的利用阈值法去噪包括:

对信号进行分解,得到尺度系数和小波系数;

由噪声能量及分布对每个的尺度选择合适的阈值,对小波系数进行阈值操作得到新的小波系数;

由新的小波系数和尺度系数进行重构得到去噪后的信号。

进一步,所述阈值函数有软阈值和硬阈值两种, W是小波系数,Wλ 是施加阈值后的小波系数大小:

硬阈值函数,当小波系数的绝对值小于给定阈值时,令其为0,而大于时,保持不变,即:

Wλ=W, |W|≥λ;

0, |W|<λ

软阈值函数 当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即:

阈值函数:

Wλ=sgn(W)( |W|-β(λ-|W|)λ),|W|≥λ

0, |W|<λ

其中,β为正实数且β-1 ;λ=σ2lg N/ lg(j+1)克服软硬阈值法的上述缺点,

λ是预先给定的阈值,采用固定阈值进行处理[2、8、11-12],即取λ=σ2lg N, N 为ECG信号采样点个数,σ=medican|dj,k|)/ 0.6745, dj,k为第j层小波变换系数。

医务人员通过捆绑布7将患者包裹起来,通过红色电极贴、黄色电极贴、黑色电极贴分别放置在捆绑布中间的位置,将红色电极放置于右锁骨下一指处;将黄色电极放置于两乳头中点处;将黑色电极放置于左第五肋与左腋前线交点处。接通电源,打开开关4,然后调节显示装置3成像。

T 波交替幅度值检测方法具有直观形态且计算简单,由于是差值作图,抗干扰性较强,对信号没有高质量要求,不仅可以测得相邻T 波交替幅值,而且包含时域信息。

利用本发明的方法对心电信号的噪声水平进行评估分析后,当所判断的噪声级别过大时(例如为高等级别噪声),心电检测系统此时的心率显示及心律失常报警无效,避免错误的诊断结果,使医护人员做出错误的处置,给病人带来不必要的精神和经济损失。假若没有对它们进行噪声分析,那么心率计算和心律失常分析的准确度会受到极大的影响,利用本发明的方法可以准确的判断它们的噪声水平为高等级别噪声,心电检测系统基于此部分心电图所进行的心率显示和心率失常报警将会无效。

利用本发明的方法进行心电信号动力特征分析,首先,利用替代数据算法对采集来的信号进行动力特征识别;然后, 将识别出的心电信号转化为加权的复杂网络,进而在复杂网络的框架下,利用点强度分布图来捕获不同类型心电信号间动力特征的差异;最后,定义统计量Rs,并根据此统计量成功地将正常心电信号与房颤心电信号区分开。

通过电子医疗信息端、情绪感知模块、脑电波感知模块可以实时监测儿童生命体征,通过心电波智能分析模块准确分析心电波,并通过远程诊疗单元实现远程监控,工作效率高,智能化程度高。

以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

一种儿科护理专用心电监护仪.pdf_第1页
第1页 / 共11页
一种儿科护理专用心电监护仪.pdf_第2页
第2页 / 共11页
一种儿科护理专用心电监护仪.pdf_第3页
第3页 / 共11页
点击查看更多>>
资源描述

《一种儿科护理专用心电监护仪.pdf》由会员分享,可在线阅读,更多相关《一种儿科护理专用心电监护仪.pdf(11页珍藏版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201610338194.5 (22)申请日 2016.05.20 (71)申请人 彭慧敏 地址 276200 山东省临沂市蒙阴县人民医 院 (72)发明人 彭慧敏 (74)专利代理机构 北京志霖恒远知识产权代理 事务所(普通合伙) 11435 代理人 刘子成 (51)Int.Cl. A61B 5/0402(2006.01) A61B 5/0476(2006.01) A61B 5/16(2006.01) (54)发明名称 一种儿科护理专用心电监护仪 (57)摘要 本发明公开了一种。

2、儿科护理专用心电监护 仪, 监护仪设置有体温感知模块、 情绪感知模块、 脑电波感知模块、 远程诊疗单元、 心电波智能分 析模块; 脑电波感知模块包括多个脑电波传感器 和脑电波处理单元。 T 波交替幅度值检测方法形 态直观且计算简单, 对心电信号的噪声水平进行 评估分析可避免错误的诊断结果, 避免给病人带 来不必要的精神和经济损失, 利用本发明的方法 进行心电信号动力特征分析, 利用替代数据算法 对采集来的信号进行动力特征识别, 通过情绪感 知模块、 脑电波感知模块可以实时监测儿童生命 体征, 通过心电波智能分析模块准确分析心电 波, 并通过远程诊疗单元实现远程监控, 工作效 率高, 智能化程度。

3、高。 权利要求书2页 说明书7页 附图1页 CN 106562782 A 2017.04.19 CN 106562782 A 1.一种儿科护理专用心电监护仪, 其特征在于, 该儿科护理专用心电监护仪的监护方 法包括: 步骤一、 选取心电信号, 记为: xi, i=1, 2, 3, ., n ; 其中: i 表示采样点数; 并进行心 电信号预处理; 步骤二、 脑电波感知模块将采集到的模拟脑电波信号进行放大、 滤波、 域转变处理得到 脑电波指标; 步骤三、 将心电信号映射为加权的网络, 对每次采集的心电信号, 以R 波波峰位置为分 割点将目标心电信号段切成若干数据段s1, s2, .sm, 每个数。

4、据段对应所述复杂网路中 的一个结点; 然后, 定义一对数据段之间的简单距离, 该简单距离即两个数据段之间si 与 sj 之间距离; 步骤四、 计算心电信号每个心拍周期反映R 波附近噪声水平的噪声指数, 设定噪声指 数阈值, 将计算所得的噪声指数与噪声指数阈值进行比较, 统计连续N 个心拍的比较结果; 步骤五、 采用T 波窗口分析法, 对X个心拍进行采样, 每一个心拍采用T 波窗口法选定Y 个采样点, 将X*Y个相邻心拍的采样点作一次差分, 绘制一次差分的T 波散点图; 步骤六、 利用快速傅立叶变换将采样点的幅度转化成能量谱并进行叠加平均得到其功 率谱曲线图并计算T 波交替幅度值; 步骤七、 根。

5、据心拍比较结果、 噪声水平、 T 波交替幅度值、 脑电波指标对心电信号水平 进行分类, 划分噪声等级; 所述儿科护理专用心电监护仪, 包括: 电源线、 监护仪、 显示装置、 开关、 数据线、 纤维面 魔术贴; 监护仪的一侧设置有电源线, 监护仪的正面设置有显示装置, 显示装置的右上角设置 有开关, 监护仪的另一侧设置有数据线, 数据线与捆绑布连接在一起, 捆绑布的一端设置有 大块的纤维面魔术贴, 捆绑布的另一端的背面设置有刺毛面魔术贴; 所述的纤维面魔术贴设置有体温感知模块; 所述的监护仪设置有电子医疗信息端、 情绪感知模块、 脑电波感知模块、 远程诊疗单 元、 心电波智能分析模块; 所述的脑。

6、电波感知模块包括多个脑电波传感器和脑电波处理单元; 心电波智能分析模块包括智能分析单元及与所述智能分析单元连接的心电信号噪声 分析单元、 T 波交替散点图法心电信号分析单元; 所述的智能分析单元包括远程服务器、 由病患随身携带的诊断请求器和由心电图工作 者使用的上位监控机; 脑电波感知模块将采集到的模拟脑电波信号进行放大、 滤波、 域转变的具体方法为: 步骤一、 将采集到的模拟脑电波信号进行放大、 滤波, 得到0.5Hz-100Hz 范围内的包括 波、 波、 波和 波的模拟脑电波信号; 步骤二、 将模拟脑电波信号进行模数转换成数字脑电波信号后进行傅里叶变换分别得 到 波、 波、 波和 波的傅里。

7、叶谱, 将信号从空间域变换至频率域; 步骤三、 对包括 波、 波、 波和 波的数字脑电波信号进行凯泽窗处理, 经幅值分析、 时间域分析和频率域分析得到脑电波信号的各项指标参数; T 波交替散点图法心电信号分析单元对心电信号中N 个连续ST-T心动周期的一组采 权 利 要 求 书 1/2 页 2 CN 106562782 A 2 样点进行FFT 快速傅里叶变换分析, 其功率谱的计算公式如下: 其中, l 为整数, 且0 l 127, N 128, m=7, bi 为第i 个样点的值; 0.460.49 周期/ 心拍内的噪声视为背景噪声, 其平均频率值用Sn 表示; 0.5 周期/ 心拍处的频率值。

8、用S0.5 表示, T 波交替的功率值记作STWA, STWA 的计算公式如下: STWA=S0.5- Sn; 当STWA0, T 波交替幅度值为: ; 判定T 波交替存在; 两个数据段之间si 与sj 之间距离, 采用以下公式: ; 其中: li 为si 的长度, lj 为sj 的长度, 设li lj, si, k, sj, k+l 分别为si, sj 数 据段上第k, 第k+l 个点; 并将此距离对应为网络中相应结点间边的权值; 获取所得网络的 点强度分布图; 对得到的点强度分布图进行高斯拟合, 在此基础上定义统计量Rs。 2.如权利要求1所述的儿科护理专用心电监护仪, 其特征在于, 所述。

9、心电信号的利用阈 值法去噪包括: 对信号进行分解, 得到尺度系数和小波系数; 由噪声能量及分布对每个的尺度选择合适的阈值, 对小波系数进行阈值操作得到新的 小波系数; 由新的小波系数和尺度系数进行重构得到去噪后的信号。 3.如权利要求2所述的儿科护理专用心电监护仪, 其特征在于, 所述阈值函数有软阈值 和硬阈值两种, W是小波系数, W 是施加阈值后的小波系数大小: 硬阈值函数, 当小波系数的绝对值小于给定阈值时, 令其为0, 而大于时, 保持不变, 即: W =W, |W| ; 0, |W| 软阈值函数 当小波系数的绝对值小于给定阈值时, 令其为0, 大于阈值时, 令其都减去 阈值, 即: 。

10、阈值函数: W =sgn(W)( |W|- ( -|W|) ), |W| 0, |W| 其中, 为正实数且 -1 ; = 2lg N/ lg(j+1)克服软硬阈值法的上述缺点, 是预先给定的阈值, 采用固定阈值进行处理 2、 8、 11-12 , 即取 = 2lg N, N 为ECG信 号采样点个数, =medican|dj, k|)/ 0.6745, dj, k为第j层小波变换系数。 权 利 要 求 书 2/2 页 3 CN 106562782 A 3 一种儿科护理专用心电监护仪 技术领域 0001 本发明属于医疗设备技术领域, 尤其涉及一种儿科护理专用心电监护仪。 背景技术 0002 目前。

11、, 能同时监护病人的动态心电图形、 呼吸、 体温、 血压、 血氧饱和度、 脉率等生 理参数。 可存储无创血压数据及测量血压时的心率值、 体温、 呼吸率、 血氧饱和度, 并可列表 查看; 高精度的无创血压测量模块, 精度高、 重复性好; 独特的血氧饱和测量装置, 保证血 氧饱和度值和脉率测量更准确; 另有丰富的报警上、 下限设置功能。 心电监护时需要将电极 贴片粘贴在身体的相应部位, 但儿科护理工作中对于病患儿童的心电监护, 粘贴电极贴片 会刺激儿童细嫩的皮肤, 临床中常常出现皮肤过敏甚至溃疡, 另外病患儿童粘贴电极片以 后由于自律性差, 活动频繁, 也经常出现将电极贴片刮蹭脱落的情况, 引起监。

12、控波形异常, 或造成误诊, 并且儿童对医疗设备具有抵触情绪, 不会很好的配合医疗监护。 发明内容 0003 本发明为解决公知技术中存在的粘贴电极贴片会刺激儿童细嫩的皮肤, 临床中常 常出现皮肤过敏甚至溃疡, 另外病患儿童粘贴电极片以后由于自律性差, 活动频繁, 也经常 出现将电极贴片刮蹭脱落的情况, 引起监控波形异常, 或造成误诊, 并且儿童对医疗设备具 有抵触情绪, 不会很好的配合医疗监护问题而提供一种结构简单、 安装使用方便、 提高工作 效率的儿科护理专用心电监护仪。 0004 本发明为解决公知技术中存在的技术问题所采取的技术方案是: 一种儿科护理专用心电监护仪包括电源线、 监护仪、 显示。

13、装置、 开关、 数据线、 纤维面魔 术贴; 监护仪的一侧设置有电源线, 监护仪的正面设置有显示装置, 显示装置的右上角设置 有开关, 监护仪的另一侧设置有数据线, 数据线与捆绑布连接在一起, 捆绑布的一端设置有 大块的纤维面魔术贴, 捆绑布的另一端的背面设置有刺毛面魔术贴; 所述的纤维面魔术贴设置有体温感知模块; 所述的监护仪设置有电子医疗信息端、 情绪感知模块、 脑电波感知模块、 远程诊疗单 元、 心电波智能分析模块; 所述的脑电波感知模块包括多个脑电波传感器和脑电波处理单元。 0005 进一步, 所述心电波智能分析模块包括智能分析单元及与所述智能分析单元连接 的心电信号噪声分析单元、 T 。

14、波交替散点图法心电信号分析单元; 所述的智能分析单元包括远程服务器、 由病患随身携带的诊断请求器和由心电图工作 者使用的上位监控机。 0006 进一步, 儿科护理专用心电监护方法包括: 步骤一、 选取心电信号, 记为: xi, i=1, 2, 3, ., n ; 其中: i 表示采样点数; 并进行心 电信号预处理; 说 明 书 1/7 页 4 CN 106562782 A 4 步骤二、 脑电波感知模块将采集到的模拟脑电波信号进行放大、 滤波、 域转变处理得到 脑电波指标; 步骤三、 将心电信号映射为加权的网络, 对每次采集的心电信号, 以R 波波峰位置为分 割点将目标心电信号段切成若干数据段s。

15、1, s2, .sm, 每个数据段对应所述复杂网路中 的一个结点; 然后, 定义一对数据段之间的简单距离, 该简单距离即两个数据段之间si 与 sj 之间距离; 步骤四、 计算心电信号每个心拍周期反映R 波附近噪声水平的噪声指数, 设定噪声指 数阈值, 将计算所得的噪声指数与噪声指数阈值进行比较, 统计连续N 个心拍的比较结果; 步骤五、 采用T 波窗口分析法, 对X个心拍进行采样, 每一个心拍采用T 波窗口法选定Y 个采样点, 将X*Y个相邻心拍的采样点作一次差分, 绘制一次差分的T 波散点图; 步骤六、 利用快速傅立叶变换将采样点的幅度转化成能量谱并进行叠加平均得到其功 率谱曲线图并计算T。

16、 波交替幅度值; 步骤七、 根据心拍比较结果、 噪声水平、 T 波交替幅度值、 脑电波指标对心电信号水平 进行分类, 划分噪声等级。 0007 进一步, 所述脑电波感知模块将采集到的模拟脑电波信号进行放大、 滤波、 域转变 的具体方法为: 步骤一、 将采集到的模拟脑电波信号进行放大、 滤波, 得到0.5Hz-100Hz 范围内的包括 波、 波、 波和 波的模拟脑电波信号; 步骤二、 将模拟脑电波信号进行模数转换成数字脑电波信号后进行傅里叶变换分别得 到 波、 波、 波和 波的傅里叶谱, 将信号从空间域变换至频率域; 步骤三、 对包括 波、 波、 波和 波的数字脑电波信号进行凯泽窗处理, 经幅值。

17、分析、 时间域分析和频率域分析得到脑电波信号的各项指标参数。 0008 进一步, 所述的T 波交替散点图法心电信号分析单元对心电信号中N 个连续ST-T 心动周期的一组采样点进行FFT 快速傅里叶变换分析, 其功率谱的计算公式如下: 其中, l 为整数, 且0 l 127, N 128, m=7, bi 为第i 个样点的值; 设定0.46 0.49 周期/ 心拍内的噪声视为背景噪声, 其平均频率值用Sn 表示; 0.5 周期/ 心拍处的频率值用S0.5 表示, T 波交替的功率值记作STWA, STWA 的计算公式如下: STWA= S0.5-Sn; 当STWA0, T 波交替幅度值为 ; 判。

18、定T 波交替存在。 0009 进一步, 两个数据段之间si 与sj 之间距离, 采用以下公式: 说 明 书 2/7 页 5 CN 106562782 A 5 其中: li 为si 的长度, lj 为sj 的长度, 设li lj, si, k, sj, k+l 分别为si, sj 数 据段上第k, 第k+l 个点; 并将此距离对应为网络中相应结点间边的权值; 获取所得网络的 点强度分布图; 对得到的点强度分布图进行高斯拟合, 在此基础上定义统计量Rs。 0010 进一步, 所述心电信号的利用阈值法去噪包括: 对信号进行分解, 得到尺度系数和小波系数; 由噪声能量及分布对每个的尺度选择合适的阈值,。

19、 对小波系数进行阈值操作得到新的 小波系数; 由新的小波系数和尺度系数进行重构得到去噪后的信号。 0011 进一步, 所述阈值函数有软阈值和硬阈值两种, W是小波系数, W 是施加阈值后 的小波系数大小: 硬阈值函数, 当小波系数的绝对值小于给定阈值时, 令其为0, 而大于时, 保持不变, 即: W =W, |W| ; 0, |W| 软阈值函数 当小波系数的绝对值小于给定阈值时, 令其为0, 大于阈值时, 令其都减去 阈值, 即: 阈值函数: W =sgn(W)( |W|- ( -|W|) ), |W| 0, |W| 其中, 为正实数且 -1 ; = 2lg N/ lg(j+1)克服软硬阈值法。

20、的上述缺点, 是预先给定的阈值, 采用固定阈值进行处理 2、 8、 11-12 , 即取 = 2lg N, N 为ECG信 号采样点个数, =medican|dj, k|)/ 0.6745, dj, k为第j层小波变换系数。 0012 T 波交替幅度值检测方法形态直观且计算简单, 对心电信号的噪声水平进行评估 分析可避免错误的诊断结果, 避免给病人带来不必要的精神和经济损失, 利用本发明的方 法进行心电信号动力特征分析, 首先, 利用替代数据算法对采集来的信号进行动力特征识 别, 通过情绪感知模块、 脑电波感知模块可以实时监测儿童生命体征, 通过心电波智能分析 模块准确分析心电波, 并通过远程。

21、诊疗单元实现远程监控, 工作效率高, 智能化程度高。 发 明克服了软硬阈值法的上述缺点, 并且为了抑制Gibbs现象, 提出将平移不变法和改进阈值 法相结合的去噪方法, 去噪结果明显优于硬阈值和软阈值法且有效的抑制了Gibbs现象的 产生。 0013 附图说明 0014 图1是本发明实施例提供的儿科护理专用心电监护仪的结构示意图; 图2是本发明实施例提供的捆绑布的结构示意图; 图中: 1、 电源线; 2、 监护仪; 3、 显示装置; 4、 开关; 5、 数据线; 6、 纤维面魔术贴; 7、 捆绑 布; 7-1、 弹性面; 7-2、 绒毛面; 8、 刺毛面魔术贴。 具体实施方式 0015 为能进。

22、一步了解本发明的发明内容、 特点及功效, 兹例举以下实施例, 并配合附图 说 明 书 3/7 页 6 CN 106562782 A 6 详细说明如下: 请参阅图1、 图2所示: 该儿科护理专用心电监护仪包括: 电源线1、 监护仪2、 显示装置3、 开关4、 数据线5、 纤维面魔术贴6、 捆绑布7、 刺毛面魔术贴8; 监护仪2的一侧设置有电源线1, 监护仪2的正面设置有显示装置3, 显示装置3的右上角设置有开关4, 监护仪2的另一侧设置 有数据线5, 数据线5与捆绑布7连接在一起, 捆绑布7的一端设置有大块的纤维面魔术贴6, 捆绑布7的另一端的背面设置有刺毛面魔术贴8。 0016 所述的捆绑布7。

23、设置有两层, 分别为弹性面7-1和绒毛面7-2, 两个面中间为空。 0017 所述的数据线5末端分为三个接线端, 分别为: 红色电极贴、 黄色电极贴、 黑色电极 贴。 0018 所述的电源线1的末端设置有插头。 0019 所述的纤维面魔术贴设置有体温感知模块; 所述的监护仪设置有电子医疗信息端、 情绪感知模块、 脑电波感知模块、 远程诊疗单 元、 心电波智能分析模块; 所述的体温感知模块内置有非接触式红外温度传感器, 该非接触式红外温度传感器分 别与温差热电堆放大电路以及温度补偿及放大电路相连, 温差热电堆放大电路以及温度补 偿及放大电路相连分别连接到AD 转换电路, 所述的AD 转换电路为一。

24、个多路AD 转换电路, AD 转换电路与主控电路相连, 主控电路与显示电路以及报警电路相连; 所述的非接触式红 外温度传感器采用热电堆红外温度传感器实现对体温信号和环境温度信号即温差热电堆 微弱的电压信号和电热调节器的热敏电阻信号的非接触检测; 所述的脑电波感知模块包括多个脑电波传感器和脑电波处理单元; 所述的远程诊疗单元包括: 一问诊端, 其与电子医疗信息端连接; 至少一专家端, 其通过互联网与所述问诊端远程连接; 一数据截取转发器组件, 其与所述电子医疗信息端连接, 所述数据截取转发器组件无 损截取电子医疗信息端内的数据信息后进行无损或有损压缩; 一网络安全传输组件, 其与所述数据截取转发。

25、器组件连接, 将接收自数据截取转发器 组件的数据信息进行解密和加密; 一数据中转服务器组件, 其与所述网络安全传输组件连接, 所述数据中转服务器组件 接收网络安全传输组件发送的数据信息, 并将该数据信息发送到相应的专家端; 一远程会诊管控服务器, 其分别通过互联网与问诊端和至少一专家端连接, 对会诊端 和专家端的用户进行管理; 所述心电波智能分析模块包括智能分析单元及与所述智能分析单元连接的心电信号 噪声分析单元、 T 波交替散点图法心电信号分析单元; 所述的智能分析单元包括远程服务器、 由病患随身携带的诊断请求器和由心电图工作 者使用的上位监控机。 0020 进一步, 所述的捆绑布设置有两层。

26、, 分别为弹性面和绒毛面, 两个面中间为空。 0021 进一步, 所述的情绪感知模块测量紧张情绪的紧张值T=k1E1(HRV)+kE(P)+k E(R), 其中, k1+ k2+ k3=1 ; 说 明 书 4/7 页 7 CN 106562782 A 7 E1(HRV)=(HRV)/H0, 0E1(HRV)1; (HRV)=HRV(t-2)+HRV(t-1)+HRV(t); E2(P)=(P(t)- P(t-1)/P0, 0E2(P)1; E3(R)=(AR(t)/A, 0E3(R)1 ; HRV、 P 和R 分别代表心率变化值、 血压值和表皮导电阻值, k1, k2, k3为加权系数, 分别。

27、 体现心率变化、 血压和表皮导电性对情绪紧张程度度量值的贡献, E1 (HRV)为根据心率变 化计算出的情绪紧张程度, E2(P)为根据血压变化计算出的情绪紧张程度, E3 (R)为根据皮 肤导电性变化计算出的情绪紧张程度, t 为当前时刻, t-1 为当前时刻的前一时刻, t-2 为 当前时刻的前两时刻, (HRV) 为t-2 时刻、 t-1 时刻与当前时刻的心率变化值之和, HRV (t-2)为t-2 时刻的心率变化值, HRV(t-1) 为t-1 时刻的心率变化值, HRV(t) 为当前时刻 的心率变化值, H0 为被测对象正常情绪状态下的心率值, P(t) 为当前时刻的血压值, P(t。

28、- 1) 为t-1时刻的血压值, P0 为被测对象在正常情绪状态下的血压值, A为被测对象预先测 量的皮肤电阻参考值, R(t) 为当前时刻皮肤电阻值。 0022 进一步, 所述远程服务器包括内部存储有多种类型心电图测试信号相对应的多种 详细诊断方案的存储单元、 对诊断请求器所发送的请求诊断心电图测试信号与存储单元内 所存储多种类型心电图测试信号进行对比分析并做出未找到对应匹配诊断方案或者匹配 到对应诊断方案的匹配结果的诊断方案匹配模块、 将诊断方案匹配模块输出的未找到对应 匹配诊断方案的匹配结果同步传送至上位监控机且将匹配到对应诊断方案的匹配结果同 步传送至诊断请求器的处理器和与处理器相接的。

29、参数设置单元, 所述参数设置单元、 存储 单元和诊断方案匹配模块均与处理器相接; 所述处理器与诊断请求器之间以无线通信方式 进行双向通信, 且处理器与上位监控机之间以有线通信方式或无线通信方式进行双向通 信。 0023 儿科护理专用心电监护方法包括: 步骤一、 选取心电信号, 记为: xi, i=1, 2, 3, ., n ; 其中: i 表示采样点数; 并进行心 电信号预处理; 步骤二、 脑电波感知模块将采集到的模拟脑电波信号进行放大、 滤波、 域转变处理得到 脑电波指标; 步骤三、 将心电信号映射为加权的网络, 对每次采集的心电信号, 以R 波波峰位置为分 割点将目标心电信号段切成若干数据。

30、段s1, s2, .sm, 每个数据段对应所述复杂网路中 的一个结点; 然后, 定义一对数据段之间的简单距离, 该简单距离即两个数据段之间si 与 sj 之间距离; 步骤四、 计算心电信号每个心拍周期反映R 波附近噪声水平的噪声指数, 设定噪声指 数阈值, 将计算所得的噪声指数与噪声指数阈值进行比较, 统计连续N 个心拍的比较结果; 步骤五、 采用T 波窗口分析法, 对X个心拍进行采样, 每一个心拍采用T 波窗口法选定Y 个采样点, 将X*Y个相邻心拍的采样点作一次差分, 绘制一次差分的T 波散点图; 步骤六、 利用快速傅立叶变换将采样点的幅度转化成能量谱并进行叠加平均得到其功 率谱曲线图并计。

31、算T 波交替幅度值; 步骤七、 根据心拍比较结果、 噪声水平、 T 波交替幅度值、 脑电波指标对心电信号水平 进行分类, 划分噪声等级。 说 明 书 5/7 页 8 CN 106562782 A 8 0024 进一步, 所述脑电波感知模块将采集到的模拟脑电波信号进行放大、 滤波、 域转变 的具体方法为: 步骤一、 将采集到的模拟脑电波信号进行放大、 滤波, 得到0.5Hz-100Hz 范围内的包括 波、 波、 波和 波的模拟脑电波信号; 步骤二、 将模拟脑电波信号进行模数转换成数字脑电波信号后进行傅里叶变换分别得 到 波、 波、 波和 波的傅里叶谱, 将信号从空间域变换至频率域; 步骤三、 对。

32、包括 波、 波、 波和 波的数字脑电波信号进行凯泽窗处理, 经幅值分析、 时间域分析和频率域分析得到脑电波信号的各项指标参数。 0025 进一步, 所述的T 波交替散点图法心电信号分析单元对心电信号中N 个连续ST-T 心动周期的一组采样点进行FFT 快速傅里叶变换分析, 其功率谱的计算公式如下: 其中, l 为整数, 且0 l 127, N 128, m=7, bi 为第i 个样点的值; 设定0.46 0.49 周期/ 心拍内的噪声视为背景噪声, 其平均频率值用Sn 表示; 0.5 周期/ 心拍处的频率值用S0.5 表示, T 波交替的功率值记作STWA, STWA 的计算公式如下: STW。

33、A= S0.5-Sn; 当STWA0, T 波交替幅度值为 ; 判定T 波交替存在。 0026 进一步, 两个数据段之间si 与sj 之间距离, 采用以下公式: 其中: li 为si 的长度, lj 为sj 的长度, 设li lj, si, k, sj, k+l 分别为si, sj 数 据段上第k, 第k+l 个点; 并将此距离对应为网络中相应结点间边的权值; 获取所得网络的 点强度分布图; 对得到的点强度分布图进行高斯拟合, 在此基础上定义统计量Rs。 0027 进一步, 所述心电信号的利用阈值法去噪包括: 对信号进行分解, 得到尺度系数和小波系数; 由噪声能量及分布对每个的尺度选择合适的阈。

34、值, 对小波系数进行阈值操作得到新的 小波系数; 由新的小波系数和尺度系数进行重构得到去噪后的信号。 0028 进一步, 所述阈值函数有软阈值和硬阈值两种, W是小波系数, W 是施加阈值后 的小波系数大小: 硬阈值函数, 当小波系数的绝对值小于给定阈值时, 令其为0, 而大于时, 保持不变, 即: W =W, |W| ; 0, |W| 软阈值函数 当小波系数的绝对值小于给定阈值时, 令其为0, 大于阈值时, 令其都减去 说 明 书 6/7 页 9 CN 106562782 A 9 阈值, 即: 阈值函数: W =sgn(W)( |W|- ( -|W|) ), |W| 0, |W| 其中, 为。

35、正实数且 -1 ; = 2lg N/ lg(j+1)克服软硬阈值法的上述缺点, 是预先给定的阈值, 采用固定阈值进行处理 2、 8、 11-12 , 即取 = 2lg N, N 为ECG信 号采样点个数, =medican|dj, k|)/ 0.6745, dj, k为第j层小波变换系数。 0029 医务人员通过捆绑布7将患者包裹起来, 通过红色电极贴、 黄色电极贴、 黑色电极 贴分别放置在捆绑布中间的位置, 将红色电极放置于右锁骨下一指处; 将黄色电极放置于 两乳头中点处; 将黑色电极放置于左第五肋与左腋前线交点处。 接通电源, 打开开关4, 然后 调节显示装置3成像。 0030 T 波交替。

36、幅度值检测方法具有直观形态且计算简单, 由于是差值作图, 抗干扰性 较强, 对信号没有高质量要求, 不仅可以测得相邻T 波交替幅值, 而且包含时域信息。 0031 利用本发明的方法对心电信号的噪声水平进行评估分析后, 当所判断的噪声级别 过大时 (例如为高等级别噪声) , 心电检测系统此时的心率显示及心律失常报警无效, 避免 错误的诊断结果, 使医护人员做出错误的处置, 给病人带来不必要的精神和经济损失。 假若 没有对它们进行噪声分析, 那么心率计算和心律失常分析的准确度会受到极大的影响, 利 用本发明的方法可以准确的判断它们的噪声水平为高等级别噪声, 心电检测系统基于此部 分心电图所进行的心。

37、率显示和心率失常报警将会无效。 0032 利用本发明的方法进行心电信号动力特征分析, 首先, 利用替代数据算法对采集 来的信号进行动力特征识别; 然后, 将识别出的心电信号转化为加权的复杂网络, 进而在 复杂网络的框架下, 利用点强度分布图来捕获不同类型心电信号间动力特征的差异; 最后, 定义统计量Rs, 并根据此统计量成功地将正常心电信号与房颤心电信号区分开。 0033 通过电子医疗信息端、 情绪感知模块、 脑电波感知模块可以实时监测儿童生命体 征, 通过心电波智能分析模块准确分析心电波, 并通过远程诊疗单元实现远程监控, 工作效 率高, 智能化程度高。 0034 以上所述仅是对本发明的较佳实施例而已, 并非对本发明作任何形式上的限制, 凡是依据本发明的技术实质对以上实施例所做的任何简单修改, 等同变化与修饰, 均属于 本发明技术方案的范围内。 说 明 书 7/7 页 10 CN 106562782 A 10 图1 图2 说 明 书 附 图 1/1 页 11 CN 106562782 A 11 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 >


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1