活性包装.pdf

上传人:大师****2 文档编号:7159409 上传时间:2019-09-28 格式:PDF 页数:7 大小:359.35KB
返回 下载 相关 举报
摘要
申请专利号:

CN201680006105.5

申请日:

20160127

公开号:

CN107105726A

公开日:

20170829

当前法律状态:

有效性:

有效

法律详情:

IPC分类号:

A23L3/3427,B65D81/28,A23L3/358

主分类号:

A23L3/3427,B65D81/28,A23L3/358

申请人:

工程吸气公司

发明人:

亚历山德拉·科隆博,保罗·瓦卡,米丽娅姆·里瓦

地址:

意大利米兰

优先权:

MI2015A000131

专利代理机构:

北京集佳知识产权代理有限公司

代理人:

蔡胜有;冷永华

PDF下载: PDF下载
内容摘要

在本发明的第一方面中,本发明在于一种包含经钯交换的LTA沸石的活性包装,该方案能够改善包装自身内的气体气氛(特别地涉及乙烯存在的情况)的品质。

权利要求书

1.一种包含经钯交换的LTA沸石的活性包装,其中钯的量为0.1重量%至5重量%,优选所述钯的量为0.5重量%至2.5重量%。 2.根据权利要求1所述的活性包装,其中所述LTA沸石以大于总沸石含量的75重量%的量存在。 3.根据前述权利要求中任一项所述的活性包装,其中经交换的沸石的量为每克易腐新鲜食品重量0.3μg至30μg。 4.根据前述权利要求中任一项所述的活性包装,其中所述经钯交换的沸石是平均尺寸为50nm至500μm的粉末形式。 5.根据权利要求4所述的活性包装,其中所述粉末容纳在置于所述包装内的可渗透袋中。 6.根据权利要求5所述的活性包装,其中用于所述可渗透袋的材料选自低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、乙烯-乙酸乙烯酯聚合物(EVA)、苯乙烯-乙烯-丁烯-苯乙烯聚合物(SEBS)、聚乳酸(PLA)、聚酯。 7.根据权利要求4所述的活性包装,其中所述粉末分散在聚合物材料中。 8.根据权利要求7所述的活性包装,其中所述聚合物材料选自丙烯酸类化合物,丙烯酸类化合物-苯乙烯共聚物、丙烯酸类化合物-乙烯基共聚物和丙烯酸类化合物-醇酸共聚物,氨基甲酸酯-丙烯酸类化合物聚合物,脂族化合物-氨基甲酸酯聚合物,氨基甲酸酯,聚酯,环氧类化合物,聚氨酯,聚酰胺,三聚氰胺,聚苯乙烯,酚醛树脂,乙烯乙烯醇(EVOH),聚乙烯醇(PVA),水性或水可稀释性胶乳。 9.根据权利要求7或8所述的活性包装,其中包含经分散的粉末的所述聚合物材料是厚度为5μm至50μm的膜形式。 10.根据权利要求9所述的活性包装,其中相对于膜重量,经钯交换的LTA沸石的重量%为0.01重量%至20重量%。 11.根据权利要求10所述的活性包装,其中相对于膜重量,经钯交换的沸石的重量%为10重量%至20重量%。 12.根据权利要求10所述的活性包装,其中相对于膜重量,经钯交换的LTA沸石的重量%为0.01重量%至5重量%。 13.根据权利要求9至12中任一项所述的活性包装,其中所述膜附着在所述活性包装的内表面上。 14.根据权利要求9至12中任一项所述的活性包装,其中所述膜为所述活性包装自身的构成部分。

说明书

在本发明的第一方面中,本发明在于一种包含具有LTA骨架的经钯交换的沸石的活性包装。

本申请的方案能够改善包装自身内的气体气氛(特别地涉及乙烯存在的情况)的品质,并且当包装偶然地暴露于烃类蒸气时,其性能受到较少的危害。

一般来说,与多种催化剂金属相关的经交换、经浸渍或经掺杂的沸石在不同应用领域中的用途是已知的,例如用于氮氧化物的催化修复(catalytic remediation),如US专利申请号2013/0251611中所公开的。

在新鲜食品和蔬菜的运输和储存中由乙烯引起的问题是公知的,例如,由Thompson,J.,A.Kader和K.Sylva于1996年制作的海报(poster)展示“Compatibility chart for fruits and vegetables in short-term transport or storage”,Oakland:Univ.Calif.Div.Ag.and Nat.Res.Publ.21560(poster)中例示的,其详述了在新鲜食品包装内乙烯的期望目标阈值为1ppm水平;以及如Andrew W.J.Smith等在2009年报道的,乙烯(通常<0.1μl·l-1至1.0μl·l-1)可以引起许多呼吸跃变型水果(climacteric fruit)的成熟,随后可以导致通过水果的自催化而产生乙烯(“A new palladium-based ethylene scavenger to control ethylene-induced ripening of climacteric fruit”,Platinum Metals Review.第53卷,第3期,第112至122页)。Smith等没有提到被认为是优选的特定类型的沸石。类似地,在现有技术中可获得的其他科学论文中没有发现任何对它们进行选择的线索,例如由Terry等在2007年在Postharvest Biology and Technology上发表的“Development of new palladium-promoted ethylene scavenger”(第45卷,第2期,第214至220页)。

此外,国际专利公开WO 2007/052074和WO 2011/001186中描述并处理了从水果和蔬菜包装中去除VOC(挥发性有机化合物)(同样涉及乙烯)的问题,其公开了特定类型的沸石,钯掺杂的ZSM-5,而在欧洲专利申请1525802中公开了使用疏水性沸石用于相同的问题和应用。公开了ZSM-5沸石优选为经煅烧的并且以酸形式获得(通常标记为“ZSM-5(H)”)。

具体地关于新鲜食品保存(特别地涉及新鲜水果和蔬菜)的问题之一是不仅从其中有效地去除乙烯水平的能力或至少控制在乙烯水平内的能力,而且在各种不同环境条件(例如温度、湿度和其他气体)存在下保持这样的特性。

本发明的目的在于克服现有技术中在乙烯控制的可靠性方面仍存在的缺点,并且在本发明第一方面中,本发明在于一种包含经钯交换的LTA沸石的活性包装,其中钯的量为0.1重量%至5重量%,优选所述钯的量为0.5重量%至2.5重量%。

这样的钯负载重量%被认为是对活性包装中存在的沸石总量的平均值。

术语LTA沸石是本技术领域中公知的,并且表示Linde A型结构。其具有3维孔结构(其中孔在x、y和z平面中彼此垂直),并且由次级结构单元4、6、8和4-4构成。孔直径由八元氧环限定并且孔直径小(为)。这导致最小自由直径的较大空穴。空穴被八个方钠石笼(截角八面体)围绕,所述八个方钠石笼通过其立方结构中的正方形面连接。在LTA-Na的情况下,Na+阳离子在外骨架结构中的存在引起亲水行为并且使这些材料适用于水相互作用。LTA-Na沸石可以通过使用铵盐溶液的湿法浸渍方法并随后进行煅烧工艺而被改性成酸形式。

重点要强调的是本发明聚焦于特定类型的沸石骨架,LTA,因此在可能的沸石材料的广泛选择中非常清楚和特定的要素,所述可能的沸石材料的广泛选择参见例如“Zeolite Type Frameworks:Connectivities,Configurations and Conformations”,Molecular Sieves,第2卷,1999,其表1中列出了约100种不同类型的沸石(包括LTA和ZSM-5);或者参考“Handbook of Zeolite Science and Technology”,Scott M.Auerbach,Kathleen A.Carrado,Prabir K.Dutta,CRC Press,2003年7月;以及参考International Zeolite Association(IZA-SC)的“Database of Zeolite Structures”(http://www.iza-structure.org/databases/),其中列出了多于230种不同的沸石骨架类型。

每个包装的沸石的量根据易腐食品的类型、量和目标寿命及包装体积而显著不同,因此本发明不限于仅仅一个特定量;尽管有这样的考虑,但是活性包装内钯交换的沸石的量的典型值通常为每克易腐新鲜食品重量0.3μg至30μg。

优选地,根据本发明的活性包装中包含的钯交换的沸石是平均尺寸为50nm至500μm的粉末形式。术语尺寸表示不规则形状的颗粒的最大尺度。

通过激光衍射技术评估粒度颗粒尺寸分析。关于激光衍射理论和实践的限定及考虑来自标准ISO 13320-1。激光衍射结果以体积分布报道,其中大颗粒在分布上的影响是相关的。甚至更优选地,钯交换的沸石为粉末形式,在这样的情况下尺寸主要(X75<5μm)为50nm至5μm并且至少50%的沸石小于3μm。这种类型的粉末对于确保均匀的吸附行为和易于整合到活性包装中特别有用。

对于微米级(5μm至500μm)的钯交换的沸石(包括LTA沸石),优选的使用是在活性包装内部的可渗透袋内。尽管本发明不限于特定的袋材料或成分,但是优选地使用低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、乙烯-乙酸乙烯酯聚合物(EVA)、苯乙烯-乙烯-丁烯-苯乙烯聚合物(SEBS)、聚乳酸(PLA)、聚酯。

对于更细颗粒(50nm至5μm)的钯交换的沸石,优选的使用是分散在合适的聚合物材料或粘合剂中。尽管本发明不限于特定的聚合物或成分,但是优选地使用丙烯酸类化合物,丙烯酸类化合物-苯乙烯共聚物、丙烯酸类化合物-乙烯基共聚物和丙烯酸类化合物-醇酸共聚物,氨基甲酸酯-丙烯酸类化合物聚合物,脂族化合物-氨基甲酸酯聚合物,氨基甲酸酯,聚酯,环氧类化合物,聚氨酯,聚酰胺,三聚氰胺,酚醛树脂,聚苯乙烯,乙烯乙烯醇(EVOH),聚乙烯醇(PVA),水性或水可稀释性胶乳。

分散在聚合物材料中的钯交换的LTA沸石粉末(其为微米级或亚微米级)的优选的使用是平均厚度为5μm至50μm的复合膜形式,在这样的情况下,沸石粉末的最大尺寸应等于或小于新鲜体系的膜厚度的十分之一,这在使用中通常转化这样的膜,其中粉末随着时间而趋于聚集并且因此可形成大至膜厚度一半的簇(cluster)。

尽管本发明不限于经交换的沸石在聚合物材料中的特定负载量重量%,但是合适的范围为0.01重量%至20重量%。当在活性包装中对复合膜存在空间限制时,最高范围(10重量%至20重量%)是有利的;当寻求活性包装的其他特性(例如复合膜的透明性、半透明性或小于10%的雾度水平)时,最低范围(0.01重量%至5重量%)是有利的。

这样的膜可以附加至活性包装的内表面或可为包装自身的构成部分(即,可移除的覆盖物)。

尽管钯交换的LTA沸石在活性包装内的使用是特别有用的,但是其还可以有利地用在其他技术领域中:在所述其他技术领域中甚至在高湿度条件下仍需要乙烯去除能力,或者当乙烯与其他烃(所述其他烃在被沸石吸附时可在不可预测的程度上损害包含水果的包装中乙烯控制的有效性和持久性)同时存在时仍需要乙烯去除能力。

通过以下非限制性实施例进一步说明本发明。

实施例1-样品制备

样品1(S1)

使用离子交换法制备钯交换的LTA沸石。使用的LTA沸石的平均尺寸为100nm至10μm,其中50%沸石小于2μm并且75%小于5μm。

将10g沸石分散在钯盐(例如硝酸盐或氯盐)溶液中,然后在尼龙膜上过滤并进行热处理以促进溶剂蒸发。

如通过ICP质谱所评估的,所得钯交换量为LTA沸石重量的约1.5重量%。

样品2(S2)

使用离子交换法从颗粒尺寸小于5μm(X75)的LTA-Na沸石开始来制备LTA-H沸石。将20g沸石添加至NH4NO3水溶液中。在室温下搅拌悬浮体,然后使用0.45mm膜过滤器对其进行过滤并最后在烘箱中干燥。通过炉在空气中于500℃下对铵交换的沸石进行等温处理5小时以得到LTA-H。

ICP分析示出了沸石LTA-H中的Na含量如期望的降低。LTA-Na中的Na量为14.0重量%,而LTA-H中的Na量为约5.2重量%。使用与之前报道的样品1(S1)的相同的方法来制备钯交换的LTA-H沸石。

比较样品C1至C3

一些比较样品是不同类型的“原”(未经钯交换的)沸石。选择LTA-Na、ZSM-5(NH4)和八面沸石(Na)。

比较样品C4

通过以下获得比较样品钯交换的ZSM-5(H):首先,将样品ZSM-5(NH4)(C2)在空气中于500℃下热处理5小时,然后如下进行离子交换法。将10g ZSM-5(H)沸石分散在钯盐溶液中,随后在尼龙膜上过滤并在烘箱中于100℃下干燥过夜。

上述所有样品汇总在表1中。

表1

样品ID 沸石类型 尺寸(X50) 尺寸(X75) 经Pd交换 S1 LTA-Na 2.0μm 5.0μm 是(1.5重量%) S2 LTA-H 2.0μm 5.0μm 是(1.5重量%) C1 LTA-Na 2.0μm 5.0μm 否 C2 ZSM-5(NH4) 4.9μm 7.0μm 否 C3 八面沸石(Na) 4.0μm 6.0μm 否 C4 ZSM-5(H) 5.0μm 7.0μm 是(1.5重量%)

实施例2

在不同条件下测试不同类型的沸石(S1、C1至C4)。在具有经调整的样品室的微量天平中进行测量。将沸石(10mg)在真空下于180℃下活化过夜,然后在10毫巴C2H4分压和不同湿度水平下进行测试。

所得结果报道在表2中。

表2

在所制备和测试的样品中,仅样品S1和C4能够在高湿度水平的存在下保持可接受的乙烯去除能力,尽管与无水条件相比,观察到S1和C4二者约80%的能力损失。

实施例3(疏水性调整)

在H2O分压下测试不同类型的LTA沸石以确定亲水亲和力。在具有经调适的(conditioned)样品室的微量天平中进行测量。将沸石在真空下于180℃下活化过夜,然后在引入H2O压力前使其在氮气气氛下平衡。吸附结果报道在表3中。

表3

样品S2示出了较低的H2O吸附能力,显示了较低的亲水行为。在乙烯吸收活性的情况下,该样品能够确保较低的H2O竞争。这证实了当需要时,LTA沸石可以以酸形式获得,从而限制了高湿度对乙烯分子吸附的危害影响。

实施例4(环己烷污染)

在环己烷分压下测试不同类型的沸石(S1、S2和C4)。对于一组关键的特征(分子临界直径、蒸气密度、液体密度、蒸气压和沸点),可以采用环己烷作为测试分子来评估吸附材料(如沸石)对由运输燃料释放的所有典型的挥发性有机化合物(VOC)的吸附能力。这些典型VOC的列表包括芳族化合物(即,苯、乙苯、对二甲苯、间二甲苯、邻二甲苯)和环烷烃(即,环己烷、甲基环己烷)。

在具有经调适的样品室的微量天平中进行测量。将沸石在真空下于180℃下活化过夜,然后在引入C6H12压力前使其在氮气气氛下平衡。

表4示出了样品1和2及比较样品4关于环己烷吸附的定量评估的重量测试结果,其中将相当水平的样品暴露于环己烷蒸气(0.1毫巴分压)。

表4

尽管样品S1和S2由于沸石骨架特性而具有更大的可及体积(21.43%对9.81%),但是与Pd交换的ZSM-5(H)沸石(样品C4)相比,Pd交换的LTA沸石示出了更低(一个数量级)的环己烷吸附能力。

表4中报道的结果证明LTA沸石可以在典型的水果运输条件下担当乙烯的吸附材料,使由于其他VOC存在而引起的污染风险最小化。样品C4的高C6H12吸附能力显示了其对VOC比对乙烯吸收的更强竞争,即,在乙烯吸附能力上相应的损失(如果与实施例1中报道的C4吸附能力相比,则损失约50%)。

LTA沸石(S1和S2)示出了环己烷的有限吸收:如果与实施例1的无水条件下的吸附量相比,则它们的乙烯吸附能力的降低可以评估为5%(S2)至10%(S1)。

因此,当制造者设计包含至少LTA沸石组分的吸收系统时,可以减少沸石的过量引入(对于ZSM-5沸石,需要大量沸石的过量引入以在运输期间防止偶然污染):这在成本节约和制造条件方面均具有明显优势。

活性包装.pdf_第1页
第1页 / 共7页
活性包装.pdf_第2页
第2页 / 共7页
活性包装.pdf_第3页
第3页 / 共7页
点击查看更多>>
资源描述

《活性包装.pdf》由会员分享,可在线阅读,更多相关《活性包装.pdf(7页珍藏版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201680006105.5 (22)申请日 2016.01.27 (30)优先权数据 MI2015A000131 2015.02.02 IT (85)PCT国际申请进入国家阶段日 2017.07.17 (86)PCT国际申请的申请数据 PCT/IB2016/050401 2016.01.27 (87)PCT国际申请的公布数据 WO2016/125050 EN 2016.08.11 (71)申请人 工程吸气公司 地址 意大利米兰 (72)发明人 亚历山德拉科隆博 保罗瓦卡 米丽娅。

2、姆里瓦 (74)专利代理机构 北京集佳知识产权代理有限 公司 11227 代理人 蔡胜有 冷永华 (51)Int.Cl. A23L 3/3427(2006.01) B65D 81/28(2006.01) A23L 3/358(2006.01) (54)发明名称 活性包装 (57)摘要 在本发明的第一方面中, 本发明在于一种包 含经钯交换的LTA沸石的活性包装, 该方案能够 改善包装自身内的气体气氛(特别地涉及乙烯存 在的情况)的品质。 权利要求书1页 说明书5页 CN 107105726 A 2017.08.29 CN 107105726 A 1.一种包含经钯交换的LTA沸石的活性包装, 其中。

3、钯的量为0.1重量至5重量, 优选 所述钯的量为0.5重量至2.5重量。 2.根据权利要求1所述的活性包装, 其中所述LTA沸石以大于总沸石含量的75重量的 量存在。 3.根据前述权利要求中任一项所述的活性包装, 其中经交换的沸石的量为每克易腐新 鲜食品重量0.3 g至30 g。 4.根据前述权利要求中任一项所述的活性包装, 其中所述经钯交换的沸石是平均尺寸 为50nm至500 m的粉末形式。 5.根据权利要求4所述的活性包装, 其中所述粉末容纳在置于所述包装内的可渗透袋 中。 6.根据权利要求5所述的活性包装, 其中用于所述可渗透袋的材料选自低密度聚乙烯 (LDPE)、 高密度聚乙烯(HDP。

4、E)、 聚丙烯(PP)、 乙烯-乙酸乙烯酯聚合物(EVA)、 苯乙烯-乙烯- 丁烯-苯乙烯聚合物(SEBS)、 聚乳酸(PLA)、 聚酯。 7.根据权利要求4所述的活性包装, 其中所述粉末分散在聚合物材料中。 8.根据权利要求7所述的活性包装, 其中所述聚合物材料选自丙烯酸类化合物, 丙烯酸 类化合物-苯乙烯共聚物、 丙烯酸类化合物-乙烯基共聚物和丙烯酸类化合物-醇酸共聚物, 氨基甲酸酯-丙烯酸类化合物聚合物, 脂族化合物-氨基甲酸酯聚合物, 氨基甲酸酯, 聚酯, 环氧类化合物, 聚氨酯, 聚酰胺, 三聚氰胺, 聚苯乙烯, 酚醛树脂, 乙烯乙烯醇(EVOH), 聚乙烯 醇(PVA), 水性或水。

5、可稀释性胶乳。 9.根据权利要求7或8所述的活性包装, 其中包含经分散的粉末的所述聚合物材料是厚 度为5 m至50 m的膜形式。 10.根据权利要求9所述的活性包装, 其中相对于膜重量, 经钯交换的LTA沸石的重量 为0.01重量至20重量。 11.根据权利要求10所述的活性包装, 其中相对于膜重量, 经钯交换的沸石的重量为 10重量至20重量。 12.根据权利要求10所述的活性包装, 其中相对于膜重量, 经钯交换的LTA沸石的重 量为0.01重量至5重量。 13.根据权利要求9至12中任一项所述的活性包装, 其中所述膜附着在所述活性包装的 内表面上。 14.根据权利要求9至12中任一项所述的。

6、活性包装, 其中所述膜为所述活性包装自身的 构成部分。 权 利 要 求 书 1/1 页 2 CN 107105726 A 2 活性包装 0001 在本发明的第一方面中, 本发明在于一种包含具有LTA骨架的经钯交换的沸石的 活性包装。 0002 本申请的方案能够改善包装自身内的气体气氛(特别地涉及乙烯存在的情况)的 品质, 并且当包装偶然地暴露于烃类蒸气时, 其性能受到较少的危害。 0003 一般来说, 与多种催化剂金属相关的经交换、 经浸渍或经掺杂的沸石在不同应用 领域中的用途是已知的, 例如用于氮氧化物的催化修复(catalytic remediation), 如US专 利申请号2013/0。

7、251611中所公开的。 0004 在新鲜食品和蔬菜的运输和储存中由乙烯引起的问题是公知的, 例如, 由 Thompson,J.,A.Kader和K.Sylva于1996年制作的海报(poster)展示 “Compatibility chart for fruits and vegetables in short-term transport or storage” , Oakland: Univ.Calif.Div.Ag.and Nat.Res.Publ.21560(poster)中例示的, 其详述了在新鲜食品包 装内乙烯的期望目标阈值为1ppm水平; 以及如Andrew W.J.Smith。

8、等在2009年报道的, 乙烯 (通常0.1 ll-1至1.0 ll-1)可以引起许多呼吸跃变型水果(climacteric fruit)的成 熟, 随后可以导致通过水果的自催化而产生乙烯( “A new palladium-based ethylene scavenger to control ethylene-induced ripening of climacteric fruit” ,Platinum Metals Review.第53卷,第3期,第112至122页)。 Smith等没有提到被认为是优选的特定类 型的沸石。 类似地, 在现有技术中可获得的其他科学论文中没有发现任何对它们进。

9、行选择 的线索, 例如由Terry等在2007年在Postharvest Biology and Technology上发表的 “Development of new palladium-promoted ethylene scavenger” (第45卷,第2期,第214 至220页)。 0005 此外, 国际专利公开WO 2007/052074和WO 2011/001186中描述并处理了从水果和 蔬菜包装中去除VOC(挥发性有机化合物)(同样涉及乙烯)的问题, 其公开了特定类型的沸 石, 钯掺杂的ZSM-5, 而在欧洲专利申请1525802中公开了使用疏水性沸石用于相同的问题 和应用。 公。

10、开了ZSM-5沸石优选为经煅烧的并且以酸形式获得(通常标记为 “ZSM-5(H)” )。 0006 具体地关于新鲜食品保存(特别地涉及新鲜水果和蔬菜)的问题之一是不仅从其 中有效地去除乙烯水平的能力或至少控制在乙烯水平内的能力, 而且在各种不同环境条件 (例如温度、 湿度和其他气体)存在下保持这样的特性。 0007 本发明的目的在于克服现有技术中在乙烯控制的可靠性方面仍存在的缺点, 并且 在本发明第一方面中, 本发明在于一种包含经钯交换的LTA沸石的活性包装, 其中钯的量为 0.1重量至5重量, 优选所述钯的量为0.5重量至2.5重量。 0008 这样的钯负载重量被认为是对活性包装中存在的沸石。

11、总量的平均值。 0009 术语LTA沸石是本技术领域中公知的, 并且表示Linde A型结构。 其具有3维孔结构 (其中孔在x、 y和z平面中彼此垂直), 并且由次级结构单元4、 6、 8和4-4构成。 孔直径由八元 氧环限定并且孔直径小(为)。 这导致最小自由直径的较大空穴。 空穴被八个方 钠石笼(截角八面体)围绕, 所述八个方钠石笼通过其立方结构中的正方形面连接。 在LTA- Na的情况下, Na+阳离子在外骨架结构中的存在引起亲水行为并且使这些材料适用于水相 说 明 书 1/5 页 3 CN 107105726 A 3 互作用。 LTA-Na沸石可以通过使用铵盐溶液的湿法浸渍方法并随后进。

12、行煅烧工艺而被改性 成酸形式。 0010 重点要强调的是本发明聚焦于特定类型的沸石骨架, LTA, 因此在可能的沸石材料 的广泛选择中非常清楚和特定的要素, 所述可能的沸石材料的广泛选择参见例如 “Zeolite Type Frameworks:Connectivities,Configurations and Conformations” ,Molecular Sieves,第2卷,1999, 其表1中列出了约100种不同类型的沸石(包括LTA和ZSM-5); 或者参考 “Handbook of Zeolite Science and Technology” ,Scott M.Auerbac。

13、h,Kathleen A.Carrado,Prabir K.Dutta,CRC Press,2003年7月; 以及参考International Zeolite Association(IZA-SC)的 “Database of Zeolite Structures” (http:/www.iza- structure.org/databases/), 其中列出了多于230种不同的沸石骨架类型。 0011 每个包装的沸石的量根据易腐食品的类型、 量和目标寿命及包装体积而显著不 同, 因此本发明不限于仅仅一个特定量; 尽管有这样的考虑, 但是活性包装内钯交换的沸石 的量的典型值通常为每克易腐新鲜。

14、食品重量0.3 g至30 g。 0012 优选地, 根据本发明的活性包装中包含的钯交换的沸石是平均尺寸为50nm至500 m的粉末形式。 术语尺寸表示不规则形状的颗粒的最大尺度。 0013 通过激光衍射技术评估粒度颗粒尺寸分析。 关于激光衍射理论和实践的限定及考 虑来自标准ISO 13320-1。 激光衍射结果以体积分布报道, 其中大颗粒在分布上的影响是相 关的。 甚至更优选地, 钯交换的沸石为粉末形式, 在这样的情况下尺寸主要(X755 m)为 50nm至5 m并且至少50的沸石小于3 m。 这种类型的粉末对于确保均匀的吸附行为和易于 整合到活性包装中特别有用。 0014 对于微米级(5 m。

15、至500 m)的钯交换的沸石(包括LTA沸石), 优选的使用是在活性 包装内部的可渗透袋内。 尽管本发明不限于特定的袋材料或成分, 但是优选地使用低密度 聚乙烯(LDPE)、 高密度聚乙烯(HDPE)、 聚丙烯(PP)、 乙烯-乙酸乙烯酯聚合物(EVA)、 苯乙烯- 乙烯-丁烯-苯乙烯聚合物(SEBS)、 聚乳酸(PLA)、 聚酯。 0015 对于更细颗粒(50nm至5 m)的钯交换的沸石, 优选的使用是分散在合适的聚合物 材料或粘合剂中。 尽管本发明不限于特定的聚合物或成分, 但是优选地使用丙烯酸类化合 物, 丙烯酸类化合物-苯乙烯共聚物、 丙烯酸类化合物-乙烯基共聚物和丙烯酸类化合物-醇 。

16、酸共聚物, 氨基甲酸酯-丙烯酸类化合物聚合物, 脂族化合物-氨基甲酸酯聚合物, 氨基甲酸 酯, 聚酯, 环氧类化合物, 聚氨酯, 聚酰胺, 三聚氰胺, 酚醛树脂, 聚苯乙烯, 乙烯乙烯醇 (EVOH), 聚乙烯醇(PVA), 水性或水可稀释性胶乳。 0016 分散在聚合物材料中的钯交换的LTA沸石粉末(其为微米级或亚微米级)的优选的 使用是平均厚度为5 m至50 m的复合膜形式, 在这样的情况下, 沸石粉末的最大尺寸应等于 或小于新鲜体系的膜厚度的十分之一, 这在使用中通常转化这样的膜, 其中粉末随着时间 而趋于聚集并且因此可形成大至膜厚度一半的簇(cluster)。 0017 尽管本发明不限。

17、于经交换的沸石在聚合物材料中的特定负载量重量, 但是合适 的范围为0.01重量至20重量。 当在活性包装中对复合膜存在空间限制时, 最高范围(10 重量至20重量)是有利的; 当寻求活性包装的其他特性(例如复合膜的透明性、 半透明 性或小于10的雾度水平)时, 最低范围(0.01重量至5重量)是有利的。 0018 这样的膜可以附加至活性包装的内表面或可为包装自身的构成部分(即, 可移除 说 明 书 2/5 页 4 CN 107105726 A 4 的覆盖物)。 0019 尽管钯交换的LTA沸石在活性包装内的使用是特别有用的, 但是其还可以有利地 用在其他技术领域中: 在所述其他技术领域中甚至在。

18、高湿度条件下仍需要乙烯去除能力, 或者当乙烯与其他烃(所述其他烃在被沸石吸附时可在不可预测的程度上损害包含水果的 包装中乙烯控制的有效性和持久性)同时存在时仍需要乙烯去除能力。 0020 通过以下非限制性实施例进一步说明本发明。 0021 实施例1-样品制备 0022 样品1(S1) 0023 使用离子交换法制备钯交换的LTA沸石。 使用的LTA沸石的平均尺寸为100nm至10 m, 其中50沸石小于2 m并且75小于5 m。 0024 将10g沸石分散在钯盐(例如硝酸盐或氯盐)溶液中, 然后在尼龙膜上过滤并进行 热处理以促进溶剂蒸发。 0025 如通过ICP质谱所评估的, 所得钯交换量为LT。

19、A沸石重量的约1.5重量。 0026 样品2(S2) 0027 使用离子交换法从颗粒尺寸小于5 m(X75)的LTA-Na沸石开始来制备LTA-H沸石。 将20g沸石添加至NH4NO3水溶液中。 在室温下搅拌悬浮体, 然后使用0.45mm膜过滤器对其进 行过滤并最后在烘箱中干燥。 通过炉在空气中于500下对铵交换的沸石进行等温处理5小 时以得到LTA-H。 0028 ICP分析示出了沸石LTA-H中的Na含量如期望的降低。 LTA-Na中的Na量为14.0重 量, 而LTA-H中的Na量为约5.2重量。 使用与之前报道的样品1(S1)的相同的方法来制备 钯交换的LTA-H沸石。 0029 比较。

20、样品C1至C3 0030 一些比较样品是不同类型的 “原” (未经钯交换的)沸石。 选择LTA-Na、 ZSM-5(NH4) 和八面沸石(Na)。 0031 比较样品C4 0032 通过以下获得比较样品钯交换的ZSM-5(H): 首先, 将样品ZSM-5(NH4)(C2)在空气 中于500下热处理5小时, 然后如下进行离子交换法。 将10g ZSM-5(H)沸石分散在钯盐溶 液中, 随后在尼龙膜上过滤并在烘箱中于100下干燥过夜。 0033 上述所有样品汇总在表1中。 0034 表1 0035 样品ID沸石类型尺寸(X50)尺寸(X75)经Pd交换 S1LTA-Na2.0 m5.0 m是(1.。

21、5重量) S2LTA-H2.0 m5.0 m是(1.5重量) C1LTA-Na2.0 m5.0 m否 C2ZSM-5(NH4)4.9 m7.0 m否 C3八面沸石(Na)4.0 m6.0 m否 C4ZSM-5(H)5.0 m7.0 m是(1.5重量) 0036 实施例2 说 明 书 3/5 页 5 CN 107105726 A 5 0037 在不同条件下测试不同类型的沸石(S1、 C1至C4)。 在具有经调整的样品室的微量 天平中进行测量。 将沸石(10mg)在真空下于180下活化过夜, 然后在10毫巴C2H4分压和不 同湿度水平下进行测试。 0038 所得结果报道在表2中。 0039 表2 。

22、0040 0041 在所制备和测试的样品中, 仅样品S1和C4能够在高湿度水平的存在下保持可接受 的乙烯去除能力, 尽管与无水条件相比, 观察到S1和C4二者约80的能力损失。 0042 实施例3(疏水性调整) 0043 在H2O分压下测试不同类型的LTA沸石以确定亲水亲和力。 在具有经调适的 (conditioned)样品室的微量天平中进行测量。 将沸石在真空下于180下活化过夜, 然后 在引入H2O压力前使其在氮气气氛下平衡。 吸附结果报道在表3中。 0044 表3 0045 0046 样品S2示出了较低的H2O吸附能力, 显示了较低的亲水行为。 在乙烯吸收活性的情 况下, 该样品能够确保。

23、较低的H2O竞争。 这证实了当需要时, LTA沸石可以以酸形式获得, 从 而限制了高湿度对乙烯分子吸附的危害影响。 0047 实施例4(环己烷污染) 0048 在环己烷分压下测试不同类型的沸石(S1、 S2和C4)。 对于一组关键的特征(分子临 界直径、 蒸气密度、 液体密度、 蒸气压和沸点), 可以采用环己烷作为测试分子来评估吸附材 料(如沸石)对由运输燃料释放的所有典型的挥发性有机化合物(VOC)的吸附能力。 这些典 型VOC的列表包括芳族化合物(即, 苯、 乙苯、 对二甲苯、 间二甲苯、 邻二甲苯)和环烷烃(即, 环己烷、 甲基环己烷)。 0049 在具有经调适的样品室的微量天平中进行测。

24、量。 将沸石在真空下于180下活化 说 明 书 4/5 页 6 CN 107105726 A 6 过夜, 然后在引入C6H12压力前使其在氮气气氛下平衡。 0050 表4示出了样品1和2及比较样品4关于环己烷吸附的定量评估的重量测试结果, 其 中将相当水平的样品暴露于环己烷蒸气(0.1毫巴分压)。 0051 表4 0052 0053 尽管样品S1和S2由于沸石骨架特性而具有更大的可及体积(21.43对9.81), 但是与Pd交换的ZSM-5(H)沸石(样品C4)相比, Pd交换的LTA沸石示出了更低(一个数量级) 的环己烷吸附能力。 0054 表4中报道的结果证明LTA沸石可以在典型的水果运输。

25、条件下担当乙烯的吸附材 料, 使由于其他VOC存在而引起的污染风险最小化。 样品C4的高C6H12吸附能力显示了其对 VOC比对乙烯吸收的更强竞争, 即, 在乙烯吸附能力上相应的损失(如果与实施例1中报道的 C4吸附能力相比, 则损失约50)。 0055 LTA沸石(S1和S2)示出了环己烷的有限吸收: 如果与实施例1的无水条件下的吸附 量相比, 则它们的乙烯吸附能力的降低可以评估为5(S2)至10(S1)。 0056 因此, 当制造者设计包含至少LTA沸石组分的吸收系统时, 可以减少沸石的过量引 入(对于ZSM-5沸石, 需要大量沸石的过量引入以在运输期间防止偶然污染): 这在成本节约 和制造条件方面均具有明显优势。 说 明 书 5/5 页 7 CN 107105726 A 7 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 >


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1