可生物降解的内置假体结构及其制造方法.pdf

上传人:Y0****01 文档编号:80299 上传时间:2018-01-23 格式:PDF 页数:13 大小:2.80MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410343171.4

申请日:

2008.01.18

公开号:

CN104127270A

公开日:

2014.11.05

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):A61F 2/915申请日:20080118|||公开

IPC分类号:

A61F2/915(2013.01)I; A61L31/06; A61L31/14; A61L31/04

主分类号:

A61F2/915

申请人:

万能医药公司

发明人:

郑小霞; J·严; V·巴塔

地址:

美国加利福尼亚州

优先权:

2007.01.19 US 60/885,700

专利代理机构:

北京安信方达知识产权代理有限公司 11262

代理人:

惠磊;郑霞

PDF下载: PDF下载
内容摘要

提供了由具有所需的可生物降解特性的无定形聚合物形成的可生物降解的内置假体。通过改性以提高结晶度来提高这种无定形聚合物的强度,同时不显著增加生物降解时间。

权利要求书

1.  一种制造可生物降解的假体的方法,所述方法包括:
提供具有初始直径的管状体,其中所述管状体至少部分地由无定形的可生物降解的聚合物组成,且同时所述直径保持不变;
对所述无定形聚合物进行改性以引入所需的结晶度;以及
使所述管状体图案化以形成能够径向收缩和扩张的结构。

2.
  如权利要求1所述的方法,其中所述可生物降解的假体在2年内降解。

3.
  如权利要求1或2所述的方法,其中所述可生物降解的假体在1年内降解。

4.
  如权利要求1-3之一所述的方法,其中在生理学条件下1个月后所述可生物降解的假体保留至少70%的强度。

5.
  如权利要求1-4之一所述的方法,其中所述管状体由聚(L-丙交酯-共-乙交酯)形成。

6.
  如权利要求1-5之一所述的方法,其中所述聚合物在改性后的弹性模量至少为0.5GPa。

7.
  如权利要求1-6之一所述的方法,其中所述聚合物包括药物,所述药物与所述管状体整体成形。

8.
  如权利要求1-7之一所述的方法,其中所述管状体在图案化之后进行改性。

9.
  如权利要求1-8之一所述的方法,其中所述改性包括在真空或非真空下加热、冷却、加压、加入添加剂、交联中的至少一种。

10.
  如权利要求1-9之一所述的方法,其中所述改性包括将所述管状体加热至超过所述聚合物的玻璃化转变温度且低于所述聚合物的熔点的温度,以及冷却所述管状体以提高所述聚合物的结晶度。

说明书

可生物降解的内置假体结构及其制造方法
本申请是2008年1月18日提交的发明名称为“可生物降解的内置假体结构及其制造方法”的第200880006680.0号中国专利申请的分案申请。
发明背景
1.发明领域
本发明一般涉及医疗装置及其制造方法。具体说,本发明涉及植入后强度提高且持久性受控的可生物降解的内置假体,例如支架的制造。
支架通常为管形装置,用于使血管或体内其他管腔,例如冠状动脉、颈动脉、隐静脉移植物或股动脉的一部分保持打开或得到增强。它们也适用于支承和阻止可能阻塞体腔的切开的动脉内衬,以稳定斑块,或支承生物瓣。支架可由各种材料制成,尤其是聚合和/或金属材料,可以是非降解的、可生物降解的、或者同时由可降解和非生物性组件构成。通常采用导管将支架递送至体内管腔中的目标区域。对于球囊扩张式支架,将支架安装到球囊导管上,引导至适当区域,使球囊膨胀来扩张支架。自扩张式支架可递送至目标区域,释放并扩张至所需的直径以治疗疾病。支架也可溶出各种药物或药理学试剂。
本发明尤其感兴趣的可生物降解的支架及其他内置假体通常由聚合物形成,所述聚合物在血管或其他管腔环境中随时间通过水解或其他反应机制而降解。通常,所要求的是内置假体在体内管腔完成所需支承功能后能够完全降解。通常,完全降解所要求的是植入后不到2年,常常不到1年,通常在几个月内降解。然而,许多可生物降解的内置假体维持的时间比要求的更长,常常在支承或药物递送功能结束后长时间留在原处。许多可生物降解的内置假体之所以滞留时间延长,常常是因为希望提高其强度。人们常常对聚合物构建材料进行加固,例如通过掺入具有较高结晶性的材料,使其具有所需的支承作用,但降解时间比所要求的要长。
出于这些原因,希望提供改良的内置假体及其制造方法,所述内置假体具有受控的强度和持久性。具体说,希望能够提高某些可生物降解的材料的强度,使其在被引入支架和其他内置假体时具有提高的强度而其降解持续时间不会显著延长。而且,希望能够在制造过程中控制降解持续时间,从而制备在保持强度提高的同时具有不同降解持续时间的内置假体。下面描述的本发明满足了这些目标中的至少一些。
2.背景技术
支架中采用的纤丝和其他组件的热焖火处理和其他处理方式参见US5,980,564、US 6,245,103和US 6,626,939。聚合物支架涂层的热处理在指定美国的共同拥有、共同待批的申请PCT/US07/81996中有描述。
发明概述
本发明提供了改良的可生物降解的内置假体及其制造方法。该内置假体由无定形可生物降解的聚合物形成。之所以使用无定形聚合物是有利的,是因为它们能提供相对较短的生物降解持续时间,通常不到2年,常常不到1年,经常不到9个月,有时不到6个月,或者甚至更短。本发明依赖于对无定形聚合物进行改性,以引入所需的结晶度。发明人已发现,将结晶性引入无定形聚合物能提高聚合物的强度,使其适合用作内置假体而不会显著增加植入后的生物降解持续时间。
所述高度无定形聚合物的结晶度在改性前低于10%。改性后,相对于无定形材料最初的结晶度,结晶度通常增加至少20%,优选至少100%,更优选至少1000%。目前优选的聚合物材料在改性后的结晶度为10%-20%,如下文所述。本文所用术语“结晶度”表示聚合物基质内结构的有序度或完美度。
结晶度可通过差示扫描量热法进行测量(Reading,M.等,用调制温度差示扫描量热法测定聚合物的结晶度(Measurement of cyrstallinity in polymers using modulated temperature differential scanning calorimetry),《动态和调制热分析技术对材料的表征》(Material Characterization by Dynamic and Modulated Thermal Analytical Techniques),ASTM STP 1402,Riga,A.T.等编著,(2001) 第17-31页)。
本发明制造可生物降解的假体的方法包括:提供具有一定初始直径的管状体,所述管状体至少部分地由基本无定形的可生物降解的聚合物组成。将管状体加热至超过其玻璃化转变温度但低于其熔点的温度。然后使管状体冷却以提高聚合物的结晶度。在焖火处理工艺之前或之后,使管状体图案化,形成能够径向收缩和扩张的结构,以提供支架或其他内置假体。
通常,管状体的制造也是本发明方法的一部分。制造过程可通过各种常规过程进行,例如挤压、模塑、浸渍等。优选的制造过程包括将溶解在溶剂中的聚合物喷射到圆柱形心轴或其他结构上。任选地,将诸如强度增加材料、药物等添加剂与聚合物一起溶解到溶剂中,使得该材料可与内置假体管一体成形或整体成形。或者,该方法可依赖于从供应商处或其他外部来源获得预先成形的聚合物管。
聚合物管状体通常形成基本连续的圆筒,没有洞或其他不连续结构。一般,管状体的外径为2-10毫米,厚度为0.01-0.5毫米,可切割成适合单个内置假体的长度,通常为5-40毫米。
管状体可由具有所需降解特征的任何无定形聚合物形成,其中聚合物可根据本发明方法改性以具有所需的强度特征。示例性的无定形聚合物包括:聚-DL-丙交酯、聚丙交酯-共-乙丙交酯(glycolactide);聚丙交酯-共-聚已酸内酯、聚(L-丙交酯-共-1,3-丙二醇碳酸酯)[poly(L-lactide-co-trimethylene carbonate)]、聚1,3-丙二醇碳酸酯(polytrimethylene carbonate)和共聚物;聚羟基丁酸酯和共聚物;聚羟基戊酸酯和共聚物;聚原酸酯和共聚物;聚酐和共聚物;聚亚氨基碳酸酯和共聚物,等等。尤其优选的聚合物包括L-丙交酯和乙交酯的共聚物,优选重量比为85%L-丙交酯与15%乙交酯。
焖火处理工艺的加热阶段通常持续1分钟到3小时,冷却通常至环境温度或更低。然而,下面的发明详述中也描述了其他合适的温度和时间。
使管状体图案化,形成合适的内置假体结构,通常通过激光切割或其他常规过程进行。通常在焖火处理过程之后进行图案化,但也可在焖火处理过程之前进行。可选地,可能希望在进行图案化之前或之后都进行管状体的焖火处理,在一些情况下可进行额外的焖火处理步骤,使得支架在制造过程期 间经历三次、四次或更多次焖火处理步骤。
内置假体图案可以是常规内置假体中采用的任何合适的图案类型。各种示例性的图案在与本申请同日提交的共同拥有的、共同待批的申请11/_______(律师案卷号022265-000510US)中描述,其全部内容被纳入本文作为参考。
除制造方法之外,本发明还提供了可生物降解的假体,假体包括至少部分地由基本无定形的可生物降解降的聚合物构成的管状体。可生物降解的聚合物经处理以在无定形聚合物中产生球晶,在初始结晶度的基础上将结晶度提高至少20%。假体的其他优选方面已结合制造方法在上文中描述。
附图简要说明
图1是本发明方法主要步骤的框图。
图2A和2B显示了可用本发明方法制造的示例性的支架结构。
图3显示了具有径向扩张构型的图2A和2B的支架。
图4显示了本发明实施例中采用的支架图案。
发明详述
无定形可生物降解的聚合物(结晶度小于10%)比结晶聚合物降解更快,但强度不如结晶聚合物,因而通常不适合用于需要足够的强度以为血管提供支撑的血管植入体,例如支架。本发明提供了对无定形聚合物材料的改性方法,使其适合用于可生物降解的支架及其他内置假体。适用于根据本发明进行改性的无定形材料包括但不限于:聚-DL-丙交酯、聚丙交酯-共-乙丙交酯(glycolactide);聚丙交酯-共-聚已酸内酯、聚(L-丙交酯-共-1,3-丙二醇碳酸酯)、聚1,3-丙二醇碳酸酯和共聚物;聚羟基丁酸酯和共聚物;聚羟基戊酸酯和共聚物;聚原酸酯和共聚物;聚酐和共聚物;聚亚氨基碳酸酯和共聚物,等等。示例性的支架由无定形材料85/15聚(L-丙交酯-共-乙交酯)的共聚物制成,经加工使其结晶度比最初的结晶度提高至少20%,优选至少100%,更优选至少1000%。在一个实施方式中,可生物降解的支架不到2年,优选不到1年,更优选不到9个月即基本降解。
根据本发明,无定形可生物降解的聚合物材料经加工以提高其结晶度。结晶度增加可增加聚合物支架材料的强度、储存寿命和水解稳定性。通过在材料中成核和/或使小尺寸球晶生长来引发该过程和/或提高聚合物材料的结晶度。由于在生物学环境中,改性的聚合物的无定形区域倾向于通过水解或酶降解而受到破坏,改性的无定形可生物降解的聚合物在加工后,其结晶度提高且材料强度提高。结晶度的提高可通过本发明的“改性”部分所述的过程来实现,包括加热、冷却、加压、加入添加剂、交联和其他步骤中的至少一个步骤。
聚合物材料可通过喷射、挤出、模塑、浸渍或其他工艺由选定的无定形共聚物制成管子。无定形聚合物管任选地抽真空到至少-25in.Hg.,焖火处理并骤冷以提高结晶度。在一个实施方式中,在环境温度下将管子抽真空至1托或以下,以去除水分和溶剂。然后通过加热至超过聚合物材料的玻璃化转变温度但低于其熔点来进行焖火处理。优选地,焖火处理温度比玻璃化转变温度(Tg)高至少10℃,更优选高至少20℃,甚至更优选比Tg高至少30℃。焖火处理温度通常比熔点(Tm)低至少5℃,优选低至少20℃,甚至更优选比聚合物材料的熔点低至少30℃。焖火处理时间介于1分钟到10天的范围内,优选从30分钟到3小时,更优选从1.5小时到2.5小时。
在一个实施方式中,通过在1秒到1小时,优选1分钟到30分钟,更优选5分钟到15分钟的时间内,从焖火处理温度快速冷却至等于或低于环境温度来骤冷经焖火处理的管子。在另一实施方式中,通过在1小时到24小时,优选4小时到12小时,更优选6小时到10小时的时间内,从焖火处理温度缓慢冷却至等于或低于环境温度来骤冷经焖火处理的管子。在一些情况下,在1分钟到96小时,更优选24小时到72小时的时间内,使经过热处理的管子冷却至低于环境温度的温度,以稳定结晶和/或终止结晶作用。这种焖火处理和骤冷工艺引发并促进聚合物中的结晶成核,提高材料机械强度。可控制最初的焖火处理温度和冷却速率,以优化结晶大小和材料区段。在另一实施方式中,使未经焖火处理处理和/或经焖火处理处理的管子曝露于电子束或γ辐射,单剂量或多剂量为5kGy到100kGy,更优选10kGy到50kGy的辐射。
对支架材料的管子进行图案化,形成具有“扩张”直径的支架或其他内 置假体,然后卷曲成较小直径,安装到递送导管的气囊上。支架通常通过激光切割形成图案,管直径约为目标展开直径的1-1.3倍,优选1.1-1.5倍,更优选1.15-1.25倍。例如,将切割成3.5mm×18mm外径的支架卷曲到3.0mm×18mm的支架递送导管上。在另一实施方式中,使未经焖火处理和/或经焖火处理的支架曝露于电子束或γ辐射,单剂量或多剂量为5kGy到100kGy,更优选从10kGy到50kGy的辐射。
支架切割期间支架材料可能损失一些结晶度。在这种情况下,支架在切割后焖火处理和/或进行第二次焖火处理以使聚合物重结晶至较高的结晶度。因此,经切割的支架可进行第二次如上文所述的焖火处理。如上所述焖火处理后冷却的过程可重复一次或多次,以进一步提高结晶度。在另一实施方式中,将经热处理的支架冷却至环境温度以下,以锁定结晶或终止结晶作用1分钟到96小时,更优选24小时到72小时。
经处理的支架或其他内置假体可采用包括楔的机械卷缩机,例如福迪米迪的MS公司(Machine Solutions,Fortimedix)生产的卷缩机,卷曲到递送气囊上。支架卷曲也可采用以下过程:将支架置于收缩管中,以0.1-2英寸/分钟,更优选0.2-0.5英寸/分钟的速率缓慢拉伸收缩管直到支架被卷曲成所需的卷曲直径。卷曲期间,支架被加热至比Tg低20℃到比Tg高10℃的温度持续30分钟,更优选加热至比Tg低10℃到Tg的温度,最优选加热至支架材料的Tg。该过程有利于或能使支架维持最终的卷曲直径。卷曲后,通过在将支架固定成卷曲直径的同时使其曝露于比Tg低20℃到比Tg高10℃的温度持续30分钟,更优选曝露于比Tg低10℃到Tg的温度,最优选曝露于支架材料的Tg,持续1分钟到24小时,更优选15分钟到1小时,以进一步提高支架保持卷曲直径的能力。保持在该卷曲温度之后,优选在使直径固定在卷曲直径的同时保持等于或低于环境温度直到进一步加工处理(即灭菌)。支架可以在支架递送导管的气囊上卷曲,或者先单独卷曲然后滑到导管气囊上。在另一实施方式中,将卷曲的支架冷却至环境温度以下,以锁定结晶或终止结晶作用1分钟到96小时,更优选24小时到72小时。
在优选实施方式中,将导管上最终卷曲的支架通过25-30kGy剂量的电子束进行灭菌,通常用单剂量30kGy或用多个较小的剂量(例如3×10 kGy)。用多个较小剂量灭菌之前、期间和/或之后,支架系统通常保持在环境温度以下。经包装和灭菌的支架也可进行如上所述的热处理。在一个实施方式中,在支架扩张期间,大约在可生物降解的支架材料的Tg下加热可生物降解的聚合物支架。扩张期间的温度可以从比Tg高10℃到比Tg低10℃。
这种支架展开后,所述工艺提供了在从卷曲状态扩张至扩张状态之后使支架反冲最小至不到10%的方法。
内置假体中可加入添加剂以影响强度、反冲或降解速率或它们的组合。添加剂也可影响可生物降解的支架材料的加工处理、辐射不透性或表面粗糙度,等等。添加剂可以是可生物降解或非生物降解的。添加剂可通过掺混、挤出、注塑、涂覆、表面处理、化学处理、机械处理、冲压、或其他方式、或它们的组合掺入可生物降解的支架或聚合物材料中。掺入可生物降解的聚合物材料之前,添加剂可经过化学改性。
在一个实施方式中,添加剂的重量百分比从0.01%到25%,优选0.1%到10%,更优选1%到5%。
在一个实施方式中,添加剂至少包括纳米粘土、纳米管、纳米颗粒、片状剥落物(exfoliate)、纤维、须状物(whisker)、小片状物(platelet)、纳米粉、富勒烯(fullerene)、纳米球、沸石、聚合物或其他或其组合。
纳米粘土的例子包括:蒙脱土、蒙脱石、滑石粉、片状颗粒(platelet-shaped particle)、改性的粘土或其他或其组合。粘土可为内插或片状剥落的。粘土的例子包括CloisiteNA、93A、30B、25A、15A、10A或其他或其组合。
纤维的例子包括:纤维素纤维如亚麻、棉花、人造丝、乙酸酯;蛋白质纤维如羊毛或丝;植物纤维;玻璃纤维;碳纤维;金属纤维;陶瓷纤维;可吸收纤维如聚乙醇酸、聚乳酸、聚葡糖酸酯或其他。
须状物的例子包括:羟基磷灰石须状物、磷酸三钙须状物或其他。
在另一实施方式中,添加剂至少包括改性淀粉、大豆、透明质酸、羟基磷灰石、三碳酸酯磷酸酯(tricarbonate phosphate)、阴离子和阳离子表面活性剂如十二烷基硫酸钠、三亚乙基苄基氯化铵(triethylene benzylammonium chloride)、降解助剂(pro-degradant)如D2W(来自SP技术公司(Symphony Plastic Technologies))、光致降解添加剂如UV-H(来自WRP公司(Willow Ridge  Plastics))、氧化性添加剂如PDQ(来自WRP公司(Willow Ridge Plastics))、TDPA、聚乳酸及其无规或嵌段共聚物家族或其他。
在另一实施方式中,添加剂包括电致活化或电解质聚合物、吸湿性聚合物、干燥剂或其他。
在一个实施方式中,添加剂是氧化剂,例如酸、高氯酸盐、硝酸盐、高锰酸盐、盐或其他或其组合。
在一个实施方式中,添加剂是可生物降解的聚合物支架材料单体。例如,乙醇酸是聚乙醇酸或其共聚物支架材料的添加剂。
在一个实施方式中,添加剂可以是水排斥性单体、低聚物或聚合物,例如蜂蜡、低MW聚乙烯或其他。
在另一实施方式中,添加剂可以是水吸引性单体、低聚物或聚合物,例如聚乙烯醇、聚环氧乙烷、甘油、咖啡因、利多卡因或其他。
在一个实施方式中,添加剂可能影响可生物降解的聚合物支架材料的结晶度。PLLA的纳米粘土添加剂的例子影响其结晶度。
在另一实施方式中,可生物降解的聚合物支架材料曝露于诸如γ或电子束的辐射时交联而导致结晶度增加。累积辐射剂量从1kGray到1000KGray,优选5到100KGray,更优选10到30KGray。
在一个实施方式中,在37℃的水中,可生物降解的聚合物支架材料的屈服强度是最终强度的至少50%,优选最终强度的至少75%,更优选最终强度的至少90%。
在一个实施方式中,可生物降解的金属支架的弹性模量至少为50GPa,优选至少100GPa,更优选至少150GPa。
在另一实施方式中,在37℃的水中,可生物降解的聚合物支架材料的弹性模量至少为0.5GPa,优选至少0.75GPa,更优选至少1GPa。
在一个实施方式中,在37℃的水中,可生物降解的聚合物支架材料的屈服应变不超过10%,优选不超过5%,更优选不超过3%。
在一个实施方式中,在37℃的水中,可生物降解的聚合物支架材料的塑性应变为至少20%,更优选至少30%,甚至更优选至少40%。
在一个实施方式中,在水37℃的中,发生应变的可生物降解的聚合物支 架材料的弹性回复率至多15%,优选至多10%,更优选至多5%。
在一个实施方式中,可生物降解的支架材料在2年内,优选1年内,更优选9个月内基本降解。
在一个实施方式中,生理学条件下至少1个月后扩张的可生物降解的支架保留至少25%,优选至少40%,更优选至少70%的强度或反冲。
在一个实施方式中,可生物降解的聚合物支架材料至少通过整体溶蚀、表面溶蚀或其组合而降解。
在一个实施方式中,可生物降解的聚合物支架材料至少通过水解降解、酶降解、氧化降解、光致降解、生理学环境下降解或其组合而降解。
可生物降解的聚合物支架材料具有各种分子构造,例如线性、支化、交联、高度支化或树状。
本发明中可生物降解的聚合物支架材料的分子量为10KDa到10,000KDa,优选100KDa到1000KDa,更优选300KDa到600KDa。
在另一实施方式中,通过牵拉、加压和/或加热支架材料,提高可生物降解的支架材料中聚合物链在径向和/或纵向方向上的取向,以提高可生物降解的支架材料的结晶度。在另一实施方式中,牵拉、加压和/或加热支架材料同时或相继进行。
在一个实施方式中,将可生物降解的支架材料放置成至少一个表面抵靠非变形性表面并加压至200psi,优选至少300psi,更优选至少500psi。在另一实施方式中,将可生物降解的支架材料加压至至少200psi,优选至少300psi,更优选至少500psi。
在一个实施方式中,将可生物降解的支架材料管子放置在直径较大的非变形性管子中并加压至至少200psi,优选至少300psi,更优选至少500psi。在另一实施方式中,将可生物降解的支架材料管子加压至至少200psi,优选至少300psi,更优选至少500psi。
在一个实施方式中,至少通过将可生物降解的支架材料加热至超过其玻璃化转变温度(Tg)且低于其熔点温度来提高聚合物链的取向,以增加可生物降解的支架材料的结晶度。
在一个实施方式中,通过将可生物降解的支架材料加热至比其Tg高至少 10℃,优选高至少20℃,更优选比可生物降解的支架材料的Tg高至少30℃的温度来提高可生物降解的支架材料的结晶度。
在一个实施方式中,牵拉、加热和/或加压以及在真空或非真空下、在升高的温度进行焖火处理后,可生物降解的支架材料的结晶度提高。在一个实施方式中,焖火处理温度低于使可生物降解的支架材料中的聚合物链定向所采用的温度。在另一实施方式中,焖火处理温度比使可生物降解的支架材料中的聚合物链定向所采用的温度低至多20℃,优选至多低15℃,更优选至多低10℃。
在一个实施方式中,在可生物降解的支架材料的Tg以下,优选比可生物降解的支架材料的Tg低至少25℃,更优选比Tg低至少50℃,对焖火处理后的可生物降解的支架材料进行骤冷。
在一个实施方式中,采用溶剂组合来提高可生物降解的聚合物支架材料的结晶度,其中一种溶剂的溶解度参数在聚合物溶解度参数的10%之内,而另一种溶剂的溶解度参数与聚合物溶解度参数之间的差异至少为10%.
在一个实施方式中,可生物降解的聚合物支架材料的结晶度大于10%,优选大于25%,更优选大于50%。
本发明还提供了改善可生物降解的聚合物支架材料的强度、反冲或降解速率的一致性的方式。
实施例:
通过喷射无定形共聚物聚(L-丙交酯-共-乙交酯)制备管子,其中含丙交酯85%和乙交酯15%。将聚合物和雷帕霉素类似物溶解在溶剂中,一起喷射以将雷帕霉素引入聚合物支架中。将一心轴置于超声喷嘴(纽约ST的带有超声雾化喷嘴喷射器的微量薄雾系统(Micromist System with Ultrasonic Atomizing Nozzle Sprayer,Sono-Tek,NY))下方,以80rpm的速率旋转并以0.050英寸/分钟的速率纵向移动。心轴上是聚(L-丙交酯-共-乙交酯)和雷帕霉素类似物比例为11:1的溶液。所得管子厚度为0.17mm。将管子在45℃加热约60小时,在90℃焖火处理2小时,10秒内冷却至环境温度或室温。然后用UV激光将焖火处理的管子切割成图4所示的设计(以其卷曲状态显示)。经切割的支架在 90℃焖火处理并在8小时内从焖火处理温度缓慢冷却至环境温度。然后将支架递送系统包装到小袋中并通过γ辐射灭菌。
经热处理的支架具有比未处理支架更高的径向强度(表1)。
表1:经处理和未经处理的支架的径向强度的比较

类型未经热处理经热处理激光切割支架后的径向强度7Psi14Psi卷曲支架后的径向强度6Psi9Psi30kGy电子束灭菌后的径向强度3Psi8Psi在Tg扩张时的径向强度n/a12.5Psi

因此,如图1所示,本发明方法首先提供了由无定形聚合物组成的管状体,其中管状体可通过挤出、模塑、浸渍等方式形成,但优选通过喷射到心轴上形成。管状体可焖火处理以提高结晶度和强度,通常通过上述加热和冷却过程进行。然后,可使管状体图案化,形成支架或其他内置假体,通常通过激光切割进行,并且通常在至少一次焖火处理之后进行。任选地,可以在图案化之前和之后都处理管状体,可以在图案化之前和之后都不止一次进行焖火处理。
现在参考图2A和2B,适合利用本发明改性的支架10具有基本图案,包括由轴向连杆14连接的多个相邻的蛇形环12。如图所示,支架10包括六个相邻的蛇形环12,其中每个环包括六个蛇形区段,各蛇形区段包括在一端由铰链样冠状件18连接的一对轴向支杆16。所述环和区段的数目可在宽范围内变化,取决于支架的所需尺寸。根据本发明,支承件20位于相邻的轴向支杆16之间,其连接方式使其能够随支杆沿周向扩张,通常是伸长,如图3所示。扩张前,支承件20通常是封闭的U形构型,如图2A和2B所示,在蛇形环12径向扩张期间随着轴向支杆16围绕冠状件18的打开而打开形成浅V形,如图3所示。支承件20能提高支架沿径向扩张后的环向强度,扩张完成后帮助抵抗反冲,并提供附加面积,用于支承血管或其他管腔壁,并且任选地将药物输送到管腔壁内。
虽然上述内容完整描述了本发明的优选实施方式,但也可使用各种可选 形式、改进形式和等价形式。因此,上述内容不应视作对本发明范围的限制,本发明的范围由所附权利要求书限定。

可生物降解的内置假体结构及其制造方法.pdf_第1页
第1页 / 共13页
可生物降解的内置假体结构及其制造方法.pdf_第2页
第2页 / 共13页
可生物降解的内置假体结构及其制造方法.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《可生物降解的内置假体结构及其制造方法.pdf》由会员分享,可在线阅读,更多相关《可生物降解的内置假体结构及其制造方法.pdf(13页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104127270A43申请公布日20141105CN104127270A21申请号201410343171422申请日2008011860/885,70020070119US200880006680020080118A61F2/915201301A61L31/06200601A61L31/14200601A61L31/0420060171申请人万能医药公司地址美国加利福尼亚州72发明人郑小霞J严V巴塔74专利代理机构北京安信方达知识产权代理有限公司11262代理人惠磊郑霞54发明名称可生物降解的内置假体结构及其制造方法57摘要提供了由具有所需的可生物降解特性的无定形聚合物形。

2、成的可生物降解的内置假体。通过改性以提高结晶度来提高这种无定形聚合物的强度,同时不显著增加生物降解时间。30优先权数据62分案原申请数据51INTCL权利要求书1页说明书8页附图3页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书8页附图3页10申请公布号CN104127270ACN104127270A1/1页21一种制造可生物降解的假体的方法,所述方法包括提供具有初始直径的管状体,其中所述管状体至少部分地由无定形的可生物降解的聚合物组成,且同时所述直径保持不变;对所述无定形聚合物进行改性以引入所需的结晶度;以及使所述管状体图案化以形成能够径向收缩和扩张的结构。2如权利要求。

3、1所述的方法,其中所述可生物降解的假体在2年内降解。3如权利要求1或2所述的方法,其中所述可生物降解的假体在1年内降解。4如权利要求13之一所述的方法,其中在生理学条件下1个月后所述可生物降解的假体保留至少70的强度。5如权利要求14之一所述的方法,其中所述管状体由聚L丙交酯共乙交酯形成。6如权利要求15之一所述的方法,其中所述聚合物在改性后的弹性模量至少为05GPA。7如权利要求16之一所述的方法,其中所述聚合物包括药物,所述药物与所述管状体整体成形。8如权利要求17之一所述的方法,其中所述管状体在图案化之后进行改性。9如权利要求18之一所述的方法,其中所述改性包括在真空或非真空下加热、冷却。

4、、加压、加入添加剂、交联中的至少一种。10如权利要求19之一所述的方法,其中所述改性包括将所述管状体加热至超过所述聚合物的玻璃化转变温度且低于所述聚合物的熔点的温度,以及冷却所述管状体以提高所述聚合物的结晶度。权利要求书CN104127270A1/8页3可生物降解的内置假体结构及其制造方法0001本申请是2008年1月18日提交的发明名称为“可生物降解的内置假体结构及其制造方法”的第2008800066800号中国专利申请的分案申请。0002发明背景1发明领域0003本发明一般涉及医疗装置及其制造方法。具体说,本发明涉及植入后强度提高且持久性受控的可生物降解的内置假体,例如支架的制造。0004。

5、支架通常为管形装置,用于使血管或体内其他管腔,例如冠状动脉、颈动脉、隐静脉移植物或股动脉的一部分保持打开或得到增强。它们也适用于支承和阻止可能阻塞体腔的切开的动脉内衬,以稳定斑块,或支承生物瓣。支架可由各种材料制成,尤其是聚合和/或金属材料,可以是非降解的、可生物降解的、或者同时由可降解和非生物性组件构成。通常采用导管将支架递送至体内管腔中的目标区域。对于球囊扩张式支架,将支架安装到球囊导管上,引导至适当区域,使球囊膨胀来扩张支架。自扩张式支架可递送至目标区域,释放并扩张至所需的直径以治疗疾病。支架也可溶出各种药物或药理学试剂。0005本发明尤其感兴趣的可生物降解的支架及其他内置假体通常由聚合。

6、物形成,所述聚合物在血管或其他管腔环境中随时间通过水解或其他反应机制而降解。通常,所要求的是内置假体在体内管腔完成所需支承功能后能够完全降解。通常,完全降解所要求的是植入后不到2年,常常不到1年,通常在几个月内降解。然而,许多可生物降解的内置假体维持的时间比要求的更长,常常在支承或药物递送功能结束后长时间留在原处。许多可生物降解的内置假体之所以滞留时间延长,常常是因为希望提高其强度。人们常常对聚合物构建材料进行加固,例如通过掺入具有较高结晶性的材料,使其具有所需的支承作用,但降解时间比所要求的要长。0006出于这些原因,希望提供改良的内置假体及其制造方法,所述内置假体具有受控的强度和持久性。具。

7、体说,希望能够提高某些可生物降解的材料的强度,使其在被引入支架和其他内置假体时具有提高的强度而其降解持续时间不会显著延长。而且,希望能够在制造过程中控制降解持续时间,从而制备在保持强度提高的同时具有不同降解持续时间的内置假体。下面描述的本发明满足了这些目标中的至少一些。2背景技术0007支架中采用的纤丝和其他组件的热焖火处理和其他处理方式参见US5,980,564、US6,245,103和US6,626,939。聚合物支架涂层的热处理在指定美国的共同拥有、共同待批的申请PCT/US07/81996中有描述。0008发明概述0009本发明提供了改良的可生物降解的内置假体及其制造方法。该内置假体由。

8、无定形可生物降解的聚合物形成。之所以使用无定形聚合物是有利的,是因为它们能提供相对较短的生物降解持续时间,通常不到2年,常常不到1年,经常不到9个月,有时不到6个月,说明书CN104127270A2/8页4或者甚至更短。本发明依赖于对无定形聚合物进行改性,以引入所需的结晶度。发明人已发现,将结晶性引入无定形聚合物能提高聚合物的强度,使其适合用作内置假体而不会显著增加植入后的生物降解持续时间。0010所述高度无定形聚合物的结晶度在改性前低于10。改性后,相对于无定形材料最初的结晶度,结晶度通常增加至少20,优选至少100,更优选至少1000。目前优选的聚合物材料在改性后的结晶度为1020,如下文。

9、所述。本文所用术语“结晶度”表示聚合物基质内结构的有序度或完美度。0011结晶度可通过差示扫描量热法进行测量READING,M等,用调制温度差示扫描量热法测定聚合物的结晶度MEASUREMENTOFCYRSTALLINITYINPOLYMERSUSINGMODULATEDTEMPERATUREDIFFERENTIALSCANNINGCALORIMETRY,动态和调制热分析技术对材料的表征MATERIALCHARACTERIZATIONBYDYNAMICANDMODULATEDTHERMALANALYTICALTECHNIQUES,ASTMSTP1402,RIGA,AT等编著,2001第1731。

10、页。0012本发明制造可生物降解的假体的方法包括提供具有一定初始直径的管状体,所述管状体至少部分地由基本无定形的可生物降解的聚合物组成。将管状体加热至超过其玻璃化转变温度但低于其熔点的温度。然后使管状体冷却以提高聚合物的结晶度。在焖火处理工艺之前或之后,使管状体图案化,形成能够径向收缩和扩张的结构,以提供支架或其他内置假体。0013通常,管状体的制造也是本发明方法的一部分。制造过程可通过各种常规过程进行,例如挤压、模塑、浸渍等。优选的制造过程包括将溶解在溶剂中的聚合物喷射到圆柱形心轴或其他结构上。任选地,将诸如强度增加材料、药物等添加剂与聚合物一起溶解到溶剂中,使得该材料可与内置假体管一体成形。

11、或整体成形。或者,该方法可依赖于从供应商处或其他外部来源获得预先成形的聚合物管。0014聚合物管状体通常形成基本连续的圆筒,没有洞或其他不连续结构。一般,管状体的外径为210毫米,厚度为00105毫米,可切割成适合单个内置假体的长度,通常为540毫米。0015管状体可由具有所需降解特征的任何无定形聚合物形成,其中聚合物可根据本发明方法改性以具有所需的强度特征。示例性的无定形聚合物包括聚DL丙交酯、聚丙交酯共乙丙交酯GLYCOLACTIDE;聚丙交酯共聚已酸内酯、聚L丙交酯共1,3丙二醇碳酸酯POLYLLACTIDECOTRIMETHYLENECARBONATE、聚1,3丙二醇碳酸酯POLYTR。

12、IMETHYLENECARBONATE和共聚物;聚羟基丁酸酯和共聚物;聚羟基戊酸酯和共聚物;聚原酸酯和共聚物;聚酐和共聚物;聚亚氨基碳酸酯和共聚物,等等。尤其优选的聚合物包括L丙交酯和乙交酯的共聚物,优选重量比为85L丙交酯与15乙交酯。0016焖火处理工艺的加热阶段通常持续1分钟到3小时,冷却通常至环境温度或更低。然而,下面的发明详述中也描述了其他合适的温度和时间。0017使管状体图案化,形成合适的内置假体结构,通常通过激光切割或其他常规过程进行。通常在焖火处理过程之后进行图案化,但也可在焖火处理过程之前进行。可选地,可能希望在进行图案化之前或之后都进行管状体的焖火处理,在一些情况下可进行额。

13、外的焖火处理步骤,使得支架在制造过程期间经历三次、四次或更多次焖火处理步骤。0018内置假体图案可以是常规内置假体中采用的任何合适的图案类型。各种示例说明书CN104127270A3/8页5性的图案在与本申请同日提交的共同拥有的、共同待批的申请11/_律师案卷号022265000510US中描述,其全部内容被纳入本文作为参考。0019除制造方法之外,本发明还提供了可生物降解的假体,假体包括至少部分地由基本无定形的可生物降解降的聚合物构成的管状体。可生物降解的聚合物经处理以在无定形聚合物中产生球晶,在初始结晶度的基础上将结晶度提高至少20。假体的其他优选方面已结合制造方法在上文中描述。0020附。

14、图简要说明0021图1是本发明方法主要步骤的框图。0022图2A和2B显示了可用本发明方法制造的示例性的支架结构。0023图3显示了具有径向扩张构型的图2A和2B的支架。0024图4显示了本发明实施例中采用的支架图案。0025发明详述0026无定形可生物降解的聚合物结晶度小于10比结晶聚合物降解更快,但强度不如结晶聚合物,因而通常不适合用于需要足够的强度以为血管提供支撑的血管植入体,例如支架。本发明提供了对无定形聚合物材料的改性方法,使其适合用于可生物降解的支架及其他内置假体。适用于根据本发明进行改性的无定形材料包括但不限于聚DL丙交酯、聚丙交酯共乙丙交酯GLYCOLACTIDE;聚丙交酯共聚。

15、已酸内酯、聚L丙交酯共1,3丙二醇碳酸酯、聚1,3丙二醇碳酸酯和共聚物;聚羟基丁酸酯和共聚物;聚羟基戊酸酯和共聚物;聚原酸酯和共聚物;聚酐和共聚物;聚亚氨基碳酸酯和共聚物,等等。示例性的支架由无定形材料85/15聚L丙交酯共乙交酯的共聚物制成,经加工使其结晶度比最初的结晶度提高至少20,优选至少100,更优选至少1000。在一个实施方式中,可生物降解的支架不到2年,优选不到1年,更优选不到9个月即基本降解。0027根据本发明,无定形可生物降解的聚合物材料经加工以提高其结晶度。结晶度增加可增加聚合物支架材料的强度、储存寿命和水解稳定性。通过在材料中成核和/或使小尺寸球晶生长来引发该过程和/或提高。

16、聚合物材料的结晶度。由于在生物学环境中,改性的聚合物的无定形区域倾向于通过水解或酶降解而受到破坏,改性的无定形可生物降解的聚合物在加工后,其结晶度提高且材料强度提高。结晶度的提高可通过本发明的“改性”部分所述的过程来实现,包括加热、冷却、加压、加入添加剂、交联和其他步骤中的至少一个步骤。0028聚合物材料可通过喷射、挤出、模塑、浸渍或其他工艺由选定的无定形共聚物制成管子。无定形聚合物管任选地抽真空到至少25INHG,焖火处理并骤冷以提高结晶度。在一个实施方式中,在环境温度下将管子抽真空至1托或以下,以去除水分和溶剂。然后通过加热至超过聚合物材料的玻璃化转变温度但低于其熔点来进行焖火处理。优选地。

17、,焖火处理温度比玻璃化转变温度TG高至少10,更优选高至少20,甚至更优选比TG高至少30。焖火处理温度通常比熔点TM低至少5,优选低至少20,甚至更优选比聚合物材料的熔点低至少30。焖火处理时间介于1分钟到10天的范围内,优选从30分钟到3小时,更优选从15小时到25小时。0029在一个实施方式中,通过在1秒到1小时,优选1分钟到30分钟,更优选5分钟到15分钟的时间内,从焖火处理温度快速冷却至等于或低于环境温度来骤冷经焖火处理的管说明书CN104127270A4/8页6子。在另一实施方式中,通过在1小时到24小时,优选4小时到12小时,更优选6小时到10小时的时间内,从焖火处理温度缓慢冷却。

18、至等于或低于环境温度来骤冷经焖火处理的管子。在一些情况下,在1分钟到96小时,更优选24小时到72小时的时间内,使经过热处理的管子冷却至低于环境温度的温度,以稳定结晶和/或终止结晶作用。这种焖火处理和骤冷工艺引发并促进聚合物中的结晶成核,提高材料机械强度。可控制最初的焖火处理温度和冷却速率,以优化结晶大小和材料区段。在另一实施方式中,使未经焖火处理处理和/或经焖火处理处理的管子曝露于电子束或辐射,单剂量或多剂量为5KGY到100KGY,更优选10KGY到50KGY的辐射。0030对支架材料的管子进行图案化,形成具有“扩张”直径的支架或其他内置假体,然后卷曲成较小直径,安装到递送导管的气囊上。支。

19、架通常通过激光切割形成图案,管直径约为目标展开直径的113倍,优选1115倍,更优选115125倍。例如,将切割成35MM18MM外径的支架卷曲到30MM18MM的支架递送导管上。在另一实施方式中,使未经焖火处理和/或经焖火处理的支架曝露于电子束或辐射,单剂量或多剂量为5KGY到100KGY,更优选从10KGY到50KGY的辐射。0031支架切割期间支架材料可能损失一些结晶度。在这种情况下,支架在切割后焖火处理和/或进行第二次焖火处理以使聚合物重结晶至较高的结晶度。因此,经切割的支架可进行第二次如上文所述的焖火处理。如上所述焖火处理后冷却的过程可重复一次或多次,以进一步提高结晶度。在另一实施方。

20、式中,将经热处理的支架冷却至环境温度以下,以锁定结晶或终止结晶作用1分钟到96小时,更优选24小时到72小时。0032经处理的支架或其他内置假体可采用包括楔的机械卷缩机,例如福迪米迪的MS公司MACHINESOLUTIONS,FORTIMEDIX生产的卷缩机,卷曲到递送气囊上。支架卷曲也可采用以下过程将支架置于收缩管中,以012英寸/分钟,更优选0205英寸/分钟的速率缓慢拉伸收缩管直到支架被卷曲成所需的卷曲直径。卷曲期间,支架被加热至比TG低20到比TG高10的温度持续30分钟,更优选加热至比TG低10到TG的温度,最优选加热至支架材料的TG。该过程有利于或能使支架维持最终的卷曲直径。卷曲后。

21、,通过在将支架固定成卷曲直径的同时使其曝露于比TG低20到比TG高10的温度持续30分钟,更优选曝露于比TG低10到TG的温度,最优选曝露于支架材料的TG,持续1分钟到24小时,更优选15分钟到1小时,以进一步提高支架保持卷曲直径的能力。保持在该卷曲温度之后,优选在使直径固定在卷曲直径的同时保持等于或低于环境温度直到进一步加工处理即灭菌。支架可以在支架递送导管的气囊上卷曲,或者先单独卷曲然后滑到导管气囊上。在另一实施方式中,将卷曲的支架冷却至环境温度以下,以锁定结晶或终止结晶作用1分钟到96小时,更优选24小时到72小时。0033在优选实施方式中,将导管上最终卷曲的支架通过2530KGY剂量的。

22、电子束进行灭菌,通常用单剂量30KGY或用多个较小的剂量例如310KGY。用多个较小剂量灭菌之前、期间和/或之后,支架系统通常保持在环境温度以下。经包装和灭菌的支架也可进行如上所述的热处理。在一个实施方式中,在支架扩张期间,大约在可生物降解的支架材料的TG下加热可生物降解的聚合物支架。扩张期间的温度可以从比TG高10到比TG低10。0034这种支架展开后,所述工艺提供了在从卷曲状态扩张至扩张状态之后使支架反冲最小至不到10的方法。说明书CN104127270A5/8页70035内置假体中可加入添加剂以影响强度、反冲或降解速率或它们的组合。添加剂也可影响可生物降解的支架材料的加工处理、辐射不透性。

23、或表面粗糙度,等等。添加剂可以是可生物降解或非生物降解的。添加剂可通过掺混、挤出、注塑、涂覆、表面处理、化学处理、机械处理、冲压、或其他方式、或它们的组合掺入可生物降解的支架或聚合物材料中。掺入可生物降解的聚合物材料之前,添加剂可经过化学改性。0036在一个实施方式中,添加剂的重量百分比从001到25,优选01到10,更优选1到5。0037在一个实施方式中,添加剂至少包括纳米粘土、纳米管、纳米颗粒、片状剥落物EXFOLIATE、纤维、须状物WHISKER、小片状物PLATELET、纳米粉、富勒烯FULLERENE、纳米球、沸石、聚合物或其他或其组合。0038纳米粘土的例子包括蒙脱土、蒙脱石、滑。

24、石粉、片状颗粒PLATELETSHAPEDPARTICLE、改性的粘土或其他或其组合。粘土可为内插或片状剥落的。粘土的例子包括CLOISITENA、93A、30B、25A、15A、10A或其他或其组合。0039纤维的例子包括纤维素纤维如亚麻、棉花、人造丝、乙酸酯;蛋白质纤维如羊毛或丝;植物纤维;玻璃纤维;碳纤维;金属纤维;陶瓷纤维;可吸收纤维如聚乙醇酸、聚乳酸、聚葡糖酸酯或其他。0040须状物的例子包括羟基磷灰石须状物、磷酸三钙须状物或其他。0041在另一实施方式中,添加剂至少包括改性淀粉、大豆、透明质酸、羟基磷灰石、三碳酸酯磷酸酯TRICARBONATEPHOSPHATE、阴离子和阳离子表面。

25、活性剂如十二烷基硫酸钠、三亚乙基苄基氯化铵TRIETHYLENEBENZYLAMMONIUMCHLORIDE、降解助剂PRODEGRADANT如D2W来自SP技术公司SYMPHONYPLASTICTECHNOLOGIES、光致降解添加剂如UVH来自WRP公司WILLOWRIDGEPLASTICS、氧化性添加剂如PDQ来自WRP公司WILLOWRIDGEPLASTICS、TDPA、聚乳酸及其无规或嵌段共聚物家族或其他。0042在另一实施方式中,添加剂包括电致活化或电解质聚合物、吸湿性聚合物、干燥剂或其他。0043在一个实施方式中,添加剂是氧化剂,例如酸、高氯酸盐、硝酸盐、高锰酸盐、盐或其他或其组。

26、合。0044在一个实施方式中,添加剂是可生物降解的聚合物支架材料单体。例如,乙醇酸是聚乙醇酸或其共聚物支架材料的添加剂。0045在一个实施方式中,添加剂可以是水排斥性单体、低聚物或聚合物,例如蜂蜡、低MW聚乙烯或其他。0046在另一实施方式中,添加剂可以是水吸引性单体、低聚物或聚合物,例如聚乙烯醇、聚环氧乙烷、甘油、咖啡因、利多卡因或其他。0047在一个实施方式中,添加剂可能影响可生物降解的聚合物支架材料的结晶度。PLLA的纳米粘土添加剂的例子影响其结晶度。0048在另一实施方式中,可生物降解的聚合物支架材料曝露于诸如或电子束的辐射时交联而导致结晶度增加。累积辐射剂量从1KGRAY到1000K。

27、GRAY,优选5到100KGRAY,更优选10到30KGRAY。0049在一个实施方式中,在37的水中,可生物降解的聚合物支架材料的屈服强度是说明书CN104127270A6/8页8最终强度的至少50,优选最终强度的至少75,更优选最终强度的至少90。0050在一个实施方式中,可生物降解的金属支架的弹性模量至少为50GPA,优选至少100GPA,更优选至少150GPA。0051在另一实施方式中,在37的水中,可生物降解的聚合物支架材料的弹性模量至少为05GPA,优选至少075GPA,更优选至少1GPA。0052在一个实施方式中,在37的水中,可生物降解的聚合物支架材料的屈服应变不超过10,优选。

28、不超过5,更优选不超过3。0053在一个实施方式中,在37的水中,可生物降解的聚合物支架材料的塑性应变为至少20,更优选至少30,甚至更优选至少40。0054在一个实施方式中,在水37的中,发生应变的可生物降解的聚合物支架材料的弹性回复率至多15,优选至多10,更优选至多5。0055在一个实施方式中,可生物降解的支架材料在2年内,优选1年内,更优选9个月内基本降解。0056在一个实施方式中,生理学条件下至少1个月后扩张的可生物降解的支架保留至少25,优选至少40,更优选至少70的强度或反冲。0057在一个实施方式中,可生物降解的聚合物支架材料至少通过整体溶蚀、表面溶蚀或其组合而降解。0058在。

29、一个实施方式中,可生物降解的聚合物支架材料至少通过水解降解、酶降解、氧化降解、光致降解、生理学环境下降解或其组合而降解。0059可生物降解的聚合物支架材料具有各种分子构造,例如线性、支化、交联、高度支化或树状。0060本发明中可生物降解的聚合物支架材料的分子量为10KDA到10,000KDA,优选100KDA到1000KDA,更优选300KDA到600KDA。0061在另一实施方式中,通过牵拉、加压和/或加热支架材料,提高可生物降解的支架材料中聚合物链在径向和/或纵向方向上的取向,以提高可生物降解的支架材料的结晶度。在另一实施方式中,牵拉、加压和/或加热支架材料同时或相继进行。0062在一个实。

30、施方式中,将可生物降解的支架材料放置成至少一个表面抵靠非变形性表面并加压至200PSI,优选至少300PSI,更优选至少500PSI。在另一实施方式中,将可生物降解的支架材料加压至至少200PSI,优选至少300PSI,更优选至少500PSI。0063在一个实施方式中,将可生物降解的支架材料管子放置在直径较大的非变形性管子中并加压至至少200PSI,优选至少300PSI,更优选至少500PSI。在另一实施方式中,将可生物降解的支架材料管子加压至至少200PSI,优选至少300PSI,更优选至少500PSI。0064在一个实施方式中,至少通过将可生物降解的支架材料加热至超过其玻璃化转变温度TG且。

31、低于其熔点温度来提高聚合物链的取向,以增加可生物降解的支架材料的结晶度。0065在一个实施方式中,通过将可生物降解的支架材料加热至比其TG高至少10,优选高至少20,更优选比可生物降解的支架材料的TG高至少30的温度来提高可生物降解的支架材料的结晶度。0066在一个实施方式中,牵拉、加热和/或加压以及在真空或非真空下、在升高的温度说明书CN104127270A7/8页9进行焖火处理后,可生物降解的支架材料的结晶度提高。在一个实施方式中,焖火处理温度低于使可生物降解的支架材料中的聚合物链定向所采用的温度。在另一实施方式中,焖火处理温度比使可生物降解的支架材料中的聚合物链定向所采用的温度低至多20。

32、,优选至多低15,更优选至多低10。0067在一个实施方式中,在可生物降解的支架材料的TG以下,优选比可生物降解的支架材料的TG低至少25,更优选比TG低至少50,对焖火处理后的可生物降解的支架材料进行骤冷。0068在一个实施方式中,采用溶剂组合来提高可生物降解的聚合物支架材料的结晶度,其中一种溶剂的溶解度参数在聚合物溶解度参数的10之内,而另一种溶剂的溶解度参数与聚合物溶解度参数之间的差异至少为100069在一个实施方式中,可生物降解的聚合物支架材料的结晶度大于10,优选大于25,更优选大于50。0070本发明还提供了改善可生物降解的聚合物支架材料的强度、反冲或降解速率的一致性的方式。实施例。

33、0071通过喷射无定形共聚物聚L丙交酯共乙交酯制备管子,其中含丙交酯85和乙交酯15。将聚合物和雷帕霉素类似物溶解在溶剂中,一起喷射以将雷帕霉素引入聚合物支架中。将一心轴置于超声喷嘴纽约ST的带有超声雾化喷嘴喷射器的微量薄雾系统MICROMISTSYSTEMWITHULTRASONICATOMIZINGNOZZLESPRAYER,SONOTEK,NY下方,以80RPM的速率旋转并以0050英寸/分钟的速率纵向移动。心轴上是聚L丙交酯共乙交酯和雷帕霉素类似物比例为111的溶液。所得管子厚度为017MM。将管子在45加热约60小时,在90焖火处理2小时,10秒内冷却至环境温度或室温。然后用UV激光。

34、将焖火处理的管子切割成图4所示的设计以其卷曲状态显示。经切割的支架在90焖火处理并在8小时内从焖火处理温度缓慢冷却至环境温度。然后将支架递送系统包装到小袋中并通过辐射灭菌。0072经热处理的支架具有比未处理支架更高的径向强度表1。0073表1经处理和未经处理的支架的径向强度的比较0074类型未经热处理经热处理激光切割支架后的径向强度7PSI14PSI卷曲支架后的径向强度6PSI9PSI30KGY电子束灭菌后的径向强度3PSI8PSI在TG扩张时的径向强度N/A125PSI0075因此,如图1所示,本发明方法首先提供了由无定形聚合物组成的管状体,其中管状体可通过挤出、模塑、浸渍等方式形成,但优选。

35、通过喷射到心轴上形成。管状体可焖火处说明书CN104127270A8/8页10理以提高结晶度和强度,通常通过上述加热和冷却过程进行。然后,可使管状体图案化,形成支架或其他内置假体,通常通过激光切割进行,并且通常在至少一次焖火处理之后进行。任选地,可以在图案化之前和之后都处理管状体,可以在图案化之前和之后都不止一次进行焖火处理。0076现在参考图2A和2B,适合利用本发明改性的支架10具有基本图案,包括由轴向连杆14连接的多个相邻的蛇形环12。如图所示,支架10包括六个相邻的蛇形环12,其中每个环包括六个蛇形区段,各蛇形区段包括在一端由铰链样冠状件18连接的一对轴向支杆16。所述环和区段的数目可。

36、在宽范围内变化,取决于支架的所需尺寸。根据本发明,支承件20位于相邻的轴向支杆16之间,其连接方式使其能够随支杆沿周向扩张,通常是伸长,如图3所示。扩张前,支承件20通常是封闭的U形构型,如图2A和2B所示,在蛇形环12径向扩张期间随着轴向支杆16围绕冠状件18的打开而打开形成浅V形,如图3所示。支承件20能提高支架沿径向扩张后的环向强度,扩张完成后帮助抵抗反冲,并提供附加面积,用于支承血管或其他管腔壁,并且任选地将药物输送到管腔壁内。0077虽然上述内容完整描述了本发明的优选实施方式,但也可使用各种可选形式、改进形式和等价形式。因此,上述内容不应视作对本发明范围的限制,本发明的范围由所附权利要求书限定。说明书CN104127270A101/3页11图1说明书附图CN104127270A112/3页12图2A图2B图3说明书附图CN104127270A123/3页13图4说明书附图CN104127270A13。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1