如图2所示,G1组用户会议电路包括接口电路INi,30个用户会议电路CAi1至CAi30及两个本地多路复用器MXi和MX′i。接口电路一方面具有一个接至进入Eci的多路传输MIC的输入和一个接至离开SCi的多路传输MIC的输出,并且另一方面具有一个接到输入线LEi的输出及一个接到输出线LSi的输入。又,接口电路INi具有控制线LCi,以便与控制装置UC通信(见图1)。
接口电路INi接收进入到ECi的MIC多路传输信号,并从其取得信息,并经线LCi传送到控制装置UC,且经MIC光栅将30个话音取样串行地供给于线LEi上,该取样将分别地用于30个电
路CAi1到CAi30。在离开的方向上输出线LSi用来通过MIC光栅,串行地分别传送由电路CAi.1到CAi.30所供给的30个话音取样,电路INi处理在MIC光栅中所接收的取样,并将其加到常规的信号设备上。
在会议时间中将每个用户会议电路CAi.j分配给一用户。所有的电路CAi.1到CAi.30是相同的,并将通过CAi.1电路图的实例来说明。此电路一方面有一个接到输入线LEi的输入取样MICEM,及一个接到输出线LSi的输出取样MIC SM。在CAi.1电路中输入EM一方面连接到线性化电路EXP的输入,而在另一方面则连到输入监控电路SU。线性化电路EXP的输出是通过在多路复用器MXi的输入Ai1处的电路CAi.1的输出SL来实现的。
电路EXP将每个MIC取样转换成以二进制补码进行线性编码的16位取样,其中13位代表取样的幅度。
电路SU的输出通过线ESU连到控制装置UC上并在用户电路CAi.1到CAi.30的所有SU电路上所复用。电路SU用来提出由控制装置进行处理的辅助信号。该辅助信号例如为多频率信号。
由于实际原因,已将用户会议电路编成两组,各带15个电路,一组包括电路CAi.1到CAi.15,而另一组则包括电路CAi.16到CAi.30。属于第一组的电路EXP的输出接到MX′i多路复用器的输入Ai.1到Ai.15。
多路复用器MXi和MX′i在UC控制装置的控制下对在其输入端所接收的线性化取样进于多路复用。它们经同步线SYi和SY′i与UC控制装置相连。由多路复用器MXi和MX′i所组成的本地多路复用器分别分到构成G1组的数据输出的连接点J1和J′1。在所描述的实施例中G8组仅包括1组15个用户会议电路CAB.1到CAB.8,单个多路复用器MX8及单个输出连结点J8。
在图1所示的具体电路中G1到G8组的连接点J1到J8及J′1到J′7并行地连到用户会议电路Gi的每个组的数据输入。为使图较清晰,连接点J1到J8和J′1-J′7已合成为线束SJ。
在图2中可看出线束SJ在每个用户会议电路CAi.1到CAi.30的输入EL上是复用的。在电路CAi.1中输入EL连到选择电路SW的输入上,该选择电路的控制输入由线束MS连到存储器控制装置MC的输出上,该存储器控制装置则经控制线SC连到控制装置UC上。选择电路SW的数据输出在取样相加电路CAD的输入端实现。
电路CAD的输出连到压缩电路COM的输入,而其输出则经输出SM连到输出线LSi上,电路COM在MIC取样中将由取样相加电路所送出的每个取样变换为16位。
控制线SC还连到信号化电路SIG的输入,其输出还连到压缩电路COM的输入。
在图3中选择电路SW包括15个与门P1到P15,其每一输入都分别连到与控制存贮器MC的相应输出相连的15条控制线MS1到MS15的线束MS的连接点J1到J8及J′1到J′8。门P1到P15的输鲈蚍直鹩爰臃ǖ缏稢AD的加法器ADD的15个输入I1到I15相连。加法器ADD还有和与门Q1的输出相连的的第16个输入I16。门Q1的第1输入连到寄存器REG输出,寄存器输入则连到加法器ADD输出。寄存器REG输出还连到与门Q2输入,与门Q2输出则连到压缩电路COM。信号TR加到门Q1的第二反向输入和门Q2的直接输入,以膈将详细说明。因而加法电路CAD包括加法器ADD,寄存器REG及门G1和G2。
如图4所示,由线束SJ的连接点J1到J8及J′1到J′7上所载的16位限样置于等于一个MIC光栅宽度的宽度T的光栅中。在每个连接点上光栅是同步的。在所述的具体例子中,每个光栅有15个有
用的取样,其第16个则为零取样。在线束SJ上取样可由其连接点Ji或J′i及其在光栅中的行j给以标出。取样Ji.j或J′i.j属于单个用户,并用以识别他。
在图4中取样J2,5,J4,3,J4,10,J′1,10及J′5,7用粗标记加以特别标出以表示通讯的5个用户正参加会议如会议。同样取样J4,7,J7.11及J′7.4则用小空心矩形来特别标出,以表示他们和正在参加第二会议(如会议Y)的三个通讯的用户进行通信。
加法器ADD(见图5)包括联的数个基本二进制加法器系列。
第1系列由8个一位字 的基本加法器TA0到TA7组成,每个基本加法具有两个带1根线的输入及带两根线的一个输出。加法器TA0的输入分别连到输入10和11,加法器TA1的两个输入分别连到输入12和13等。
第2系列由四个两位字 的加法器TB0到TB4组成,每个加法器具有两个带两根线的输入及带三根线的一个输出。加法器TB0的两个输入分别连到加法器TA0和TA1的输出端,加法器TB1的两个输入则分别连到加法器TA2和TA3的输出等。
第3系列由两个三位字 的基本加法器TC0和TC1组成,每个基本加法器具有两个字三根线的输入和一个带四根线的输出。加法器TC0的两个输入分别连到加法器TB0和TB1的输出等。
第4系列只包含一个4位字 的基本加法器TD0,其输入分别与加法器TC0和TC1的输出相连而其输出则带有5根线。
加法器TD0输出连到5位字 的最后加法器TE0输入,其另一输入则连到插头DIV的平行输出。加法器TE0的第6根线的输出端分成将最低权的位传送到寄存器REG的输入的一根线FO,和将其他较高权的位传送给插头DIV的各平行输入端的一个由五根线组成的Fr线束。插头DIV具有时钟输入和返回到零的输入,其起源
将在下面说明。
为了图示加法器ADD的工作,我们将首先考虑的每个为6位的四个字码M0到M3的相加数列。如举例说明,则这些字码如下:
M0:001100=12(十进制)
M1:000011=3(十进制)
M2:000111=7(十进制)
M3:000110=6(十进制)
下表根据常规方式将这四个数相加。
要相加的各位的行 543210
r2 000000
r1 001100
r0 010010
M0 001100
M1 000011
M2 000111
M3 000110
S 011100
此处r2,r1和r0为转移时的二进制表示。
以上计算实例表示计算动作遵照以下的规颍?
瞬时t0:行0各位的和,
:就第1总和而言,保留最低权的位,
:使用最高权的各位作为最高行的转移;
瞬时t1:行1和及在行0所确定的转移的各位之和
:保留最低权的位,
:在较高行转移位的情况下,使用最高权的位。
在瞬时t2、t3、t4和t5,其处理和瞬时t1相同。
本专业的普通技术人员应明白,刚刚说明的实现相加的方法可扩展到大于6位的数,例如,如上面已经定义的那样,扩展到16位的字码。他同样应明白相加的数可以多于4个。这就是图5的加法器ADD中所提供的内容。
刚刚说明的实现相加的方法包含:
-当考虑二进制权时一连串的相加运算和
-当考虑相加电路的输入的数目时并行的情况
此相加方法并不限制同时并行选取的数目。也不限制有关每个取样的位数。
图6的工作流程和图7的时间表图示图5的相加电路的工作。在图7中在(a)处表示有本地多路复用装置Ji的取样Ji.j。此取样和其他一样包括16位×0到×15。图(b)表示加到插头DIV的相应输入上的本地时钟信号位H。图(c)表示在×0位的第1半周期中所发送的信号RAZ,该信号加到插头DIV相应的输入端上。
如图6的工作图所示,信号RAZ在×0位的第1半周期间将插头DIV的内容设定为零,在该处当K=0时再次设定为零,K代表在一取样中的位的行数。
在行K的时钟周期H期间,相加电路的各级联的基本加法器工作,基本加法器TEO送出:
SRK=SK+RK
此处SK为行K的16个进入二进制元素的和及RK为在插头DIV的输出处瞬间K得到的转移即在行计算(K-1)上的转移。
如引R(K+1)为SRK/2的整个部分及引入SK为SRK的最小权的位,则得
SK=SRK-2R(K+1)
因而加法器ADD的基本工作周期对应于获得的SRK,R(K+1)和SK,对应于检验K是否等于15及对应于转置K=K+1。SK的继续代表在周期末端相加的结果。在另一方面,应记得在K=0瞬间数R15在插头DIV中被设定为零。
因而插头DIV的作用在于从SRK中得到R(K+1)。在每个脉冲H处对应于由加法器TEO送出的字码的5个最高权的输入的位送到插头DIV的输出,但加到加法器TEO的第二输入的字码的权应取1到5。因而只要使插头DIV交叉,就可除以2。插头DIV的相连及在TEO的输出处的连接线分开就可允许一方面有SK,而另一方面有(SRK-SK)。
SK连续存储在寄存器REG中,该寄存器是工作在瞬时钟H的节奏上,带有16个单元的交错寄存器。在取样Ji.j的末端,寄存器REG因而包含在行1到j的取样上查加的结果,而该些取样从所考虑的光栅的开始时就加到输入E1到E15。在取样(j+1)的行上图6的循环重新开始,加到输入I0到I14的行(j+1)的取样加在一起,并由寄存器REG送出部分结果。
如图4(a)所示,在本地多路复用的每个光栅的最后取样的持续期间,信号TR处于高电平,而在其他取样时则处于低电平。信号TR加到相加电路CAD的门Q1和Q2的各个第二输入端(见图3)。因而当信号TR为高电平时,门Q1的输出为低电平,即在图形形成期间加法器ADD的输入I16保持在“0”电平,并当门Q2断开时此输入能使以前的结果设定为0,这样就可将相加的结果送到压缩电路COM。
每个用户会议电路CAi.j的储存器具有一串15位的15个字码,且以采样时钟的节奏读出,并可在存储器8473的输出处得到,即在取
样的持续时间内在线束MS上可得到。
例如,如人们考虑用户由图4中的采样J2.5表示,则记录在用户会议电路CA2.5的控制存储器MC中的字码m01到m15的序列将如下:
m01 000000000000000
m02 000000000000000
m03 000100000000000
m04 000000000000000
m05 000000000000000
m06 000000000000000
m07 000000000000100
m08 000000000000000
m09 000000000000000
m10 000100001000000
m11 000000000000000
m12 000000000000000
m13 000000000000000
m14 000000000000000
m15 000000000000000
可看出在上述序列中m03在第4位置包含一位“1”,字码m07在第13位置上包含一位“1”,及字码m10包括两位“1”,一个在第4位置,另一个在第9位置,而所有其他位皆为“0”。线束MS连到存储器的输出,而门P0到P15仅当其第二输入为高电平时才断开,即通过上述的序列中的位“1”。因而可见电路CA2.5的相加电路CAD将实现取样J4.3,J′5.7,J4.10及J′1.10的相加。其后此加法电路将送出会议X中的参加者的话音取样的和,但和电路CA2.
5通讯的用户的语音取样除外。
人们能写出一串用户正参加上面所定的会议Y的,用户会议电路CA15.4的相似字码。然而,对本专业的普通技术人员来说,这是明显的,故无必要。
从上所述,可想起本方法足以在电路CAi.j的存储器MC中建立一串字码以便使用户参加会议及用户将收到会议的所有参加者发出的信号的和,但他自己则除外。
同样,人们也许能确立会议数是任何数,但参加者一次仅能正式参加一个会议,虽然同时听取几个会议是可信的。
最后可看出,会议中参加者的数目实际上仅由光栅容量及本地多路传输线的数量(此处为15×15)所限制。本地多路传输的输出采用本地总线,故可具有大的通带,因而输出明显地高于MIC多路传输的输出。因而人们可显然地使本地光栅的容量增加到超过15。在另一方面,如上所述加法器ADD可有32个输入来代替16个输入或更多些的输入。在市场上买到的逻辑电路,其工作速度应是在取样时间内很容易地实现相加顺序。
在刚刚详细说明的实施例中,已假定接通会议装置将会随MIC信号的远距通讯的外部网络而变化,本装置首先要求将MIC取样转换为线性取样,其次要求由MIC多路复用器组成数个具有30个单个会议电路的组。本专业的技术人员将会明白本发明的装置也能与模拟用户线一起运行,每个单个电路包括一条声模拟声装置的取样电路和数/模转换电路以分别代替EXP和COM电路。在此情况下,一组单个电路可有许多电路(不一定是30条),和许多本地多路复用的光栅,而取样数则也不一定是15个。
在图1中也可看出控制装置UC会发出锁定和同步信号,如时钟位H,取样时钟CH(如图7(e)所示),图4(a)所示的TR信号,及同
步光栅信号SYi和SY′i,还发出图7(f)示出的读/写控制信号。
读/写信号的周期等于取样信号的周期。在每个取样的位×O的第一半周期间,读/写信号处于高电平,并产生对应于行j取样的行j的字码的读数,该字码记录在控制存储器MC中。该字码在行j的取样的整个持续时间中保持呈现在存储器的输出端。实际上,在存储器M的输出处提供有保持此字码的一系列锁存器。在行(j+1)的取样开始时,正是行(j+1)的字码将被读出等。在另一方面,在取样的持续时间的剩余时间中读/写信号在低电平,并可能允许UC控制装置将新的序列的字码写入存储器从而变换会议。UC控制装置能根据常规的方法在同一时间内读出存储器的内容。
上面详细描述的装置涉及电话会议的装置。然而必须很好的理解它只与专门应用有关,且它可以同样用于数据传输的装置,此时参加者就以线性数据选取来代替,该装置根本不限制每个取样的长度,也不限制多路传输的数目。
在特别与图1有关的所说明的实施例中,参加者电路在参加者存取级上地方化,但也可以集中化,将在输入中的连接线LCi及在输出中的连接线LSi连到每个参加者。
在前面已同样假设加法器的输入数等于2的乘方如2n但这不是强制的。也可用不同的输入数。