通过转座的DNA整合.pdf

上传人:b*** 文档编号:546959 上传时间:2018-02-21 格式:PDF 页数:119 大小:4.79MB
返回 下载 相关 举报
摘要
申请专利号:

CN96192093.9

申请日:

1996.01.23

公开号:

CN1177380A

公开日:

1998.03.25

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回|||著录事项变更变更项目:申请人变更前:诺沃挪第克公司变更后:诺沃奇梅兹有限公司||||||公开

IPC分类号:

C12N15/75; C12N15/65

主分类号:

C12N15/75; C12N15/65

申请人:

诺沃挪第克公司;

发明人:

S·T·乔根森

地址:

丹麦巴格斯瓦尔德

优先权:

1995.01.23 DK 0083/95; 1995.07.06 DK 0799/95

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

张闽

PDF下载: PDF下载
内容摘要

革兰氏阳性细菌的多拷贝菌株,含有多拷贝感兴趣的DNA序列,该菌株通过以下方法构建:通过转座将含有感兴趣的DNA序列的DNA结构导入受体细胞基因组,然后通过一个解离系统使用于选择具有接收到的DNA结构的细胞的标记基因缺失。该多拷贝菌株最好没有编码不需要的标记如抗生素抗性标记的基因。

权利要求书

1: 一种DNA结构,含有结构IR(1)-P-R-M2-R-IR(2) 或IR(1)-R-M2-R-P-IR(2),其中 IR(1)和IR(2)表示转座酶靶序列, P为感兴趣的DNA序列, R为位点专一性重组酶的靶序列,和 M2为选择标记基因, 所述结构与转座酶基因T相关,该基因位于所述结构外面的任一侧。
2: 一种DNA结构,含有结构IR(1)-R-M2-T-R-P-IR (2)、IR(1)-P-R-M2-T-R-IR(2)、IR(1)-R -T-M2-R-P-IR(2)或IR(1)-P-R-T-M2-R-IR (2),其中 IR(1)和IR(2)表示转座酶靶序列, P为感兴趣的DNA序列, R为位点专一性重组酶的靶序列, M2为选择标记基因,和 T为转座酶基因T。
3: 如权利要求1或2的DNA结构,其中,R是来自质粒pAMβ1的res -位点或来自噬菌体P1的lox位点。
4: 一种DNA结构,含有结构IR(1)-P-R′-M2-R″-IR(2) 或IR(1)-R′-M2-R″-P-IR(2),其中 IR(1)和IR(2)表示转座酶靶序列, P为感兴趣的DNA序列, R′和R″为平行重复序列,和 M2为选择标记基因, 所述结构与转座酶基因T相关,该基因位于所述结构外面的任一侧。
5: 一种DNA结构,含有结构IR(1)-R′-M2-T-R″-P-IR (2),IR(1)-P-R′-M2-T-R″-IR(2),IR(1)-R′ -T-M2-R″-P-IR(2)或IR(1)-P-R′-T-M2-R″-IR (2),其中 IR(1)和IR(2)表示转座酶靶序列, P为感兴趣的DNA序列, R′和R″为平行重复序列, M2为选择标记基因,和 T为转座酶基因T。
6: 如权利要求1-5中任一项的DNA结构,还包括一个选择标记基因 M1,它可以不同于或相同于M2,它位于所述结构外面的任一侧,该结构位 于IR(1)和IR(2)里面,并且包括IR(1)和IR(2)。
7: 如上述权利要求中任一项的DNA结构,它可以在革兰氏阳性细菌, 特别是芽胞杆菌属的细胞中转座。
8: 如权利要求1-7中任一项的DNA结构,还包括一个顺式作用DNA 序列,该序列为在反式作用移动因子存在条件下通过接合作用而把该DNA 结构转移到受体细胞里所必需。
9: 如权利要求1-8中任一项的DNA结构,其中,所述DNA序列P编 码一种感兴趣的多肽。
10: 如权利要求9的DNA结构,其中,所述DNA序列P编码一种转位 多肽。
11: 如权利要求10的DNA结构,其中,所述DNA序列P编码一种分泌 多肽。
12: 如权利要求9的DNA结构,其中,所述多肽是一种酶。
13: 如权利要求12的DNA结构,其中,所述酶选自淀粉分解酶、脂肪 分解酶、蛋白分解酶、纤维素分解酶、氧化还原酶或植物细胞壁降解酶。
14: 如权利要求10的DNA结构,其中,所述多肽是PrsA。
15: 一种载体,含有权利要求1-14中任一项的DNA结构。
16: 如权利要求15的载体,含有一个条件复制起点。
17: 如权利要求16的载体,其中,所述条件复制起点是温度敏感型复 制起点。
18: 一种细菌细胞,在其组成DNA上整合了至少2个拷贝的含有结构 IR(1)-P-IR(2)的DNA结构,其中,IR(1)和IR(2)表示 转座酶靶序列,而P为一个感兴趣的DNA序列,该结构还包括一个作为一 种位点专一性重组酶的靶序列的DNA序列,它的存在是位于两个R序列之 间的DNA片段受一种解离酶作用的结果,或者该DNA序列是通过DNA序列 R′/R″之间的同源重组所致。
19: 如权利要求18的细胞,它不含任何不需要的选择标记基因。
20: 如权利要求19的细胞,它不含编码一种可选择的抗生素抗性标记 的DNA序列。
21: 如权利要求18-20中任一项的细胞,它是一种革兰氏阳性细菌 的细胞。
22: 如权利要求21的细胞,它是一种芽胞杆菌或乳杆菌的细胞。
23: 如权利要求22的细胞,它是一种芽胞杆菌细胞,所述芽胞杆菌选 自枯草芽胞杆菌、地衣型芽胞杆菌、迟缓芽胞杆菌、短芽胞杆菌、嗜热脂 肪芽胞杆菌、嗜碱性芽胞杆菌、解淀粉芽胞杆菌、凝固芽胞杆菌、环状芽 胞杆菌、Bacillus lautus、巨大芽胞杆菌、苏云金芽胞杆菌。
24: 如权利要求18-23中任一项的细胞,其中,所述DNA序列P编 码一种感兴趣的多肽。
25: 如权利要求24的细胞,其中,所述DNA序列P编码一种转位多肽。
26: 如权利要求20的细胞,其中,所述DNA序列P编码一种分泌多肽。
27: 如权利要求24的细胞,其中,所述多肽是一种酶。
28: 如权利要求27的细胞,其中,所述酶选自淀粉分解酶、脂肪分解 酶、蛋白分解酶、纤维素分解酶、氧化还原酶或植物细胞壁降解酶。
29: 一种构建细菌细胞的方法,在该细胞的基因组DNA上整合了一个 以上拷贝的感兴趣的DNA序列,而且它不含编码不需要的选择标记的DNA 序列,该方法包括 a)将含有权利要求1、3和6-14中任一项的DNA结构的第一载体导 入宿主细胞中,所述DNA结构含有结构IR(1)-P-R-M2-R-IR (2)或IR(1)-R-M2-R-P-IR(2),该结构与1个转座酶 基因T相关,并选择性地与1个选择标记基因M1相关, b)选择M1 - 、M2 + 细胞,在该细胞的基因组中含有结构IR(1)-P -R-M2-R-IR(2)或IR(1)-R-M2-R-P-IR(2), c)将含有编码一种位点专一性重组酶的DNA序列的第二载体导入在步 骤b)中所选择的细胞中,以便将结构R-M2或M2-R从该细胞的基因组 中切除,使所得到的细胞具有整合的结构IR(1)-R-P-IR(2) 或IR(1)-P-R-IR(2), d)从步骤c)所得到的细胞中消除第二质粒,并选择性地 e)重复步骤a-d1次或几次,以产生含有1个或几个额外拷贝的结构 IR(1)-R-P-IR(2)或IR(1)-P-R-IR(2)的细菌细 胞。
30: 一种构建细菌细胞的方法,在该细胞的基因组DNA中整合了一个 以上拷贝的感兴趣的DNA序列,它不含编码不需要的选择标记的DNA序列, 该方法包括 a)将含有权利要求2、3和6-14中任一项的DNA结构的第一载体导 入宿主细胞,所述DNA结构含有结构IR(1)-R-M2-T-R-P- IR(2),IR(1)-P-R-M2-T-R-IR(2),IR(1)-R -T-M2-R-P-IR(2)或IR(1)-P-R-T-M2-R-IR (2),该结构选择性地与1个选择标记基因M1相关, b)选择M1 - 、M2 + 细胞,该细胞的基因组中含有a)中所确定的结构之 一, c)选择具有增多拷贝数目的选择标记基因M2的细胞, d)将含有编码一种位点专一性重组酶的DNA序列的第二载体导入在步 骤b)中选择的细胞,以便将结构R-M2-T、R-T-M2、M2-T-R 或T-R-M2从该细胞基因组中切除,使所得到的细胞具有整合的结构IR (1)-R-P-IR(2)或IR(1)-P-R-IR(2), e)从步骤d)所得到的细胞中清除第二质粒,并选择性地 f)重复步骤a-el次或几次,以产生含有1个或几个额外拷贝的结构 IR(1)-R-P-IR(2)或IR(1)-P-R-IR(2)的细菌细 胞。
31: 如权利要求29或30的方法,其中,所述第二质粒是可清除的。
32: 一种构建细菌细胞的方法,在该细胞的基因组DNA上整合了1个 以上拷贝的感兴趣的DNA序列,而且它不含编码不需要的选择标记的DNA 序列,该方法包括 a)将含有权利要求4和6-14中任一项的DNA结构的第一载体导入宿 主细胞,所述DNA结构含有结构IR(1)-P-R′-M2-R″-IR(2) 或IR(1)-R′-M2-R″-P-IR(2),该结构与1个转座酶基因T 相关,并选择性地与1个选择标记基因M1相关,其中R′和R″表示平行重复 序列, b)选择M1 - 、M2 + 细胞,在该细胞的基因组中含有结构IR(1)-P -R′-M2-R″-IR(2)或IR(1)-R′-M2-R″-P-IR(2), c)使DNA序列R′和R″之间发生同源重组,以便将选择标记基因M2切 除,使所得到的细胞具有整合的结构IR(1)-R′/R″-P-IR(2)或 IR(1)-P-R′/R″-IR(2)(其中R′/R″表示共同的重组序列),并 选择性地 d)重复步骤a-c1次或几次,以产生含有1个或几个额外拷贝的DNA 结构IR(1)-R′/R″-P-IR(2)或IR(1)-P-R′/R″-IR(2) 的细菌细胞。
33: 一种构建细菌细胞的方法,在该细胞的基因组DNA上整合了1个 以上拷贝的感兴趣的DNA序列,而且它不含编码不需要的选择标记的DNA 序列,该方法包括 a)将含有权利要求5-14中任一项的DNA结构的第一载体导入宿主细 胞,所述DNA结构含有结构IR(1)-R′-M2-T-R″-P-IR(2)、 IR(1)-P-R′-M2-T-R″-IR(2)、IR(1)-R′-T-M2 -R″-P-IR(2)或IR(1)-P-R′-T-M2-R″-IR(2), 该结构选择性地与1个选择标记基因M1相关,其中,R′和R″表示平行重复 序列, b)选择M1、M2 + 细胞,在该细胞的基因组中含有在a)中所确定的相 关结构, c)选择具有增多拷贝数目的选择标记基因M2的细胞, d)使DNA序列R′和R″之间发生同源重组,以便将选择标记基因M2和转 座酶基因T切除,使所得到的细胞具有整合的结构IR(1)-R′/R″-P -IR(2)或IR(1)-P-R′/R″-IR(2)(其中R′/R″表示共同的 重组序列),并选择性地 e)重复步骤a-d1次或几次,以产生含有1个或几个额外拷贝的DNA 结构IR(1)-R′/R″-P-IR(2)或IR(1)-P-R′/R″-IR(2) 的细菌细胞。
34: 如权利要求32或33的方法,其中,所述选择标记基因M2是一种 诸如amdS基因或thy基因的反选择标记,而且在步骤c)之后对该反选择标 记的缺乏进行选择。
35: 如权利要求29-34中任一项的方法,其中,步骤a)是通过接合 作用实现的,第一载体另外含有1个顺式作用DNA序列,该序列为在有1 个反式作用移动因子的条件下通过接合作用将载体转移到细菌细胞中所必 需,该第一载体存在于一群供体细胞中,该细胞还含有至少1个编码所述 反式作用移动因子的DNA序列,将该供体细胞群与一群受体细菌细胞混合, 混合是在使所述载体能够通过接合作用从供体细胞群转移到受体细胞群的 条件下进行的。
36: 如权利要求29-35中任一项的方法,其中,按步骤a)导入的DNA 结构还包括1个复制起点。
37: 如权利要求36的方法,其中,所述复制起点是条件复制起点。
38: 如权利要求29-37中任一项的方法,其中,将步骤a)-e)重复1 次或几次。
39: 如权利要求29-38中任一项的方法,其中,所述DNA序列R和 编码位点专一性重组酶的DNA是源于质粒pAMβ1。
40: 如权利要求29-39中任一项的方法,其中对所述整合的选择性 地包括R或R′/R″的DNA结构IR(1)-P-IR(2)进行扩增,以得到 含有2个或2个以上拷贝的所述DNA结构的细胞。
41: 如权利要求29-40中任一项的方法,其中,所述待构建的细胞 是一种革兰氏阳性细菌的细胞。
42: 如权利要求41的方法,其中所述细胞是芽胞杆菌或乳杆菌细胞。
43: 如权利要求42的方法,其中所述细胞是选自枯草芽胞杆菌、地衣 型芽胞杆菌、迟缓芽胞杆菌、短芽胞杆菌、嗜热脂肪芽胞杆菌、嗜碱性芽 胞杆菌、解淀粉芽胞杆菌、凝固芽胞杆菌、环状芽胞杆菌、Bacillus lautus、巨大芽胞杆菌、苏云金芽胞杆菌的芽胞杆菌的细胞。
44: 一种生产由DNA序列P编码的一种感兴趣的蛋白的方法,该方法 包括培养权利要求18-28中任一项的细胞和/或用权利要求29-43中任 一项的方法生产的细胞,该细胞含有一个以上拷贝的DNA序列P,培养是 在适于所述多肽产生的条件下进行的,还包括从所得到的细胞培养液中回 收所述多肽。
45: 一种无标记的革兰氏阳性细菌细胞,特别是芽胞杆菌细胞,其含 有多个拷贝的感兴趣的DNA序列P。

说明书


通过转座的DNA整合

    本发明涉及一种新的DNA结构,可用于构建具有在其基因组上整合了一个以上感兴趣的DNA序列的拷贝的细菌细胞,该细胞可能无任何选择标记,还涉及构建所述细胞的方法。

    原核细胞转座因子是可以插入原核基因组的单位点或多位点的分立DNA序列。通常,这些因子组成编码转座酶蛋白的基因和转座框,该转座框包括一个抗性基因,其侧翼为可由转座酶蛋白识别的序列。转座框进入宿主细胞基因组(可以随机发生或发生于热点位点)的转座作用是通过转座酶蛋白与转座框的侧翼序列之间的识别和相互作用而实现的。

    存在不同类型的转座因子。一种类型包括i)插入序列(IS),其为编码转座酶蛋白或其它介导转座作用的决定子的小型(小于2kb)DNA片段,和ii)复合转座子,即其侧翼为两个拷贝插入序列的DNA片段。所有IS序列的末端部分都包括反向重复序列。转座酶蛋白的作用是识别这些末端序列并与这些序列相互作用,以实现在基因组里的转座作用。

    第二种类型地转座子是转座子的Tn3家族。这些转座子编码与两步转座过程有关的两种产物:一种为转座酶,一种为解离酶。属于第二种类型的转座子具有约35-40bp的反向末端重复序列。

    第三种类型包括噬菌体Mu及相关噬菌体。噬菌体Mu比其它转座子大,其基因组为36kb。Mu编码参与转座过程的两种基因产物,一种为70kDa的转座酶,一种为约33kDa的辅助蛋白。Mu区别于其它转座子的一个异常特征是,其末端不是反向重复序列。不过,业已证实Mu转座酶在体外结合试验中能与两端结合。

    转座子已被广泛应用于在革兰氏阳性和革兰氏阴性细菌里的诱变和克隆:Youngman,P.J.Perkins,J.B.,Losick,R.(1983)Genetictransposition and insertional mutagenesis in Bacillus subtilis withStreptococcus faecalis transposon Tn917,Proc.Natl.Acad.Sci.USA,80,2305-2309;Youngman,P.,Perkins,J.B.,Losick,R.(1984),Construction of a cloning site near one end of Tn 917 into whichforeign DNA may be inserted without affecting transposition inBacillus subtilis or expression of the transposon-borne erm gene,Plasmid 12,1-9;Youngman,P.(1985)Plasmid vectors for recoveringand expoliting Tn 917 transpositions in Bacillus subtilis and Othergram positives,P.79-103,见K.Hardy(著)Plasmids:a practicalapproach,IRL Press,Oxford;Kleckner,N.,Roth,J.,Botstein,D.(1977)Genetic engineering in Vivo using translocatable drug-resistance elements.New methods in bacterial genetics,J.Mol.Biol.,116,125-159;Wati,M.R.,Priest,F.G.,Mitchell,W.J.(1990)Mutagenesis using Tn 917 in Bacillus licheniformis.FEMS microbiol.Lett.,71,211-214;Petit,M.-A.,Bruand,C.,Janniere,L.,Ehrlich,S.D.(1990)Tn 10-derived transposons active in Bacillus subtilis.J.Bacteriol.,172,6736-6740.

    后一件参考文献披露了pHV1248和pHV1249,它们是复制对热敏感的质粒,其带有源于Tn10的转座酶基因,该基因被修饰成可在枯草芽孢杆菌中表达,并有足够的源于Tn10的IS10因子的序列位于氯霉素抗性基因两侧(小型-Tn10),以便小型-Tn10能够转座到枯草芽孢杆菌的染色体中。

    Maguin等(Maguin,E.,Duwat,P.,Hege,T.,Ehrlich,D,Grruss,A.(1992)New thermosensitive plasmid for gram-positive bacteria,J.Bacteriol.174,5633-5638)披露了该系统的另一种形式。

    EP 485701披露了将转座子用于将单拷贝DNA序列导入原核细胞基因组,转座酶蛋白是顺式编码的。

    Slugenova等((1993),Euhanced α-amylase Production bychromosomal integration of pTVA1 in industrial strain in B.subtilis,Biotechnology Letters,15,483-488)披露了质粒pTVA1的多次整合,该质粒含有一个修饰的转座子Tn917和一个位于该转座子之外的感兴趣的α-淀粉酶基因。在所得到的菌株中存在抗生素抗性标记基因。

    EP 0 332 488披露了一种用于构建多拷贝细菌菌株的转座系统,即:该菌株含有多拷贝的感兴趣的基因,还包括随感兴趣的基因一起导入的多拷贝选择标记基因。以噬菌体Mu转座子为例对将该系统用于修饰革兰氏阴性细菌进行说明。

    W095/01095披露了将小型转座子用作一种载体,用于将外源基因稳定地转化到真核(如动物)染色体中。

    Simon,R.,Priefer,U.,Pühler,A.((1983),A broad host rangemobilization system for in vivo genetic engin ering:Transposonmutagenesis in gram-negative bacteria,Bio/Technology,l,784-791)披露了将大肠杆菌特异性载体用于通过接合作用将转座子转入其它革兰氏阴性菌株。业已通过整合含有感兴趣的基因和一个抗生素选择标记的遗传结构,并在有大剂量抗生素的条件下培养所述细胞以扩增所述结构而生产出几种上述多拷贝菌株。因此,所得到的细胞通常含有若干抗生素抗性基因。这些基因的存在是不需要的,特别是环保和产品许可角度来看尤为如此。

    业已将非抗生素选择标记用于构建多拷贝菌株。Herrero,M.,deLorenzo,V.,Timmis,K.N,((1990),Transposon vectors containingnon-antibiotic resistance selection markers for cloning and stablechromosomal insertion of foreign genes in gram-negative bacteria,J.Bacteriol.,172,6557-6567)披露了这样的系统,其中,将除草剂或重金属抗性用作选择标记。

    在DE4231764中披露了使用抗生素抗性标记的另一种方案,其中,将Thy-(三甲氧苄二氨嘧啶抗性)和Thy+(thy原养型)的交替选择用于把产物基因导入芽胞杆菌,从而避免使用选择标记。

    源于细菌染色体的DNA片段的特异缺失通常是通过同源重组的方法进行的(Hamilton,C.H.,Aldea,M.,Washburn,B.K.,Babitzke,P.(1989),New method of generating delet ions and gene replacement inEsderichia coli.J.Bacteriol.,171,4617-4622;Maguin,E.,Duwat,P.,Hege,T.,Ehrlich,D,Gruss,A.(1992).New thermosensitiveplasmid for gram-positive bacteria.J.Bacteriol.174,5633-5638)。不过,同源重组不大适于从具有多个串联拷贝的这种基因的菌株中缺失抗性标记基因,所述基因各自与感兴趣的基因的一个拷贝连接,因为同源重组同样会使感兴趣的基因的过多的拷贝缺失。

    业已披露了(Hasan,N.,Koob,M.,Szybalski,w.(1994),Escherichiacoli genome targeting,I.,Cre-lox-mediated in vitro generation ofori plasmids and their in vivo chromosomal integration andretrieval.Gene,150,51-56)将位点专一性重组系统用于整合和挽回源于细菌染色体的序列的构思,该构思采用源于λ噬菌体或P1的因子,并披露了实现这一目的的一些具体方法。Abremski,K.,Hoess,R.,Sternberg,N.进一步披露了该cre-lox系统((1983),Studies on the properties ofP1 site-specific recombination:Evidence for topologically unlinkedproducts following reco mbination,cell,321301-1311)。另一种系统基于广宿主范围质粒RP4的重组系统(Eberl,L.,Kristensen,C.S.,Givskov,M.,Grohmann,E.,Gerlitz,M.,Schwab,H.(1994),Analysisof the multimer resolution system encoded by the parCBA operon ofbroad-host-range plasmid RP4,Mol.Microbiol.,12,131-141))。Stark,W.M.,Boocock,M.R.,Sherratt,D.J.(1992),Catalysis by site-specific recombinases,Trends in Genetics,8,432-439)的文章对解离酶的作用机理进行了综述。Camilli等((1994),Use of geneticrecombination as a reporter of gene expression,Proc.Natl.Acad.Sci.USA,91,2634-2638)披露了将res位点和源于霍乱弧菌(Vibriocholera)的γδ转座子的解离酶体为染色体基因的基因表达的稳定的可遗传的标记。该解离系统不是用于切除标记基因的。Chang,L.-K.等((1994),Construction of Tn 917asl,a transposon useful formutagenesis and cloning of Bacillus subtilis genes,Gene,150,129-134)披露了含有erm-res-tnpA(转座酶)-tnpR(解离酶)samtIR-res-ovi colE1-ABR1-ABR2-IR(pD917;Tn917 acl)的质粒(pE194)。其中的2个res位点使转座子能正确发挥功能,不会切除间插DNA。

    有报道说宽宿主范围的革兰氏阳性质粒pAMβ1(Clewell,D.B.,Yagi,Y.,Dunny,G.M.,Schultz,S.K.(1974)Characterization of threeplasmid deoxyribonucleic acid molecules in a strain of streptococcusfaecalis:identification of a plasmid determining erythromycinresistance.J.Bacteriol.117,283-289)含有一个解离系统,该系统通过位点专一性重组过程将质粒多体解离成单体,该过程需要一种特殊的由质粒编码的酶(解离酶)和一个位于该质粒上的位点res(Swinfield,T.-J,Janniere,L.,Ehrlich,S.D.,Minton,N.P.(1991).Characterizationof a region of the Enterococcus faecalis plasmid pAMβ1 which enhancesthe segregational stability of pAMβ1-devived cloning vectors inBacillus subtilis.Plasmid 26,209-221;Janniere,L.,Gruss,A.,Ehrlich,S.D.(1993)Plasmids,pp.625-644,in Sonenshein,A.L.,Hoch,J.A.,Losick,R.(著)Bacillus subtilis and other gram-positivebacteria:Biochemistry,physiology and molecular genetics.Americonsociety for microbiology,Washington D.C.)。

    曾经提出用一种位点专一性重组系统从细菌细胞的基因组中除去一个单一的选择标记基因。例如Dale等(1991)Gene transfer with subsequentremoval of the selection gene from the host genome,Proc.Natl.Acad.Sci.USA,88,10558-10562)披露了将所述cre/lox系统用于从转基因植物中除去标记基因的用途,并指出该系统的使用可以避免在随后几轮将基因转入同一宿主的过程中对不同选择标记的需要。Kristensen,C.S.等((1995),J.Bacteriol.,177,52-58)披露了将质粒RP4的多体解离系统用于从革兰氏阴性细菌上精确切除染色体片段(如与异源DNA一起导入的标记基因)的用途。它指出,该系统被设计成有利于异源DNA片段插入染色体的发生,最终避免使用任何选择标记。

    WO95/02058披露了一种新的源于苏云金芽胞杆菌(B.thuringiensis)的转座子(tn5401),其含有转座酶、解离酶和res位点。该转座子被用于含有苏云金芽胞杆菌DNA(如起点和毒素基因)的质粒中,其侧翼为res位点、非苏云金芽胞杆菌DNA(如大肠杆菌起点、选择标记基因)。将该质粒导入苏云金芽胞杆菌中。然后,导入表达解离酶的质粒(如含有完整转座子-但仅作为解离酶供体的热敏感性质粒),从而将非苏云金芽胞杆菌DNA从所述第一质粒上切除。

    基于以上所引用的文献,可对现有技术的状态作如下总结:

    通过转座作用插入感兴趣的多基因的方法是已知的,如在EP332 488中所述。然而,所有含有感兴趣的多转座序列的菌株都含有选择标记。

    通过位点专一性重组从染色体或质粒上除去标记基因的方法是已知的(参见Kristensen等,(1995),Eberl等(1994),W095/02058)。已知可以除去通过转座子导入的标记基因。

    不存在异源选择标记基因的多拷贝菌株是已知的(DE4231764),这些菌株是通过取决于Thy标记基因的使用的繁琐的方法构建的。

    本发明的目的是构建细菌细胞,该细胞具有稳定的、固定的和确定拷贝数的一个或几个感兴趣的基因,在最终的菌株中没有选择标记基因。

    本发明基于以下惊人发现:DNA结构的转座作用可用于构建多拷贝革兰氏阳性细菌菌株,该DNA结构除了实现转座所需的转座酶靶序列和转座酶基因之外,还含有用于位点专一性重组酶的靶序列。

    第一方面,本发明涉及一种可用于整合到宿主细胞基因组上的DNA结构,该DNA结构含有结构IR(1)-P-R-M2-R-IR(2)或IR(1)-R-M2-R-P-IR(2),其中

    IR(1)和IR(2)表示转座酶靶序列,

    P为含有感兴趣的DNA序列的DNA片段,

    R为用于位点专一性重组酶的靶序列,和

    M2为一个选择标记基因,该结构与一个编码一种转座酶蛋白的基因(T)相关,该转座酶蛋白能够识别并与转座酶靶序列IR(1)和IR(2)相互作用,该基因(T)位于由IR(1)和IR(2)序列所限定的结构外面。

    在本文中,“相关”一词是指T存在于本发明的DNA结构上,但并不一定与由IR(1)和IR(2)所限定的结构(即位于IR(1)和IR(2)之间并包括IR(1)和IR(2)的结构)直接接触。因此,在该结构和T之间可能存在接头或其它序列。T的确切位置并不重要,只要该基因位于由IR(1)和IR(2)限定的结构外即可。因此,T可以位于由IR(1)和IR(2)限定的结构的任一侧。

    在本文中,“选择标记基因”是指编码一种基因产物的DNA序列,它能使表达该产物的宿主细胞具有一种选择特征,如抗一种抗生素的抗性。DNA序列M2还可包括一个或几个表达编码该选择标记的DNA序列所需或参与其表达的调节因子,如启动子、终止子等。所述调节因子可以是与所述DNA序列异源或同源的。

    “转座酶基因”是指编码一种转座酶蛋白即一种为进行转座作用所必需的蛋白的DNA序列。该基因还可包括一个或几个表达编码该转座酶蛋白的DNA序列所需或参与其表达的调节因子,如启动子、终止子等。所述调节因子可以是与所述DNA序列异源或同源的。

    “转座酶靶序列”是指被由转座酶基因T编码的转座酶蛋白识别的DNA序列。转座酶靶序列IR(1)和IR(2)应当含有源于转座子末端序列的足够的DNA,以保留这些序列的功能,以便当表达由T编码的转座酶时,包括并位于这些序列内的结构可进行转座。足以转座的最小序列的组成和长度的变化取决于该系统是由哪一种转座子形成的。例如,对于Tn10衍生的转座酶靶序列来说,23或42bp就足以进行转座作用(Kleckner,N.(1988)Transposon Tnlo.pp227-268,见Berg,D.E.,和Howe,M.M.(著)Mobile DNA.American society for microbiology,Washington,D.C.)。

    在本文中,“用于位点专一性重组酶的靶序列”是指一种由位点专一性重组酶识别的DNA序列(下面作进一步讨论)。靶序列可能是,但并非必须是相同的。因此,这些序列之间可能存在差异,只要重组酶能够识别并与该序列相互作用即可。

    “感兴趣的DNA序列”这一表达形式被用于表示一段编码想要的RNA或蛋白产物的序列(与宿主细胞异源或为宿主细胞所固有)或由该序列本身提供宿主细胞需要的特性,如突变表型。如果需要,该DNA序列还可以包括一个或几外表达编码想要的RNA或蛋白产物的DNA序列所需的或参与其表达的调节因子,如启动子、终止子等。所述调节因子可以与所述DNA序列异源或同源。

    业已发现本发明的新型DNA结构特别适于构建在其基因组中含有一个以上,优选为多个随机定位的整合DNA序列拷贝的菌株,该细胞的优选形式为不含编码不需要的选择标记的基因,例如,从环保角度看,该标记基因的存在是不需要的。应当指出,本发明的DNA结构与EP485701所提供的DNA结构的差别在于:本发明DNA结构上的选择标记基因位于其旁侧为转座酶靶序列的结构之外。这种定位对于构建本发明的无标记细胞来说是重要的。

    采用上述用于缺失标记基因的重组系统的、用于通过转座作用构建修饰细胞的另一种方法,是通过同源重组实现标记基因的缺失的。因此,第二方面,本发明涉及一种提供的DNA结构,其含有结构IR(1)-P-R′-M2-R″-IR(2)或IR(1)-R′-M2-R″-P-IR(2),其中

    IR(1)和IR(2)表示转座酶靶序列,

    P为一个含有感兴趣的DNA序列的DNA片段,

    R′和R″分别为以平行重复方式提供的位于选择标记基因M2两侧的DNA序列,和

    M2为选择标记基因,该结构与编码一种转座酶蛋白的基因(T)相关,该转座酶蛋白能识别并与转座酶靶序列IR(1)和IR(2)相互作用,该基因(T)位于由IR(1)和IR(2)序列所限定的结构外面,即位于结构IR(1)-p-R′-M2-R″-IR(2)或IR(1)-R′-M2-R″-P-IR(2)外面。

    “以平行重复方式提供”这一表达形式是指在M2两侧的DNA序列R′和R″的同源性足够高,以便在这两种序列之间可以进行同源重组。理想的是,序列R′和R″各自包括一个大致相同的片段,其长度至少为20个核苷酸,至少50个核甘酸较好,如50-100个核苷酸,至少500(如500-1000)个核苷酸更好,至少1000个核苷酸最好,如1000-3000个核苷酸。

    用于位点专一性重组酶的靶序列的存在(第一方面)或平行重复序列的存在(第二方面),使得标记基因M2可以从宿主细胞中特异缺失,该细胞的基因组上通过转座而获得了所述标记基因。更具体地讲,根据本发明第一和第二方面的DNA结构,其标记基因M2分别位于用于位点专一性重组酶的靶序列之间或位于平行重复序列之间,这种DNA结构特别适用于构建无标记的多拷贝菌株(即在其基因组中含有多个拷贝的整合的感兴趣的DNA序列的细菌细胞)。简言之,各DNA结构拟用于两步整合过程,其中,在第一步通过转座作用和选择M2+细胞实现片段IR(1)-P-R-M2-R-IR(2)或IR(1)-R-M2-R-P-IR(2)(第一方面)或者IR(1)-p-R′-M2-R″-IR(2)或IR(1)-R′-M2-R″-P-IR(2)(第二方面)的基因组整合,而在第二步通过以反式形式提供的位点专一性重组酶及其与标记基因M2两侧的靶序列R相互作用(第一方面)或通过平行重复序列R′和R″之间的重组(第二方面)而将选择标记基因M2除去。

    在本文中,“无标记”一词是指具有整合的多拷贝感兴趣的DNA序列的细胞不表达选择标记,如抗生素抗性,这种抗性在细胞中的存在是不需要的,将该标记基因用于构建细胞是必需的或有利的。

    下面将对本发明的各方面作更详细地说明。本发明的DNA结构

    除了上述本发明第一方面和第二方面的DNA结构之外,在第三方面,本发明涉及一种DNA结构,其包括结构IR(1)-R-M2-T-R-P-IR(2),IR(1)-P-R-M2-T-R-IR(2),IR(1)-R-T-M2-R-P-IR(2)或IR(1)-P-R-T-M2-R-IR(2),其中

    IR(1)和IR(2)表示转座酶靶序列,

    P为一段感兴趣的DNA序列,

    R为用于位点专一性重组酶的靶序列,

    M2为选择标记基因,和

    T为转座酶基因T。

    与本发明第一方面的DNA结构相比,本发明第三方面的DNA结构的DNA结构包括位于由IR(1)和IR(2)限定的结构里面而不是位于该结构外面的转座酶基因T。

    类似地,第四方面,本发明涉及一种DNA结构,其包括结构IR(1)-R′-M2-T-R″-P-IR(2)、IR(1)-P-R′-M2-T-R″-IR(2),IR(1)-R′-T-M2-R″-P-IR(2)或IR(1)-P-R′-T-M2-R″-IR(2),其中

    IR(1)和IR(2)表示转座酶靶序列,

    P为感兴趣的DNA序列,

    R′和R″为平行重复序列,

    M2为选择标记基因,和

    T为转座酶基因。

    本发明的DNA结构最好是这样的,它能够在革兰氏阳性细菌,特别是芽胞杆菌菌株的细胞中转座。选择标记

    为了有利于选择其基因组上业已整合了本发明DNA结构的细胞,该DNA结构位于反向重复序列IR(1)和IR(2)(如与本发明第一方面有关的结构IR(1)-P-R-M2-R-IR(2)或IR(1)-R-M2-R-P-IR(2))中并包括这些结构,所述DNA结构最好在由IR(1)和IR(2)所限定的结构(含IR(1)和IR(2))外面含有另一种选择标记基因M1。在这种情况下,所述DNA结构包括位于由IR(1)和2R(2)限定的并包括IR(1)和IR(2)的结构外面的第一个选择标记基因M1,和位于该结构里面的第二个标记M2。因此,当M1不同于M2时,在本发明的DNA结构被转座到受体细胞的基因组中时可以进行两步选择,第一步选择导入了所述DNA结构的细胞(M1+、M2+细胞),第二步选择由IR(1)和IR(2)限定的包括标记基因M2的结构业已整合到其基因组上而所述DNA结构(带有M1)的其余部分已丢失的细胞(M1-,M2+)。然后,通过解离酶蛋白的作用将标记基因M2从所得到的细胞中消除。

    选择标记基因可以是编码能赋予表达该基因的细胞抗生素抗性的基因或非抗生素标记基因,如能减轻其它类型的生长抑制的基因,即使得带有该基因的细胞在其它生长抑制条件下生长的标记基因。这些基因的例子包括能赋予营养缺陷型菌株原养型的基因,例如被导dal-菌株的dal基因(参见B.Diderichsen,见Bacillus:Molecular Genetics andBiotechnology Applications,A.T.Ganesan和J.A.Hoch,著,AcademicPress,1986,pp.35-46)或被导入thy-细胞的thy基因(参见Gryczan和Dubnau(1982),Gene,20,459-469)或能使获得了该基因的细胞在特定条件下生长的基因,如amdS基因,该基因的表达使得获得了该基因的细胞能够在以乙酰胺为唯一氮源或碳源的培养基上生长(如在EP635574中所述),或能赋予表达该基因的细胞对重金属(如亚砷酸盐、砷酸盐、锑、镉或有机汞化合物)的抗性的基因。能在这种条件下存活的细胞或为含有染色体外形式存在的导入DNA结构的细胞或为上述结构已整合至其中的细胞。另外,选择标记基因可以是能赋予表达该基因的细胞免疫性的选择标记基因。感兴趣的DNA序列

    存在于本发明DNA结构上的感兴趣的DNA序列可以是具有或编码任何功能的DNA序列。例如,该DNA序列可以包括一段编码一种结构或调节蛋白的序列,或可以包括一段诸如启动子的调节序列。另外,所插入的序列可以是不知其具有任何生物学功能的序列,可将其用于干扰细胞功能,如通过将其插入一个关键基因内而中断该基因的功能。所述感兴趣的DNA序列可以是一个基因,因此,它与其表达所需的调节因子相关,包括启动子,终止子或核糖体结合位点。

    通过以上说明可以理解,本发明特别适用于构建含有多拷贝的感兴趣的DNA序列的细菌细胞。这种多拷贝菌株特别有利于感兴趣的多肽的工业生产,因此,在最佳实施方案中,所述感兴趣的DNA序列编码一种感兴趣的多肽。

    所述多肽可以是一种转位多肽,即这样一种多肽:在表达时带有一个信号序列,使其可以通过细胞膜转运。具体地讲,转位的多肽可以是一种分泌多肽或是与相关的细菌细胞的分泌机制有关的多肽。

    所述分泌或不分泌的多肽可以是一种酶,例如选自淀粉分解酶、脂肪分解酶、蛋白分解酶、纤维素分解酶,氧化还原酶或植物细胞壁降解酶的酶。这些酶的例子包括AMG、淀粉酶、脂肪酶、角质酶、酯酶、纤维素酶、半纤维素酶、蛋白酶、过氧化物酶、漆酶、酚氧化酶、过氧化氢酶、葡糖氧化酶、植酸酶、裂合酶、果胶酶、葡糖苷酸、甘露糖苷酶、异构酶、转化酶、转移酶、核糖核酸酶、半乳糖苷酶和壳多糖酶。另外,所分泌的多肽可以是激素、生长因子或受体等。

    由分泌途径所转运的多肽的优选例子为PrsA(WO 94/19471),业已发现当其在芽胞杆菌属细胞中过量表达时会导致感兴趣的分泌多肽从该细胞中大量分泌。转座酶和转座酶识别序列

    可以理解,转座酶基因和转座酶靶序列必需经过选择,以便能够共同起作用。在本发明中,任何转座酶识别序列都可以与相关的转座酶一起使用。转座酶基因和转座酶靶序列通常是源于同一种类型的转座子(参见上述本发明的背景技术部分),优选源于同一转座子。转座酶识别序列可以是反向重复序列,例如源于Tn1、Tn2、Tn3、Tn5、Tn9、Tn10和Tn903。

    另外,所述转座酶识别序列无反向重复。这种序列的例子为源于噬菌体Mu及相关的转座子的转座酶识别序列。当转座酶识别序列源于噬菌体Mu时,除转座酶之外,它还必须能够产生一种辅助蛋白(参见上述本发明的背景技术部分)。

    转座酶基因和转座酶靶序列可源于天然存在的转座子,或者用标准技术从有关原料中分离或根据已知序列合成。应当理解,可以采用天然存在的序列的功能类似物或衍生物,只要其能够介导转座作用。所述功能类似物或衍生物可以通过合成方法制备,并可以与其野生型序列有一个或几个核苷酸的差别。解离酶及解离酶靶序列

    应当理解,本发明第二方面的重要特征是用位点专一性重组系统缺失标记基因M2,一旦发生了进入宿主基因组的转座作用的话。有几种已知的位点专一性重组系统(参见上述本发明的背景技术部分),所有这类系统均可用于本发明中。对于本发明来说,优选采用仅由两个因子组成的系统:一种位点专一性重组酶和一个用于该酶的靶序列。

    这种系统的例子为具有作为靶序列的pAMβres序列的pAMβ1解离酶(Janniere,L.,Gruss,A.,Ehrlich,S.D.(1993),Plasmids,pp.625-644,见Sonenshein,A.L.,Hoch,J.A.,Losick,R.(著)Bacillussubtilis and other gram-positive bacteria:Biochemisty,Physiologyand molecular genetics,American society for microbiology,Washington D.C.)和具有作为靶序列的P1 lox位点的噬菌体P1 Cre酶(Hasan,N.,koob,M.,Szybalski W.(1994).Escherichia coli genometargeting,I.Cre-lox-mediated in vitro generation of ori plasmidsand their in vivo chromosomal integration and retrieval,Gene,150,51-56)。

    可以理解,编码重组酶的DNA序列和该酶的靶序列可以源于天然存在的系统(如上文所述),或用标准技术从有关原料中分离或根据已知序列合成。应当理解,可以采用天然序列的功能类似物或衍生物,只要其能够以需要的方式起作用。所述功能类似物或衍生物可以通过合成制备,并可以与野生型序列有一个或几个核苷酸的差别。

    对于某些用途来说,可以用天然存在的质粒将编码重组酶的基因(以反式形式提供)导入细胞,如含有所述基因的pAMβ1。

    编码重组酶的DNA序列优选以反式形式提供。不过,该DNA序列存在于带有本发明DNA结构的载体中可能比较有利。在这种场合,所述DNA序列优选位于整合在宿主细胞基因组上的载体部分,最好位于这样的DNA部分:该部分在整合之后由于重组酶的作用而被从基因组上切除。另外,该DNA序列应当置于一个可诱导或可调节的启动子的控制之下,如温度诱导的启动子、或木糖诱导启动子或SPAC启动子,以便控制该DNA序列的表达仅在发生转座作用以后进行。如果编码重组酶的DNA序列是以顺式形式提供并被置于可调节的启动子的控制之下时,仅用一个转化步骤即可完成本发明的方法。

    另外,编码位点专一性重组酶的基因可以用本领域众所周知的方法进行工程操作,以使其能在宿主菌株中正确表达。可将其转移到温度敏感的或其它条件复制子上,以便一旦发生了位点专一性重组行为后该基因易于从宿主细胞中丢失。与反选择标记结合的同源重组

    尽管当采用根据本发明第二方面的DNA结构时,选择标记基因可以通过DNA序列R′和R″之间的同源重组而缺失,但这种同源重组发生的频率极低,因此,实际上其筛选可能很困难。为了避免这一实际问题,选择标记基因M2最好是这样一种基因,其在所选择的宿主细胞中可以进行反选择。换句话说,最好采用这样一个标记基因:可对其存在和缺乏进行选择。例如,该标记基因可以是能赋予营养缺陷型细胞以原养型的基因,例如,用于thy--细胞的thy基因(Gryczan,T.J.,和Dubnau,D.(1982),Directselection of recombinant plasmids in Bacillus subtilis,Gene,20,459-469),或者是使表达该基因的细胞能在一种特殊底物上生长的基因,如amdS该基因的表达使细胞能在以乙酰胺为唯一氮源或碳源的培养基上生长(EP635574)。当采用thy基因时,将本发明第二方面的DNA结构上的选择标记M2导入thy-细胞,以便可以选择已接受了该结构(第一步)的细胞,而在第二步让所得到的细胞在不能耐受thy基因存在的培养基上生长,以便可以选择已通过同源重组而丢失了thy基因的细胞(将thy基因用作反选择标记的原理由Gryczan和Dubnau作了详细披露,同上)。类似地,可将amdS基因用于一种两步方法,其中,在第一步通过在以乙酰胺为唯一碳源或氮源的培养基上生长选择含amdS的细胞,而在第二步通过让细胞在含有氟乙酰胺和尿素作为氮源的培养基上生长(参见EP635574)进行反选择,以便选择不含amdS基因的细胞。构建本发明的DNA结构

    可以根据天然存在的或以其它形式存在的转座子输送载体方便地构建本发明的DNA结构。在文献中所披露的转座子输送载体含有一个转座酶基因,如果需要对其进行修饰,以便能在希望的宿主生物中表达,还含有一个转座框,主要含有一个抗性基因,其侧翼为源于原始转座子末端(如反向重复序列)的足够的DNA,使得该抗性基因可以转座到宿主基因组中。

    在一种实施方案中,本发明的DNA结构可以通过修饰所述转座子输送载体而制备,以便在通过转座而整合到宿主基因组的结构上含有一个感兴的DNA序列,由该序列取代或补充抗生素抗性基因。还可以用任何其它选择标记基因取代抗生素抗性基因。可以用本领域已知方法对转座子输送载体进行修饰。在另一种实施方案中,本发明的DNA结构是通过用本领域已知方法连接待包括于该DNA结构上的各独立因子而制成的。

    当要把该选择标记基因从整合了该DNA结构的细胞中消除时,该标记基因的侧翼应当有解离酶靶序列或平行重复同源DNA序列。可以用本领域已知方法将该序列插入按上述方法制备的DNA结构中。重要的是,感兴趣的基因位于由这些靶序列为侧翼的结构之外。本发明的载体复制起点

    为了用于本发明,通常理想的是,本发明的DNA结构与一个复制起点连接,即存在于载体上。在本文中,“载体”是指能够作为一种自主复制的染色体外因子起作用的DNA分子。例如,该载体可以是一种质粒或噬菌体。

    复制起点不应当位于转座酶识别序列IR(1)和IR(2)之间,因为这种位置将导致该复制起点整合到宿主细胞基因组上。从稳定角度考虑,复制起点的基因组整合是不需要的。

    除上述情况外,复制起点的位置并不重要。因此,本发明的DNA结构中,复制起点可位于“T”和“M1”(如果有的话)的任一侧。

    如果需要提高分离具有一种整合的DNA结构的细胞的效率,该DNA结构可以存在于一种含有一个条件复制起点的载体上。换句话说,可以采用在某些条件下(允许的)能够复制而在其它条件下(不允许的)不能够复制的载体。例如,该载体可以是其复制对温度敏感的载体。因此,在本发明方法的一种实施方案中,含有待整合的DNA结构的载体是在高温下不能复制的载体,但宿主细胞仍能生长。首先在载体能够复制的温度下培养细菌细胞,然后,在本发明的DNA结构可能已整合到细菌基因组上后,在不允许载体复制的温度下培养,以使被导入细胞的载体从该细胞中丢失。在不允许温度下的培养是在选择条件下进行的,以确保仅有含有整合的DNA结构的细胞能够存活。

    提高所述载体整合以及随后从该细胞中丢失的效率,可以用一种质粒清除剂,如新生霉素在于上述选择条件下培养宿主细胞之后处理用该载体转化的细胞(Gado,I.等,1987,Zbl.Bakt.Hyg.A.265,136-145)。

    另一种类型的条件复制起点可以是一种有限宿主范围的质粒,即仅能在有限数目的微生物菌种中复制的质粒。对于本发明来说,应当选择这样的复制起点:其源于一种有限宿主范围的质粒,不能在待将该DNA结构转座到其中的受体细胞中复制。

    当本发明的DNA结构是通过修饰转座子输送载体而构建的时,可以使用正常存在于该载体上的复制起点。或者通过将该DNA结构插入适于导入希望的宿主细胞的载体上而方便地提供该复制起点。可以用在文献(Petit等,1990,同上)中披露的方法将转座框整合到宿主细胞基因组中,以便利用转座子输送载体进行诱变。顺式作用接合因子

    可能希望通过接合作用将带有本发明DNA结构的本发明的载体导入相关受体细胞中(在下面的题为“构建单拷贝或多拷贝的、选择性地无标记的菌株”部分将对此作进一步说明)。为此,所述DNA结构或载体含有一个所谓顺式作用DNA序列,该序列为发生接合作用所必需。

    因此,当带有本发明DNA结构的载体将通过接合作用而导入受体细胞时,该DNA结构或载体还包括一个为转移一种含有所述DNA结构的质粒所必需的顺式作用DNA序列。

    所述顺式作用DNA序列通常可以是任何能介导转移的DNA序列或DNA位点,一个优选例子为四环素抗性质粒pBC16或金黄色葡萄球菌(Staphylococcus aureus)卡那霉素抗性质粒pUB110的oriT(如Sellinger等所述,Journal of Bacteriology,June 1990,pp.3290-3297)或为oriT的功能类似物或部分。

    对于所有类型的含有本发明DNA结构的载体来说(获得了如本发明的第一、第二、第三和第四方面的任何结构),所述顺式作用序列可以位于载体上,但位于由IR(1)和IR(2)限定的并包括IR(1)和IR(2)的结构的外面,以便该序列将随转座子输送载体一起被切除。因此,所述顺式作用DNA序列可位于所述结构和DNA序列T和DNA序列M1(如果有的话)的任一侧。

    在本发明第一、二、三和四方面的一种优选实施方案中,所述顺式作用序列位于所述结构部分上,该结构位于解离酶靶序列R和平行重复序列R′和R″里,并分别包括这些序列。因此,该顺式作用序列可随选择标记基因M2和选择性地随T一起(本发明第二和四方面)从其中整合了该DNA结构的细胞的基因组上切除。构建单拷贝或多拷贝的、选择性地无标记的菌株

    正如将要了解到的,多拷贝无标记生产菌株的构建可以用上述能逐步将一个或几个感兴趣的DNA序列的拷贝整合到细菌细胞的基因组中的DNA结构而实现,该方法包括重复的转座步骤,和随后的位点专一性标记缺失。

    因此,另一方面,本发明涉及通过分别利用本发明第一、二、三和四方面的DNA结构构建本发明细菌细胞的方法,如上文所作的进一步说明。

    因此,再一方面,本发明涉及构建一种细菌细胞的方法,在该细胞的基因组DNA上整合了一个拷贝以上的感兴趣的DNA序列,而且它不含编码一种不需要的选择标记的DNA序列,该方法包括

    a)将含有根据本发明第一方面的DNA结构的第一载体导入宿主细胞中,所述DNA结构包括与转座酶基因T相关的结构IR(1)-P-R-M2-R-IR(2)或IR(1)-R-M2-R-P-IR(2),并选择性地与一个选择标记基因M1相关,其中,R表示一种用于位点专一性重组酶的靶序列,

    b)选择M2+及选择性地M1-细胞,在该细胞的基因组中含有结构IR(1)-P-R-M2-R-IR(2)或IR(1)-R-M2-R-P-IR(2),

    c)将含有编码一种位点专一性重组酶的DNA序列的第二载体导入在步骤b)中所选择的细胞,以便将结构R-M2或M2-R从该细胞的基因组中切除,以使所获得的细胞具有整合结构IR(1)-R-P-IR(2)或IR(1)-P-R-IR(2),

    d)清除在步骤c)中所得细胞里的第二质粒,以及选择性地

    e)重复步骤a-d)一次或几次,以产生含有一个或几个额外拷贝的结构IR(1)-R-P-IR(2)或IR(1)-P-R-IR(2)的细菌细胞。

    另一方面,本发明涉及一种构建一种细菌细胞的方法,在该细胞的基因组DNA上具有整合了一个以上拷贝的感兴趣的DNA序列,而且它不含编码一种不需要的选择标记的DNA序列,该方法包括:

    a)将含有根据本发明第三方面的DNA结构的第一载体导入宿主细胞中,所述DNA结构包括结构IR(1)-R-M2-T-R-P-IR(2)、IR(1)-P-R-M2-T-R-IR(2)、IR(1)-R-T-M2-R-P-IR(2)或IR(1)-P-R-T-M2-R-IR(2),该结构选择性地与一个选择标记基因M1相关,

    b)选择M1-(如果载体上有M1的话)及M2+细胞,在该细胞的基因组上含有在a)中所确定的结构之一,

    c)选择具有增多拷贝数标记基因M2的细胞,

    d)将含有编码一种位点专一性重组酶的DNA序列的第二载体导入在步骤b)中选择的细胞,以便将结构R-M2-T、R-T-M2、M2-T-R或T-R-M2从该细胞的基因组中切除,以使所得的细胞具有整合的结构IR(1)-R-P-IR(2)或IR(1)-P-R-IR(2),

    e)清除在步骤d)中获得的细胞里的第二质粒,以及选择性地

    f)重复步骤a-e一次或几次,以产生含有一个或几个额外拷贝的结构IR(1)-R-P-IR(2)或IR(1)-P-R-IR(2)的细菌细胞。

    在另一方面,本发明涉及一种构建一种细菌细胞的方法,在该细胞的基因组DNA上整合了一个以上拷贝的感兴趣的DNA序列,而且,它不含编码一种不需要的选择标记的DNA序列,该方法包括

    a)将含有根据本发明第二方面的DNA结构的第一载体导入宿主细胞,所述DNA结构包括与转座酶基因T相关并选择性地与选择标记基因M1相关的结构IR(1)-P-R′-M2-R″-IR(2)或IR(1)-R′-M2-R″-P-IR(2),其中,R′和R″表示平行重复序列,

    b)选择M1-(如果载体上有M1的话)和M2+细胞,在该细胞的基因组上包括结构IR(1)-P-R′-M2-R″-IR(2)或IR(1)-R′-M2-R″-P-IR(2),

    c)让DNA序列R′和R″之间进行同源重组,以便切除选择标记基因M2,使所获得的细胞具有整合的结构IR(1)-R′/R″-P-IR(2)或IR(1)-P-R′/R″-IR(2)(其中R′/R″表示共同的重组序列),以及选择性地

    d)重复步骤a-c一次或几次,以产生含有一个或几个额外拷贝的DNA结构IR(1)-R′/R″-P-IR(2)或IR(1)-P-R′/R″-IR(2)的细菌细胞。

    再一方面,本发明涉及一种构建一种细菌细胞的方法,在该细胞的基因组DNA上整合了一个以上拷贝的感兴趣的DNA序列,而且,它不含编码一种不需要的选择标记的DNA序列,该方法包括

    a)将含有根据本发明第四方面的DNA结构的第一载体导入宿主细胞,所述DNA结构包括选择性地与选择标记基因M1相关的结构IR(1)-R′-M2-T-R″-P-IR(2)、IR(1)-P-R′-M2-T-R″-IR(2)、IR(1)-R′-T-M2-R″-P-IR(2)或IR(1)-P-R′-T-M2-R″-IR(2),其中,R′和R″表示平行重复序列,

    b)选择M1-(如果载体上有M1的话)及M2+细胞,在该细胞的基因组上含有在a)中所确定的有关结构,

    c)选择具有增多拷贝数的选择标记基因M2的细胞,

    d)让DNA序列R′和R″之间进行同源重组,以便切除选择标记基因M2和转座酶基因T,使所得到的细胞具有整合的结构IR(1)-R′/R″-P-IR(2)或IR(1)-P-R′/R″-IR(2)(其中R′/R″表示共同的重组序列),以及选择性地

    e)重复步骤a-d一次或几次,以产生含有一个或几个额外拷贝的DNA结构IR(1)-R′/R″-P-IR(2)或IR(1)-P-R′/R″-IR(2)的细菌细胞。

    应当指出,分别按照本发明第一和第三方面的DNA结构的整合,会使得同一宿主细胞获得结构IR(1)-R-P-IR(2)或IR(1)-P-R-IR(2),而分别按照本发明第二和四方面的DNA结构的整合,会使得同一宿主细胞获得结构IR(1)-R′/R″-P-IR(2)或IR(1)-P-R′/R″-IR(2)。

    在上述任何方法的步骤a)中,可以用任何适合于相关细菌细胞的方法将所述载体导入所述细菌细胞中。有多种将DNA导入细菌细胞的方法在本领域广为人知。其中包括感受态细胞(通过化学处理或“天然”感受性)的使用、原生质体转化、接合、电击、转导、或冲击转化。尽管可以用众所周知的自身可传递质粒(如质粒pLS20)作为克隆载体进行接合,业已发现以下具体接合方法通常适于将DNA导入诸如芽胞杆菌的细胞,当采用诸如原生质体融合之类的常规方法时,该细胞不能或仅能困难地接纳DNA。

    更具体地讲,接合是通过这样一种方法实现的,其中,将一群具有i)一个质粒,其含有一个本发明的DNA结构和至少一个为通过接合作用在有反式作用移动因子存在的条件下转移所述质粒所需的顺式作用DNA序列,和ii)至少一个编码所述反式作用移动因子的DNA序列的细菌供体细胞和一群受体细胞混合,混合是在使所述质粒能通过接合作用从供体细胞群转移到受体细胞群的条件下进行的。例如,供体细胞群可以是一群大肠杆菌细胞或芽胞杆菌细胞,其例子在下面将提及。受体细胞优选为芽胞杆菌细胞,如在下面将要提及的。特别有价值的受体细胞为地衣型芽胞杆菌(B.licheniformis)、解淀粉芽胞杆菌(B.amyloliquefaciens)和迟缓芽胞杆菌(B.lentus)以及枯草芽胞杆菌的非感受态细胞。顺式作用DNA序列及其在本发明DNA结构或载体上的优选位置披露于上述题为“顺式作用接合因子”部分。

    “反式作用移动因子”是指一种能介导含有如上文所定义的顺式作用DNA序列的DNA序列的接合转移作用的蛋白。反式作用移动因子可以是由接合质粒,如芽胞杆菌质粒pLS20编码的一种蛋白(Koehler and Thorne,Journal of Bacteriology,Nov.1987,pp.5771-5278)或其一部分或衍生物,或是由诸如质粒pBC16或pUB110的orf-β的DNA序列编码的一种蛋白(Sellinger等,Journal of Bacteriology,June,1990,pp.3290-3297)或其功能性类似物或部分。可以理解,由于移动因子是以反式形式作用的,它可以由存在于供体细胞基因组上或存在于该供体细胞里的第二质粒上的DNA编码。

    细胞的混合通常是通过混合供体细胞和受体细胞而实现的,将混合细胞在30-37℃下放置至少4小时,选择具有接收的DNA结构的受体细胞。进一步的详情参见Selinger等,1990。

    在步骤b)中所采用的培养条件特别取决于选择标记的种类。例如,当由M2编码的选择标记是抗生素抗性时,b)的培养是在有合适剂量的相关抗生素的条件下进行,以便选择具有接收的M2并能表达M2的细胞。

    被导入受体宿主细胞的DNA结构上抗生素抗性标记M1和M2的存在可以极大地方便选择和筛选。标记M1位于该DNA结构的“载体部分”,即该结构的在由IR(1)和IR(2)限定的结构以外的部分,而标记基因M2位于所述结构里面。不过,应当指出的是,当该DNA结构仅含有一个选择标记,即M1或M2时,也可以实现成功的转座。

    采用合适的生长方法,如在有关pHV1248的文献中所披露的方法(Petit,M.-A.,Bruand,C.,Janniere,L.,Ehrlich,S.D.(1990),Tn10-derived transposons active in Bacillus subtilis,J.Bacteriol,172,6736-6740),在含有适当抗生素的培养皿上选择含有M2的菌株,并通过复制铺板筛选M1的缺乏。该菌株不再具有转座子输送载体,并且有整合至其基因组上的转座结构。通过转座作用的DNA结构的整合可以发生在宿主细胞基因组的随机位置上。因此,当生产出多拷贝细胞时,整合的拷贝将位于该细胞的随机、分离的位置上,这有助于提高该细胞的遗传稳定性。

    可以用本领域已知方法测定P的存在,例如,如果合适的话,通过Southern分析,PCR扩增或P的表型表达进行。当待导入细胞的DNA结构具有选择标记基因M1时,M1表型的丧失被用于指示在一旦发生了转座作用后被导入的DNA的载体部分的丧失。

    当采用根据本发明第一或第三方面的DNA结构时(即含有位点专一性重组酶的靶序列的DNA结构),后一个步骤是将表达与M2侧翼的靶序列有关的位点专一性重组酶的第二载体导入已接收了第一载体的菌株。重组酶的活性是对基因组中位于M2以及选择性地T侧翼的两个靶顺列进行重组,从而将标记基因以及选择性地将T缺失,这一过程可以通过诸如复制铺板的筛选方便地检测到。

    一旦获得无M2菌株,将其中的表达重组酶的质粒清除,例如,如果该载体是一个温度敏感型复制子的话,通过在非允许温度下繁殖而实现所述清除。另外,让所述载体在宿主中驻留一定时间,然后将该细胞中的质粒清除,并筛选丧失了M2的无质粒细胞。

    这一方法可以得到一种含有感兴趣的基因的一个转座拷贝的菌株,但是无标记基因。在新的一轮转座和标记缺失中将该菌株用作宿主菌株,其中,可以采用与第一轮完全相同的修饰转座子输送载体和重组酶编码载体,即

    i)将修饰的转座子输送载体导入宿主菌株,

    ii)按上述方法获得含有转座的感兴趣的DNA序列的拷贝+标记基因M2并且无转座子输送载体的菌株,

    iii)将表达有关位点专一性重组酶的载体导入所述菌株(在根据第三方面的DNA结构的条件下),和

    iv)按上述方法分离其标记基因M2以及选择性地T因为重组酶(由根据本发明第一或第三方面的DNA结构构建时)的活性或同源重组(由根据本发明第二或四方面的DNA结构构建时)而缺失的菌株,并获得该菌株的无质粒形式。

    现在所得到的是含有两个转座的感兴趣的基因的拷贝但无标记基因的菌株。

    该菌株在新一轮的转座和标记缺失中被用作宿主菌株,而且这一过程基本上可以重复无数次。

    如果编码重组酶的DNA序列以顺式形式置于可调节启动子(如上所述)的控制之下,在每一轮次中仅需要进行一个转化步骤。在实践中,当转座作用已完成时,所述可调节启动子启动,重组酶得以表达。

    由位点专一性重组酶进行的标记缺失在染色体上留下一个拷贝的相关靶序列。随后的转座作用将该靶序列的新拷贝引入。由于转座作用可以在该基因组的多数位点上进行,接近随机整合,新的靶序列将以较大可能性位于距第一个靶序列较远处。位点专一性重组酶在相隔很远的序列上的作用效果似乎较差。另外,由所述重组过程所导致的大量基因组DNA的缺失将会致死,因此,用上述方法不能分离到发生过这种过程的菌株。

    用由根据本发明第二或四方面的DNA结构生产的菌株进行一个类似的过程。在这种情况下,标记基因M2的切除,以及有关T的切除是通过序列R′和R″之间的同源重组实现的。本发明的细胞

    另一方面,本发明涉及一种细菌细胞,在其基因组上整合了一个以上拷贝的包括结构IR(1)-P-IR(2)的DNA结构,其中,IR(1)和IR(2)表示转座酶靶序列,而P为一个感兴趣的DNA序列,其中,结构IR(1)-P-IR(2)不编码一种不需要的选择标记。该结构还包括一个重组靶序列R或位于IR(1)和IR(2)之间的共同的同源重组序列R′/R″。

    在本文中,“基因组”一词是指细胞的组成DNA,包括染色体和稳定遗传的染色体外因子。

    在本文中,待整合所述DNA结构的细胞是指宿主细胞、宿主菌株、受体菌株或细胞、或修饰细胞。可以理解的是,这些名词可以交替使用。

    IR(1)和IR(2)在细胞基因组中的存在对细胞的功能并非必须,但它是表明该细胞是通过转座作用而构成的依据,即,通过转座子的应用而构成。因此,仅有通过转座作用进行过修饰的细胞含有上述结构。如果必要,可以用常规方法将IR(1)和/或IR(2)从细胞中缺失或失活。

    再一方面,本发明涉及一种细菌细胞,在其基因组上整合了至少两个拷贝的含有结构IR(1)-P-IR(2)的DNA结构,其中

    IR(1)和IR(2)表示转座酶靶序列,而P为一个感兴趣的DNA序列,该结构还包括一个重组靶序列R或共同的同源重组序列R′/R″,它位于IR(1)和IR(2)之间。

    目前认为,本文所披露的内容是首次公开将转座作用用于构建多拷贝革兰氏阳性细胞,特别是芽胞杆菌属细胞。多个、正常情况下随机定位的结构IR(1)-P-IR(2)还包括位于细胞基因组上的R或R′/R″,表明该细胞是通过转座作用而构建的。

    从上述说明可以了解,本发明是构建多拷贝革兰氏阳性细菌菌株,即在其基因组上整合了多拷贝的感兴趣的DNA序列的细菌细胞的极为方便和有效的方法。用本发明方法生产的细胞是a)在其基因组上整合了至少两个拷贝的含有结构IR(1)-P-IR(2)的DNA结构的细胞,该结构还含有位于IR(1)和IR(2)之间的重组靶序列R或共同的同源重组序列R′/R″,该结构不含任何编码不需要的诸如抗生素抗性标记的任何基因。

    特别感兴趣的是在其基因组上(在结构IR(1)-P-IR(2)外面还含有一段DNA序列R或R′/R″)不含编码抗生素抗性标记或另一种不需要的标记的基因的细胞。所述基因的存在通常是用常规方法构建多拷贝菌株的结果,当根据已知的转座输送载体时,该方法包括转座作用。

    尽管本发明细胞最好是不含任何导入的选择标记,但它可以含有编码一种无害的(即并非不需要的)选择标记,如生长抑制标记或抗生素抗性标记的基因。这些类型的标记在上述题为“选择标记”部分做过详细说明。

    本发明的细胞可以是任何革兰氏阳性细菌菌种,特别是芽胞杆菌或乳杆菌。合适的芽胞杆菌属细胞的例子可以选自枯草芽胞杆菌、地衣型芽胞杆菌、迟缓芽胞杆菌、短芽胞杆菌(Bacillus brevis)、嗜热脂肪芽胞杆菌(Bacillus stearothermophilus)、嗜碱芽胞杆菌(Bacillusalkalophilus)、解淀粉芽胞杆菌(Bacillus amyloliquefaciens)、凝固芽胞杆菌(Bacillus coagulans)、环状芽胞杆菌(Bacilluscirculans)、Bacillus lautus、巨大芽胞杆菌(Bacillus megaterium)、苏云金芽胞杆菌。就迟缓芽胞杆菌的应用而言,应当指出的是,以前从未披露或提示过转座作用可以在该菌种的细胞里起作用。

    关于存在于本发明细胞里的感兴趣的DNA序列,参见上面所讨论的“感兴趣的DNA序列”部分。

    最后,应当理解,在不需要构建无标记的单拷贝或多拷贝菌株的条件下,M2在起到鉴定其基因组中含有一个或几个拷贝的感兴趣的DNA序列的细胞的目的后不必被清除。在这种场合,转座作用是一种用于将至少一个,优选多个拷贝的感兴趣的DNA序列导入细胞的基因组的便捷方法。感兴趣的多肽的生产

    含有一个以上拷贝的结构IR(1)-P-IR(2)、还含有整合在其基因组上的位于IR(1)和IR(2)之间的DNA序列R或R′/R″的本发明的细胞或用上述本发明方法制备的细胞适用于生产由感兴趣的DNA序列P编码的感兴趣的多肽的方法。

    所述方法包括在允许所述多肽表达的条件下在合适的营养培养基中培养相关的细胞,然后从培养物中回收所得到的多肽。

    用于培养所述细胞的培养基可以是任何适于生长细胞的常规培养基,如含有合适的添加剂的极限培养基或复合培养基。合适的培养基可自供应商那里购买或按照公开的配方(例如,参见美国模式培养物保藏所的商品目录)制备。然后用常规方法从培养基中回收由所述细胞产生的多肽,包括通过离心或过滤从培养基中分离细胞,用诸如硫酸铵的盐使上清液或滤液里的蛋白类成分沉淀,通过多种层析方法进行纯化,例如,离子交换层析、凝胶过滤层析或亲和层析等,所用方法取决于相关的多肽类型。

    所述多肽优选为转位多肽,特别是诸如分泌酶的分泌多肽。或者,所述转位多肽为PrsA。在上文的题为“感兴趣的DNA序列”的部分给出了可以用本发明方法生产的多肽的具体例子。结论

    通过本发明的以上说明可以了解,基于下列原因的一种或几种,本发明与现有技术相比是新颖的和具有创造性的:

    1)将转座子用于插入一个以上拷贝的,和固定的、预定拷贝数目的编码一种感兴趣的产物的基因,

    2)转座的DNA含有使部分转座DNA进行位点专一性缺失的因子,

    3)所得到的菌株含有转座的DNA,但在转座的DNA上无选择标记基因,和/或

    4)转座子被用于一种重复的方法,使其可以与一种特异性缺失标记基因的方法组合。

    从工业角度看,用本发明方法构建的细菌菌株具有三重优点:

    i)由于有多个基因拷贝而高产,

    ii)遗传上极为稳定,因为所述多个拷贝不是串连的重复,而是分散在染色体上,和

    iii)无标记,使其比传统的含有抗生素抗性基因的重组生产菌株更有利于环境保护。

    下面将结合附图对本发明作进一步说明,在这些附图中采用了以下缩写形式:

    “bla”表示β-内酰胺酶基因,编码氨苄青霉素抗性,源于pUC19。

    “erm”表示pE194的红霉素抗性基因。

    “cat”表示源于pC194的氯霉素抗性基因。

    “IR”表示源于Tn10的转座子反向重复序列。

    “Tnase”表示源于Tn10的转座酶,被修饰成能在芽胞杆菌属中表达。

    “Pamy Q-sav”表示Savinase基因,由解淀粉芽胞杆菌α-淀粉酶基因的启动子表达。

    “oriT(pUB110)”表示移动所需的pUB110的顺式作用序列。

    “ermR”表示源于pAMβ1的红霉素抗性基因。

    “repE”表示pAMβ1的复制蛋白基因。

    “resB”表示pAMβ1的解离酶基因。

    “topB”表示pAMβ1的拓朴异构酶。

    “amy′”表示枯草芽胞杆菌α-淀粉酶基因的5′末端。

    “lacZ”表示源于大肠杆菌的β-半乳糖苷酶。

    “res”表示源于pAMβ1的解离酶的靶位点。

    “spc”表示源于Tn554的壮观霉素抗性基因。

    “′amy”表示枯草芽胞杆菌淀粉酶基因的3′末端。

    “+ori pUB110”表示pUB110的复制起点(缺口位点)。

    “rep”表示pUB110的复制蛋白基因。

    “kan”表示pUB110的卡那霉素抗性基因。

    “PamyL”表示地衣型芽胞杆菌α-淀粉酶基因的启动子。

    “kan′”表示pUB110的卡那霉素抗性基因的5′末端。

    “′amyL”表示地衣型芽胞杆菌α-淀粉酶基因的3′末端。

    “repF”表示pE194的复制蛋白基因。

    “Plac”表示pUC19上的β-半乳糖苷酶启动子。

    “amyL”表示源于地衣型芽胞杆菌的α-淀粉酶基因。

    图1是质粒pMOL553的限制图;

    图2是质粒pSJ3282的限制图;

    图3是质粒pWT的限制图;

    图4是质粒pMAP29的限制图;

    图5是质粒pSJ3157的限制图;

    图6是质粒pSJ2739的限制图;

    图7是质粒pSJ3279-pSJ3281的限制图;

    图8是用于构建res-cat-res-IR片段的寡核苷酸引物和扩增的DNA片段的示意图,该片段最终被整合到质粒pSJ3389-pSJ3390中。

    图9是质粒pSJ3372-pSJ3376的限制图;

    图10是质粒pSJ3389-pSJ3390的限制图;

    图11A表示对Savinase进行Mancini免疫扩散分析的结果;

    图11B表示对Sayinase进行Mancini免疫扩散分析的结果;

    图12A是用源于所示菌株的DNA的Southern印迹;

    图12B是用源于图12A所示菌株的DNA的Southern印迹;

    图13是质粒pSJ3216的限制图;

    图14是质粒pSJ3318的限制图;

    图15是质粒pSJ3328-pSJ3329的限制图;

    图16是质粒pSJ3326-pSJ3327的限制图;

    图17是质粒pSJ3341-pSJ3342的限制图;

    图18是质粒pSJ3358-pSJ3359的限制图;

    图19是质粒pSJ3354-pSJ3355的限制图;

    图20是质粒pSJ3444-pSJ3445的限制图;

    图21是质粒pSJ3475的限制图;

    图22是质粒pSJ3476的限制图;

    图23是质粒pSJ3316-pSJ3317的限制图;

    图24是质粒pSJ3339-pSJ3340的限制图;

    图25是质粒pSJ3356-pSJ3357的限制图;

    图26是质粒pSJ3385的限制图;

    图27是质粒pSJ3459-pSJ3460的限制图;

    图28是质粒pSJ3586-pSJ3587的限制图;

    图29是质粒pSJ3524-pSJ3527的限制图;

    下面的实施例将对本发明作进一步的说明,这些实施例并非如权利要求那样从任何角度限定本发明。

    材料和方法

    体外DNA操作、细菌菌株转化等是用分子生物学的标准方法进行的(Maniatis,T.,Fritsch,E.F.,Sambrook,J.“Molecular Cloning:ALaboratory manual”.Cold Spring Harbor Laboratories,1982;Ausubel,F.M.,等(著)“Current Protocols in Molecular Biology”.John Wileyand Sons,1995;Harwood,C.R.,和Cutting,S.M.(著)“MolecularBiological Methods for Bacillus”.John wiley and Sons,1990)。用于DNA操作的酶是按照供应商的说明使用的。

    所采用的培养基(TY,BPX和LB琼脂)被露于EP0506780中。LBPSG琼脂是补充了磷酸盐(0.01MK3PO4)、葡萄糖(0.4%)和淀粉(0.5%)的LB琼脂。例1构建用于对Savinase基因进行转座的转座子输送系统

    将转座子供体质粒pHVl248(Petit,M.-A.,Bruand,C.,Janniere,L.,Ehrlich,S.D.(1990)Tn10-derived transposons active in Bacillussubtilis.J.Bacteriol.,172,6736-6740)用作原材料。该质粒含有pE194复制子,该复制子的复制是热敏感性的,并带有源于Tn10的转座酶基因,对其进行修饰以便在枯草芽胞杆菌中表达,并有源于Tn10的IS10因子的足够序列在氯霉素抗性基因侧翼(小型-Tn10),以便小型-Tn10能转座到枯草芽胞杆菌染色体上。将pHV1248导入大肠杆菌SJ6(Diderichsen等,1990,J.Bacteriol.172,4315-4321),选择氨苄青霉素抗性(100μg/ml),得到SJ1609。已根据布达佩斯条约将菌株SJ1609作为专利保藏物交由DSM保存,保存号为DSM10445,保存日为1995年12月22日。

    Savinase是源于迟缓芽胞杆菌的细胞外的碱性蛋白酶。用于通过转座作用输送该基因的载体是pMOL553。该质粒的构建是分两步进行的。步骤1将SOE PCR(Horton,R.M.,Hunt,H.D.,Ho,S.N.,Pullen.J.K.,Pease,L.R.(1989)Engineering Hybrid genes without the use of restrictionenzymes:gene splicing by overlap extension.Gene,77,61-68)用于把一个Bam HI位点插在pHV1248上的cat基因上游。以pHV1248为模板进行两个独立的PCR反应。在第一个反应中采用引物1(LWN5 037):CCCACTGGATCCAAT TTT CGT TTG TTG和引物2 LWN5 038:GCA AAT TGA TCCAAG AGA ACCAAC。引物1中划线的碱基表示BamHI位点的位置。第二个PCR反应基于引物3(LWN5036):CAA CAA ACG AAA ATT GGA TCC AGT GGG和引物4(LWN5039):GCA CAT CAT CAT CAT AAGC。两个PCR反应是用标准方法进行的,在变性步骤采用96℃的温度,在退火步骤采用55℃的温度,在延伸步骤采用72℃的温度。一共进行20轮反应。从琼脂糖中纯化两种片段,并将每种片段各500ng用于第二个5轮次的PCR反应:96℃2分钟,50℃ 5分钟,和72℃ 1分钟。在96℃下加入引物2和引物4(100pmol),并开始第三个25轮次的PCR反应:96℃ 30秒,55℃ 30秒,72℃ 90秒。用HindIII消化1330bp的最终PCR片段,将其连接到HindIII消化的pHV1248上,并将连接混合物转化到大肠杆菌SJ2中(Diderichsen等,1990,J.Bacteriol.172,4315-4321)。所保存的转化体MOL612含有质粒pMOL610。通过限制性消化证实了pMOL610上的BamHI位点的位置。步骤2

    在该步骤中将完整的Savinase基因克隆到pMOL610的BamHI位点。通过PCR由质粒pSX222(WO92/11357)扩增Savinase基因和一个启动子片段,采用有BamHI限制位点(划线部分)的引物,引物5(LWN5136):CCG GC GGA TCC AAG GGG TGA TCG和引物6(LWN2043):GGG GTA CTA GTAACC CGG GCC CGG CGT AGA GGA TCC ATA CAC AAA。该Savinase基因编码野生型Savinase酶,但对该DNA序列进行修饰以便在Savinase编码序列中含有若干限制酶位点。PCR反应是按以下方法进行的:96℃30秒,55℃30秒,72℃120秒。在20轮反应后用Bam HI消化PCR片段,将其纯化并克隆到pMOL610的BamHI位点。将连接混合物转化到大肠杆菌SJ2中,将一种转化体作为MOL553保存(SJ2/pMOL553)。通过限制性消化和在枯草芽胞杆菌中独特的蛋白酶表型(例如,在菌株DN1885(Diderichsen等,1990,J.Bacteriol.172,4315-4321)或该菌株的蛋白酶缺陷型衍生物中的表型)证实克隆。

    由此构建的编码Savinase的转座子输送载体是pMOL553。在序列1中给出了该质粒的完整序列,在图1中给出了其限制图。例2

    将Savinase基因转座到迟缓芽胞杆菌染色体中,采用氯霉素抗性选择。

    用转座子输送质粒pMOL553将额外的蛋白酶基因随机插入迟缓芽胞杆菌的染色体中。

    通过原生质体转化法用质粒pMOL553转化嗜碱性迟缓芽胞杆菌菌株C360的突变型(CA954807),所用方法基本上相同于由Akamatsu所披露的HCP-1,5叠层法(Akamatsu,T.等(1984),Agric.Biol.Chem.48(3),651-655)。仅有的大的差别为将HCP-1,5培养基和琼脂的pH改变成pH9,使所述嗜碱性杆菌能在更适宜的条件下再生。在30℃下将含有10μg/ml氯霉素或5μg/ml红霉素的再生培养皿培养5-10天。

    在含有2μg/ml红霉素的LB9板(含有0.05M NaHCO3缓冲液pH9.0的LB培养基)上对转化体进行再分离,然后,用由Petit等(1990)所披露的方法使含有蛋白酶基因以及cat基因的小型Tn10转座子转座。在46℃下在液体培养基中培养过夜后,在46℃下将培养物铺板于LB9+6μg/ml氯霉素上,并筛选对红霉素敏感的菌落。选择出11个对红霉素敏感的氯霉素抗性菌落。对自这11个菌落中分离的染色体DNA进行Southern分析揭示,其各含有一个插在染色体上的单拷贝小型转座子。10个菌株含有相同的插入片段,而1个含有插在不同位置上的插入片段。那10个菌株很可能是早期转座行为的代表性同胞。无转座子插入位于迟缓芽胞杆菌染色体上的编码天然蛋白酶的基因。例3将Sayinase基因转座到迟缓芽胞杆菌染色体上,无需选择氯霉素抗性

    在一个大体上与例2相同的实验中,用上述原生质体方法,用pMOL553转化在其碱性蛋白酶基因上有一个染色体缺失的迟缓芽胞杆菌菌株。在该实验中,选择压力仅针对由pMOL553的载体部分所产生的红霉素抗性。其用意是通过筛选其在LB(9)琼脂板上降解脱脂奶的能力,分离通过带有蛋白酶的小型转座子转座到染色体上而获得了活性蛋白酶基因的细胞。原生质体转化和再分离步骤是仅通过红霉素选择进行的。在30℃下允许转座子整合的整合时间为在含有2μg/ml红霉素的LB(9)培养基上1天。在46℃下在无选择压力的条件下在LB(9)培养基上培养1天,然后将细胞展布在含有1%脱脂奶,但无抗生素的LB(9)板上。在600个菌落中,有59个是蛋白酶阳性的。然后对这59个菌落的抗生素抗性表型进行分析。有19个菌落同时具有抗红霉素和氯霉素抗性,表明其仍含有pMOL553,而40个菌落仅抗氯霉素,表明其是通过cat和Savinase基因转座到染色体上而产生的。

    通过Southern杂交分析2个氯霉素抗性和红霉素敏感型菌落。两种细胞含有2个拷贝的带有蛋白酶的小型转座子,其在染色体上的定位不同于天然蛋白酶基因的定位(在这种情况下部分缺失)。所有4个小型转座子都整合在迟缓芽胞杆菌染色体上的不同位置。

    因此,该实施例说明了含有多个转座拷贝的编码转位多肽的感兴趣的序列的菌株的构建,并说明了含有转座子插入片段的菌株的分离,在该菌株的分离过程中不使用选择标记。例4构建用于含有源于pUB110的oriT的质粒的接合转移的供体菌株

    通过接合作用可将质粒pLS20和pBC16从枯草芽胞杆菌菌株PSL1UM13转移到各种芽胞杆菌属受体菌株中(Koehler,T.M.和Thorne,C.B.(1987).Bacillus subtilis(natto)plasmid pLS20 mediatesinterspecies plasmid tramsfer.J.Bacteriol.,169,5272-5278)。

    DN1280是枯草芽胞杆菌168的衍生物,其含有da1基因上的一个缺失(Diderichsen,B.(1986),A geneticsystem for stabilization of clonedgenes in Bacillus subtilis,p35-46.见A.T.Ganesan和J.A.Hoch(著),Bacillus moleoular genetics and biotechnology applications.Academic Press,Inc.,New York)。使DN1280变成感受态,并用质粒pHV1248转化,在30℃下筛选红霉素抗性(5μg/ml)。将所得到的菌株用作与pSL1 UM13接合的受体。从培养过夜的板上取两种菌株,在含有D-丙氨酸(100μg/ml)的LBPSG板(补充了磷酸盐(0.01MK3PO4)、葡萄糖(0.4%)和淀粉(0.5%))上混合,并在30℃下培养5小时。将该板复制到上述LBPSG板上,但其另外含有红霉素(5μg/ml)和四环素(5μg/ml)。分析出现在复制板上的单菌落的将pBC16转移至枯草芽胞杆菌DN1885中的能力。通过在上述LBPSG板上混合所述菌株进行接合,并在30℃下培养5小时。复制到含有四环素(5μg/ml),但不含D-丙氨酸的LBPSG板上。

    去掉D-丙氨酸可以对dal-供体菌株有效地进行反选择。所分析的菌落很少能够将TetR标记转入DN1885。这表明这些菌落除了具有pBC16外还获得了pLS20。在50℃下,在含有四环素(5μg/ml)和D-丙氨酸(100μg/ml)的液体TY的培养基中培养上述菌落之一,然后铺板于含有四环素(5μg/ml)和D-丙氨酸(100μg/ml)的LB上,并分别复制铺板于含有D-丙氨酸(100μg/ml)和红霉素(5μg/ml)或氯霉素(6μg/ml)的LB上。将一个四环素抗性,红霉素和氯霉素敏感型分离物以PP289-5形式保存。该菌株是da1--型,并含有pLS20和pBC16,可以用作接合供体菌株,它可以让含有pUB110 oriT的质粒转移到各种受体菌株中。例5构建用于Savinase基因转座的可移动的转座子输送载体

    由pLS20或其衍生物产生的质粒pUB110的移动性业已披露,并做过一些详细分析(Koehler,T.M.和Thorne,C.B.(1987).Bacillussubtilis(natto)plasmid pLS20 mediates interspecies plasmidtransfer.J.Bacteriol.,169,5271-5278;selinger,L.B.,McGregor,N.F.,Khachatourians,G.G.和Hynes,M.F.(1990).Mobilization ofclosely related plasmids pUB110 and pBC16 by Bacillus plasmid pXO503requies trans-acting open reading frame β.J.Bacteriol.,172,3290-3297)。在本发明中,源于所述质粒的因子被用于使转座子输送系统移动化。

    pUB110的移动性取决于位于orfβ5′端的顺式作用片段(oriT)(Selinger等,1990)。采用引物LWN5232和LWN5233对一个源于pUB110的,从pUB110序列的1020位延伸到1575位的555bp的片段(Mckenzie,T.Hoshino,T.,Tanaka,T.,Sueoka,N.(1986)The nucleotide sequenceof pUB110:some salien tfea turesinre lation to replication and itsregulation.Plasmid 15,93-103)进行PCR扩增。

    LWN5232:

    5′-GTCGGAGCTCATTATTAATCTGTTCAGCAATCGGGC-3′

    LWN5233:

    5′-GTCGGAGCTCTGCCTTTTAGTCCAGCTGATTTCAC-3′

    用SacI消化扩增的片段,并首先克隆在大肠杆菌质粒(一种pUC19衍生物)的SacI位点。然后再用SacI将该片段切除,并将其克隆到上述质粒pMOL553的独特SacI位点上。将连接混合物转化到大肠杆菌SJ2中,选择氨苄青霉素抗性(100μg/ml)。

    由收集的转化体中制备质粒,并将该质粒混合物转化到PP289-5,在含有D-丙氨酸(100μg/ml)的LBPSG板上选择四环素(5μg/ml)、氯霉素(6μg/ml)和红霉素(5μg/ml)抗性。再次收集转化体,并通过接合作用将收集物用于将pMOL553的oriT衍生物转移到DN1885中,采用在例4中所披露的方法。最后,通过限制性作图证实反式接合体上所述质粒的身份,保留含有正确质粒的菌株,为SJ3282(DN1885/pSJ3282(=pMOL553-oriT;图2))。例6构建能表达pAMβ1解离酶的可移动质粒

    将质粒pWT和pMAP29用作以下实验的原料。pWT是一种多拷贝数pAMβ1衍生物,具有图3所示的限制图。将其转化到枯草芽胞杆菌DN1885中,并将一个转化体以菌株SJ3008形式保存。按照布达佩斯条约将该菌株作为专利保存物交由DSM保存,保存号为DSM10444,保存日为1995年12月22日。pMAP29含有2个直接重复的解离位点(res),其侧翼为壮观霉素抗性决定子,并允许res/spc/res结构插入枯草芽胞杆菌的amy基因座。它具有图4所示的限制图。将其保存在大肠杆菌菌株SJ3007中。该菌株按照布达佩斯条约作为专利保藏物交由DSM保存,保存号为DSM10446,保存日为1995年12月22日。

    用ScaI消化pMAP29,并转化到感受态DN1885中,选择壮观霉素抗性(60μg/ml)。将所述转化体之一作为SJ3109保存。使SJ3109成为感受型,并作为感受态细胞维持其壮观霉素抗性。由SJ3008制备的pWT被转化SJ3109中,在30℃下选择红霉素抗性(5μg/ml)。在24个检验过的转化体菌落中,有2个是壮观霉素敏感性的。在30℃下,在含有红霉素(2μg/ml)的TY培养基中繁殖5个壮观霉素抗性转化体2天。通过这些培养物的复制铺板揭示,仅在3种转化体中有壮观霉素敏感型细胞,但在其他2个转化体中仍有壮观霉素抗性细胞。通过在50℃下再划线2次,能轻易将质粒pWT从细胞中清除。

    因此,由pWT所表达的解离酶能轻易地将壮观霉素抗性基因从SJ 31 09的染色体上切除。

    pAMβ1解离酶基因的序列是已知的,因为该解离酶是由ORFH编码的,如由Swinfield等所披露的(Swinfield,T.J.Janniere,L.,Ehrlich,S.D.,Minton,N.P.(1991)。Characterization of a region of theEnterococcus faecalis plasmid pAMβ1 which enhances the segregationalstability of pAMβ1-derived cloning vectors in Bacillus subtilis.Plasmid 26,209-221)。

    以pWT为模板,并采用以下引物通过PCR反应进行基因扩增:

                   BamHI PstI<5102-5129位>  LWN7839:5′-GACGGGATCCCTGCAGTATCCAATTTATTTTTTTCTTAACAAGG-3′

                   EcoRI HindIII<5820-5797位>  LWN7840:5′-GACGGAATTCAAAGCTTAAAGCACTTGCATAGGCTAATGCC-3′其中的序列编号由上述文献而来。

    用限制性酶PstI和HindIII消化扩增的DNA片段,然后与自pDN1981上分离的4.1kb的PstI-HindIII片段连接(J φrgensen,P.L.,Hansen,C.K.,Poulsen,G.B.,Diderichsen,B.(1990).In vivo geneticengineering:homologous recombination as a tool for plasmidconstruct ion.Gene 96,37-41),并转化到枯草芽胞杆菌DN1885中,选择卡那霉素抗性(10μg/ml)。保存两个转化体:含有pSJ3157的SJ3157(图5),和含有pSJ3158的SJ3158(在克隆时破坏了pSJ3158上的PstI位点,除此之外该质粒是相同的)。pSJ3157和pSJ3158是质粒pAmyLres的例子,其含有由地衣型芽胞杆菌amyL启动子表达的解离酶基因,位于pUB110衍生的载体上,能产生卡那霉素抗性。

    将上述两种质粒和作为对照的pDN1981转化到SJ3109中。在30℃下在含有卡那霉素的TY培养基中培养卡那霉素和壮观霉素抗性菌落(每种质粒5个)3天,然后分散用于复制铺板:所得到的所有含pSJ3157或pSJ3158的菌落都是壮观霉素敏感性的,而含有pDN1981的菌落是壮观霉素抗性的。

    因此,由Termamyl(amyL)启动子表达的解离酶可有效地用于促进芽胞杆菌染色体上res位点之间的重组。

    在随后的步骤中,将amyL启动子和解离酶基因转移到可移动的、温度敏感型克隆载体pSJ2739(图6)上。该载体含有pE194的复制功能基因和红霉素抗性基因(Horinouchi,S.,和Weisblum,B.(1982)。Nucleotide sequence and functional map of pE194,a plasmid thatspecifies inducible resistance to macrolide,lincosamide,andstreptogramin type B antibiotics.J.Bacteriol.,150,804-814),pUB110的oriT,pUB110的部分卡那霉素抗性基因,和源于地衣型芽胞杆菌的α-淀粉酶基因(amyL)的一个片段。其全序列如序列2所示。

    可以用Bg1II和例如HindIII将由位于例如pDN1981上的amyL启动子表达的基因转移到pSJ2739中。这一克隆过程能恢复其卡那霉素抗性基因。

    用Bg1 III和Hind II分别消化pSJ3157和pSJ3158,将其2.3kb的片段和pSJ2739的5.4kb的Bg1II-Hind III片段连接,并将该混合物转化到感受态DN1885中,在30℃下选择卡那霉素(10μg/ml)和红霉素(5μg/ml)抗性。所保存的3个转化体为

    SJ3279(pSJ3279;源于pSJ3157)

    SJ3280(pSJ3280;源于pSJ3157)和

    SJ3281(pSJ3281;源于pSJ3158)。

    其限制图示于图7中。

    这些质粒是质粒pAmyLres(ts)的例子。

    通过对菌株SJ3109的转化分析所述质粒的功能;繁殖含有每种质粒的SJ3109,会导致出现壮观霉素敏感型细胞,随后通过在46℃下,在没有抗生素的培养基中生长能轻易地将所述质粒从细胞中清除。例7构建用于解离酶表达质粒的供体菌株

    将在例6中构建的质粒转化到接合供体菌株PP289-5(da1-,pLS20,pBC16)的感受态细胞中,使其容易通过接合作用转移到芽胞杆菌菌株中。保存以下菌株:

                 SJ3308=PP289-5/pSJ3279

                 SJ3309=PP289-5/pSJ3280

                 SJ3310=PP289-5/pSJ3281

    上述菌株能够将解离酶表达质粒转移到菌株SJ3109中,采用上述接合方法,其中它能起到将壮观霉素抗性基因从其染色体上切除的作用。例8

    将解离酶靶位点,res插在可移动的、用于Sayinase基因的转座的转座子输送载体的cat标记附近。

    pMOL553(见图1)上的MluI和SacII位点是单一的。因此,可以构建修饰形式的MluI-SacII片段,以使cat基因的每一端含有res位点,并可以连接到MluI+SacII消化过的pMOL553上。所述构建可以通过PCR扩增进行,采用若干寡核苷酸引物,使用图8所示的SOE方法。res位点曾位于pAMβ1序列上(Swinfield,T.J.,Oultram,J.D.,Thompson,D.E.,Brehm,J.K.,Minton,N.P.(1990)physical Characterization of thereplication region of the streptococcus faecalisplasmid pAMβ1,Gene87,pp.79-90)的4841-4951位(Janniere,L.,Gruss,A.,Ehrlich,S.D.(1993),plasmids,pp.625-644in Sonenshein,A.L.,Hoch,J.A.,Losick,R.(著)Bacillus subtilis and other gfam-positive bacteria:Biochemistry,physiology,and Molecular Genetics.American Societyfor Microbiology,Washington,D.C.)。因此,用于图8所示的构建的PCR引物具有如下序列:

    LWN7794:

            KpnI    MluI

    5′-GACGGGTACCACGCGTTAATCAATAAAAAAACGCTGTGCGGTTAAA-

                                BamHI<-X17092    位4840-4863-->

    GGGCACAGCGTTTTTTTGTGTATGGATCCTTCTATCTTTTATAGGTCATTAG-3′

    LWN7790:

       pMOL553    位3942-3920><X17092      位4975-4956

    5′-TATATATTTTAAAAATATCCCACGGTTCTTCAAATATTTCTCC-3′

    LWN7789:

    x17092    位4956-4975><pMOL553    位3920-3943

    5′-GGAGAAATATTTGAAGAACCGTGGGATATTTTTAAAATATATAT-3′

    LWN7788:

    x17092    位4829-4808     ><pMOL553    位4795-4773

    5′-CAAGTGTTCGCTTCGCTCTCACGGAGCTGTAATATAAAAACCTTC-3′

    LWN7787:

    pMOL553    位4773-4795    ><X17092     位4808-4829

    5′-GAAGGTTTTTATATTACAGCTCCGTGAGAGCGAAGCGAACACTTG-3′LWN7784:

    pMOL553    位4819-4796    ><x17092     位4953-49335′-CATATGATCAAATGGTTCGGATCTGATTTTCCTCCTCTAATATGC-3′LWN8197:

    X17092     位4933-4953    ><pMOL553    位4796-48195′-GCATATTAGAGGAGGAAAATCAGATCCGAACCATTTGATCATATGACAAGATGTG-3′LWN7791:

    EcoRI  SacII5′-GACGGAATTCCCGCGGTAAATAGCAATAAATTGGC-3′LWN7780:

        KpnI   MluI5 ′-GACGGGTACCACGCGTTAATC-3′

    在一个采用Taq聚合酶的标准PCR反应中(25轮),用10pmole的每种引物,按如下方法制备PCR片段A、B、C和D(图8)。

    A:引物LWN7794和LWN7790,模板pWT(源于SJ3008),退火温度49℃。从琼脂糖凝胶中纯化所得到的230bp的片段。

    B:引物LWN7789和LWN7788,模板pMOL553,退火温度51℃。从琼脂糖凝胶中纯化所得到的900bp的片段。

    C:引物LWN7787和LWN7784,模板pWT(源于SJ3008),退火温度53℃。从琼脂糖凝胶中纯化所得到的180bp的片段。

    D:引物LWN8197和LWN7791,模板pMOL553,退火温度55℃。从琼脂糖凝胶中纯化所得到的275bp的片段。

    上述片段分两步进行装配。在第一步,混合纯化的A和B片段样品,并将其用作采用了引物LWN7780和LWN7788的PCR反应的模板,退火温度为55℃。从琼脂糖凝胶中纯化所得到的1100bp的组合片段(AB)。与此同时,混合纯化的片段C和D的样品,并用作采用了引物LWN7787和LWN7791的PCR反应的模板,退火温度为55℃。从琼脂糖凝胶中纯化所得到的440bp的组合片段(CD)。

    在第二步,混合两种纯化的组合片段AB和CD,并将其用作采用了引物LWN7780和LWN7791的PCR反应的模板,退火温度为55℃。从琼脂糖凝胶中纯化所得到的1500bp的组合片段(ABCD)。

    用EcoRI和KpnI消化纯化的片段(ABCD),连接于用EcoRI+KpnI消化过的pUC19上,将连接混合物转化到大肠杆菌SJ2中,选择氨苄青霉素抗性(100μg/ml)和氯霉素抗性(6μg/ml),所保存的5种转化体为

                 SJ3372=SJ2/pSJ3372

                 SJ3373=SJ2/pSJ3373

                 SJ3374=SJ2/pSJ3374

                 SJ3375=SJ2/pSJ3375

                 SJ3376=SJ2/pSJ3376.

    通过限制性分析证实所述质粒的结构,并在一台Applied Biosystems自动测序仪上用引物LWN8906:5′-GGT TTT TCG CAT GTA TTG CG-3′和LWN8907:5′-GTT CAT TTG ATA TGC CTC C-3′对插入片段的res和IR部分进行测序。

    在图9中给出了pSJ3372-76的限制图。DNA测序表明,在质粒pSJ3372和pSJ3376上的res和IR片段不含因PCR扩增失误而产生的突变。

    将源于质粒pSJ3372或质粒pSJ3376的1.5kb SacII-MluI片段连接在源于pSJ3282的9.6kb的SacII-MluI片段上,构建最终的转座子供体质粒。通过电击将连接混合物转化到大肠杆菌SJ2中,并在30℃下将细胞铺板于氨苄青霉素(100μg/ml)+氯霉素(6μg/ml)或红霉素(5μg/ml)+氯霉素(6μg/ml)的培养基上,并将转化体在所有3个抗生素上再划线。保存两种转化体:

    SJ3389=SJ2/pSJ3389(源于pSJ3376)和

    SJ3390=SJ2/pSJ3390(源于pSJ3372)。

    通过PCR扩增和限制性分析证实质粒结构。pSJ3389-90的限制图如图10所示。例9

    构建用于例8的转座子输送系统的接合转移的供体菌株

    用pSJ3389转化枯草芽胞杆菌菌株PP289-5的感受态细胞,在含有D-丙氨酸(100μg/ml)的LPPSG板上选择抗四环素(5μg/ml)抗性、红霉素(6μg/ml)抗性和氯霉素(6μg/ml)抗性。所保存的转化体为

    SJ3503=PP289-5/pSJ3389和

    SJ3504=PP289-5/pSJ3389例10

    将例8的转座子输送系统导入枯草芽胞杆菌中,并分离发生了转座作用的菌株

    用质粒pSJ3389或pSJ3390转化枯草芽胞杆菌DN1885感受态细胞,在30℃下选择红霉素(5μg/ml)和氯霉素(6μg/ml)抗性。保存4个含有每种质粒的转化体,其在含有脱脂奶的板上均表现出独特的蛋白酶阳性表型:

                SJ3431=DN1885/pSJ3389

                SJ3432=DN1885/pSJ3389

                SJ3433=DN1885/pSJ3389

                SJ3434=DN1885/pSJ3389

                SJ3435=DN1885/pSJ3390

                SJ3436=DN1885/pSJ3390

                SJ3437=DN1885/pSJ3390

                SJ3438=DN1885/pSJ3390

    将所述菌株接种在含有3μg/ml氯霉素的10mlTY培养基中,在30℃下振荡过夜。将100μl转移到新的含有3μg/ml氯霉素的10mlTY培养基试管中,并在50℃下振荡4小时。将各试管的稀释系列铺板于含有6μg/ml氯霉素的LBPSG上,并在50℃下培养2天。然后将这些板复制铺板到

    i)含有红霉素(5μg/ml)和氯霉素(6μg/ml)的板上,和ii)仅含有氯霉素(6μg/ml)的板上,并在30℃下培养这些板过夜。

    在氯霉素抗性菌落中仅有10-20%具有保留的红霉素抗性,表明所述转座子供体质粒继续存在于这些细胞中。从8个菌株中各保存1个氯霉素抗性、红霉素敏感型分离体:

    源于SJ3431的SJ3465,源于SJ3432的SJ3466,源于SJ3433的SJ3467,源于SJ3434的SJ3468,源于SJ3435的SJ3469,源于SJ3436的SJ3470,源于SJ3437的SJ3471,和源于SJ3438的SJ3472。

    SJ3470在液体TY培养基中为明显的红色。

    用上述菌株进行对照PCR反应,采用引物LWN5136:5′-CCG GCG GATCCA AGG GGT GAT CG-3′和LWN5067:5′-CCA GAA CCT GTC AAT CCA CG-3′,退火温度为55℃。得到1个900bp的片段,正如所预计的转座DNA上的Savinase结构扩增的结果,证实在这些菌株的基因组中存在Savinase基因。例11

    解离酶介导的例10中菌株的标记缺失

    例7所述菌株SJ3309能够通过接合作用将解离酶表达质粒供给芽胞杆菌属受体菌株。

    将SJ3309在含有D-丙氨酸(100μg/ml)、四环素(5μg/ml)和红霉素(5μg/ml)的LBPSG板上划线,并在30℃下培养过夜。将SJ3465-SJ3472的每种菌株在含有氯霉素(6μg/ml)的LBPSG板上划线,并在37℃下培养过夜。

    在含有D-丙氨酸(100μg/ml)的独立LBPSG板上将SJ3465-SJ3472中的每一菌株与菌株SJ3309混合,并在30℃下培养这些板5小时。然后将细胞再悬浮于TY培养基中,并铺板于含有红霉素(5μg/ml)和氯霉素(6μg/ml)或仅含红霉素的LBPSG板上。在30℃下将这些板培养3天。

    受体菌株为SJ3465-SJ3468的反式接合体在仅含红霉素的板上生长良好,但在含有氯霉素和红霉素的板上生长较差。

    受体菌株为SJ3469-SJ3472的反式接合体在两种类型的板上均生长良好。当进行再分离时,源于SJ3465-SJ3468的反式接合体仅能在红霉素上生长,表明其丧失了氯霉素抗性基因。源于SJ3469-SJ3472的反式接合体能够在两种类型的板上生长。

    为了从所述细胞中清除解离酶表达质粒,将源于SJ3465-SJ3468的反式接合体接种到TY培养基中,并在50℃下振荡培养5小时。用这些培养物的样品在LBPSG板上划线,将这些板在50℃下培养过夜,然后复制到LBPSG、含有氯霉素(10μg/ml)的LBPSG和含有红霉素(5μg/ml)的LBPSG上。将这些板在37℃下培养过夜,对来自每种培养物的1个红霉素敏感型、氯霉素敏感型分离体进行保存:

    源于SJ3465的SJ3461

    源于SJ3466的SJ3462

    源于SJ3467的SJ3463

    源于SJ3468的SJ3464。

    将源于SJ3469-SJ3472的保留了其氯霉素抗性的反式接合体接种到含有2μg/ml红霉素的TY培养基中,在30℃下振荡培养3天。在30℃下将样品铺板于LBPSG上,并将这些板复制到LBPSG、含有氯霉素(10μg/ml)的LBPSG和含有红霉素(5μg/ml)的LBPSG上。所有菌落均为红霉素抗性,但源于SJ3470的90%的菌落和源于其他3种菌株的所有菌落均为氯霉素敏感型,这再次表明氯霉素抗性基因的丢失。

    解离酶表达质粒如上述被从所述菌株中清除。保存以下菌株:

    源于SJ3469的SJ3489

    源于SJ3470的SJ3490

    源于SJ3472的SJ3491。

    采用引物LWN5136和LWN5067通过例10所述的PCR证实了Savinase基因的存在。例12

    将例8的转座子输送载体再次导入例11的无标记菌株中,并分离发生了转座作用的菌株

    通过在板上的接合作用将pSJ3389从SJ3503和SJ3504中转移到菌株SJ3461中,如上文所述。在D-丙氨酸板上培养混合菌株,然后对细胞进行再悬浮,并在30℃下铺板于含有氯毒素(6μg/ml)和红霉素(5μg/ml)的LBPSG上。检查菌落的四环素抗性,证实pBC16的存在。在30个检查过的菌落中有3个是四环素敏感型的,保存这些菌株

    SJ3486=SJ3461/pSJ3389,SJ3487=SJ3461/pSJ3389,和

    SJ3488=SJ3461/pSJ3389.

    基本上按上述方法分离在其基因组上插入了新拷贝的Savinase基因的菌株,所不同的是将BPX用作液体培养基。

    将菌株SJ3486、SJ3487和SJ3488(枯草芽胞杆菌菌株DN1855,含有一个染色体Savinase基因拷贝+转座子供体质粒)、以及对照菌株SJ3431(枯草芽胞杆菌DN1885,仅含有转座子供体质粒)接种到含有氯霉素(6μg/ml)的10ml BPX中,在30℃下振荡培养4天。将样品(约100μl)转移到含有氯霉素(6μg/ml)的新的100mlBPX试管中,在50℃下振荡培养4小时,然后将这些培养物的样品于37℃下涂在含有氯霉素(6μg/ml)的LBPSG上,并通过复制铺板检查所得菌落的红霉素抗性。源于SJ3431的所有菌落均为红霉素敏感型。

    源于菌株SJ3486和SJ3488的所有菌落均为红霉素抗性。

    源于SJ3487的约半数菌落为红霉素敏感型,保存其中的10个菌株,为SJ3537-SJ3546例13

    解离酶介导的例12菌株中的标记缺失

    选择菌株SJ3537,3539,3541和3546用于进一步的实验。通过接合作用将解离酶表达质粒从菌株SJ3309中导入上述菌株,如在例11中接合单拷贝菌株所述。

    业已发现,通过复制铺板在红霉素板上选择的所有反式接合菌落均为氯霉素敏感型,仅少数源于SJ3541受体的菌落除外。由此发现由解离酶介导的氯霉素抗性基因的切除是十分有效的。约有50%的菌落为四环素敏感型,表明其缺乏pBC16(其作为辅助因子存在于供体菌株中)。将来自每种受体的1个四环素敏感型、氯霉素敏感型反式接合菌落置于TY中,在50℃下繁殖4小时,然后在50℃下铺板于LBPSG上,并检查所得菌落中解离酶表达质粒的缺乏,检查是通过将其复制铺板于含有红霉素(5μg/ml)的LBPSG板上进行的。均为红霉素敏感型。保存来自每种受体菌株的1个菌落:

    源于SJ3537的SJ3565,源于SJ3539的SJ3566,源于SJ3541的SJ3567,和源于SJ3546的SJ3568。例14

    显示例10-13的菌株的Savinase产率

    晕圈在板上的形成:

    将菌株DN1885(枯草芽胞杆菌Savinase阴性受体菌株)、SJ3465-SJ3472(1.转座,CamR、Sav+)、SJ3461(1.转座CamS,Sav+(源于SJ3465))、SJ3537-SJ3546(2.转座(在SJ3461上),CamR,Sav+)、和SJ3565-SJ3568(2.转座,CamS,Sav+)在含有1%脱脂奶的LBPSG板上划线。在37℃下培养过夜,然后观察晕圈形成的差异。DN1885几乎没有任何晕圈,1.转座菌株有清晰的晕圈,而2.转座菌株似乎具有略大于1.转座菌株的晕圈。由于cat基因的消除未发现晕圈大小的差异。Mancini免疫扩散分析:

    将菌株接种到100ml BPX摇瓶(加入0.5ml 1M NaoH)中,并以300rpm的速度在30℃下摇动培养4天。

    在含有抗Savinase抗体的琼脂糖凝胶上对上清液进行Mancini免疫扩散分析。未观察到DN1885的沉淀区域,符合该菌株中缺乏Savinase基因的事实。在1.转座菌株(SJ3465-3472)观察到大小略有差异的沉淀区。cat基因的消除不会明显影响这些区域(SJ3461)。在2.转座菌株(SJ3537-3546)中观察到明显较大的沉淀区域,cat基因的消除不会明显影响这些区域(SJ3565-3568)。在图11的A和B中对所述免疫扩散板进行重复。结论:

    上述表型试验由此揭示了菌株构建的结果:一个(至少)拷贝的Savinase基因可通过转座作用插入,产生Savinase产物。可以用解离酶将转座的DNA上的氯霉素抗性基因除去,所得到的菌株仍能以原有水平产生Savinase。可以再次利用用于插入第一个拷贝的相同转座子供体质粒将1个(或几个)额外拷贝的Savinase基因插入单拷贝菌株。这会导致Savinase产率的提高。然后可以再次利用解离酶将转座的DNA上的氯霉素抗性基因除去,而所得到的菌株保留其产生较高Savinase产量的能力。例15例10-13菌株的Southern分析

    将例10-13的菌株在TY培养基中生长过夜,并通过标准方法(苯酚/氯仿萃取)提取染色体DNA。用EcoRI消化该DNA,该酶能裂解转座DNA的Savinase基因部分的内部,并用BglI、PstI和SacII酶进行消化,这些酶不会裂解转座DNA的内部。为了得到适度大小的DNA片段,将几种酶一起使用,这些片段能在凝胶上很好地分离。电泳之后,通过真空吸印将DNA片段转移到Immobilon-N(Millipore)膜上,并用生物素化标记的探针检测该膜,采用的是购自New England Bolabs的NEBlot Phototope Kit和Phototope Detection Kit。用几组探针检测同一张膜。首先,采用可识别转座DNA上半部的探针,即pSJ3389上2000位附近的IR与3600位附近的EcoRI位点之间的片段。该探针是采用引物LWN5136和LWN5067通过PCR扩增由pMOL553制备的。预计该探针能够识别一个源于各转座子插入片段的片段,而该片段不会受随后的解离酶作用的影响。这种情形恰如图12A所示。在第一轮转座之后分离菌株SJ3465-SJ3472,其含有cat和Savinase基因。由于其是通过不同的转座作用而产生的,观察到大小不同的片段。从SJ3465中分离出菌株SJ3461,其仅含有Savinase基因。在该菌株中观察到相同的杂交片段(2.0kb)。在第二轮转座后分离到菌株SJ3537-3546。其含有与SJ3461相同的片段(2.0kb),但额外获得了一个1.8kb的杂交片段。在菌株SJ3565-3568中观察到两个相同的杂交片段,其中,解离酶基因被用于缺失cat基因(用核酸酶降解源于SJ3565的DNA)。

    然后去除所述膜上的探针,并用两个探针进行再杂交。其中一个探针与上述探针相同。另一个是含有res-cat-res-IR的PCR片段,在例8中被称为ABCD。第一个探针应当识别与前面相同的片段。新探针应当识别新的片段,而且该片段由于解离酶介导的cat基因的缺失而变小。这正是在图12B中所观察到的情形。在菌株SJ3465中约3.7kb的片段在菌株SJ3461中被减少至约2.7kb。菌株SJ3537-46中含有另一个3.3kb的片段,它在SJ3566-68中被减少至2.3kb。

    在Southern印迹的较上部可见一些片段,这是由于一种或几种酶对染色体DNA的不完全消化而形成的。

    同样,在图12A中确实看到了含有转座子的res-cat-res-IR部分的片段。这是因为在用于标记的材料中存在某些质粒pMOL553(PCR片段未经凝胶纯化)。例16构建含有res-spc-res框的可移动转座子输送载体

    A)扩增spc抗性基因。

    壮观霉素抗性基因是从质粒pMAP29(图4)中获得的,它位于1.2kb的Sal I-BamHI片段上。从琼脂糖凝胶中纯化该片段,并连接于XhoI+BamHI消化的pDN3000(Diderichsen等,1990,J.Bacteriol.172,4315-4321),得到质粒pSJ3216(图13)。通过电击将连接混合物导入大肠杆菌SJ2中,并选择氨苄青霉素(100μg/ml)和壮观霉素(60μg/ml)抗性。

    spc基因是由pSJ3216PCR扩增的,采用引物LWN8524:5′-GACTGAATTCGGATCCACGCGTATAATAAAGAATAATTATTAATCTGTAG-3′,和LWN8528:5′-GACTAAGCTTGAGCTCCACTAATATTAATAAACTATCGAAGG-3′;退火温度为50℃。在琼脂糖凝胶上纯化所述片段,用EcoRI和Hind III消化,并连接到EcoRI+HindIII消化的pUC19上。通过电击转化大肠杆菌SJ2,在含有IPTG和X-gal的板上选择氨苄青霉素抗性(100μg/ml)。在含有氨苄青霉素(100μg/ml)和壮观霉素(60μg/ml)的板上对白色菌落进行再分离。保存的菌株为SJ3318(SJ2/pSJ3318)和SJ3319(SJ2/pSJ3319)。pSJ3318的限制图如图14所示。

    B)用多接头扩增res位点。

    在PCR反应中以质粒pWT(图3)为模板,采用引物

             LWN8529:5′-GACTGAATTCCTGCAGGAGCTCAGTGAGAGCGAAGC-GAACAC-3′和LWN8531:5′-GACTAAGCTTTGATCAAATGGTTGCGGCCGCGT-CGACTCTAGACCCGGGTACCAGATCTGGATCCTCGGGTTCTTCAAATATTTCTCC-3′;退炎温度为59℃。从琼脂糖凝胶中纯化该片段,用EcoRI和HindIII消化,并连接于EcoRI+Hind III消化的pUC19上。通过电击转化大肠杆菌SJ2,在含有IPTG和X-gal的板上选择氨苄青霉素抗性(100μg/ml)。在类似的板上对白色菌落进行再分离。用引物LWN7191:5′-GTTTTCCCAGTCACGAC对由选择的转化体中制备的质粒进行DNA测序。保存2个具有正确的插入片段序列的质粒:SJ3328(SJ2/pSJ3328)和SJ3329(SJ2/pSJ3329)(图15)。

    C)res位点扩增。

    在PCR反应中以质粒pWT为模板,采用引物LWN8518:5′-GACTAAGCTTACGCGTTCGGGTTCTTCAAATATTTCTCC-3′和LWN8527:5′-GACTGAATTCTGATCAAATGGTTCAGTGAGAGCGAAGCGAACAC-3′;退火温度为59℃。从琼脂糖凝胶中纯化该片段,用EcoRI和Hind III消化,并连接到EcoRI+Hind III消化的pUC19上。通过电击转化大肠杆菌SJ2,在含有IPTG和X-gal的板上选择氨苄青霉素抗性(100μg/ml)。在类似的板上对白色菌落进行再分离。用引物LWN7191:5′-GTT TTC CCA GTCACG AC对由选择的转化体中制备的质粒进行DNA测序。保存2个具有正确的插入片段序列的质粒:SJ3326(SJ2/pSJ3326)和SJ3327(SJ2/pSJ3327)(图16)。

    D)构建spc-res片段。

    从琼脂糖凝胶中分离pSJ3318的1.1kb的SacI-EcoRI片段,并连接于SacI+EcoRI消化的pSJ3328上。通过电击把连接混合物导入大肠杆菌SJ6中,并在含有氨苄青霉素(100μg/ml)和壮观霉素(60μg/ml)的板上选择转化体。保存2个转化体SJ3341(SJ6/pSJ3341)和SJ3342(SJ6/pSJ3342)(图17)。

    E)构建res-spc-res片段。

    从琼脂糖凝胶中纯化pSJ3326的0.2kb的EcoRI-MluI片段,并连接于EcoRI+MluI消化的pSJ3341上。通过电击将连接混合物导入大肠杆菌SJ6中,并在含有氨苄青霉素(100μg/ml)和壮观霉素(60μg/ml)的板上选择转化体。保存2个转化体SJ3358(SJ6/pSJ3358)和SJ3359(SJ6/pSJ3359)(图18)。

    F)将小型转座子(IR-cat-IR)克隆在pUC上。

    将小型转座子片段(无转座酶基因)从pHV1248上切除,该片段位于1.2kb的HindIII片段上,将该片段与HindIII消化的pUC19连接,并用于通过电击转化大肠杆菌SJ6,以产生氨苄青霉素(100μg/ml)和氯霉素(10μg/ml)抗性。保存2个转化体SJ3354(SJ6/pSJ3354)和SJ3355(SJ6/pSJ3355)(图19)。

    G)将res-spc-res片段插入小型转座子。

    小型转座子在IR序列中含有BsaBI位点,位于转座必需的末端片段之外。这些位点被用于res-s pc-res片段的插入。

    将res-spc-res片段从pSJ3358上切除,其位于1.6kb的HincII-PvuII片段上,从琼脂糖凝胶中纯化,并连接到pSJ3354的2.8kb的BsaBI片段上。通过电击法将连接混合物用于转化大肠杆菌SJ6,以产生氨苄青霉素(100μg/ml)和壮观霉素(60μg/ml)抗性。保存两种转化体SJ3444(SJ6/pSJ3444)和SJ3445(SJ6/pSJ3445)(图20)。

    H)构建含有res-spc-res的转座子供体质粒。

    将位于1.8kb HindIII片段上的转座框从pSJ3444上切除,将其连接到pSJ3282的7.85kb的HindIII片段上。通过电击将连接混合物导入大肠杆菌SJ6中,选择氨苄青霉素(100μg/ml)和壮观霉素(60μg/ml)抗性。保存2个转化体,其具有相对于载体部分取向不同的转座框:SJ3475(SJ6/pSJ3475;图21)和SJ3476(SJ6/pSJ3476;图22)。

    检验该转座子供体质粒的官能度。将质粒pSJ3475和pSJ3476转化到感受态枯草芽胞杆菌DN1885中,选择红霉素(5μg/ml)和壮观霉素(60μg/ml)抗性。在一轮转座中得到具有每种质粒的4个转化体:将其置于含有壮观霉素(60μg/ml)的10mlTY中生长过夜。将50μl培养物转移到新的含有壮观霉素(60μg/ml)的10mlTY中,在50℃下培养4小时(pSJ3475转化体生长良好,pSJ3476转化体生长较差),并在50℃下铺板于含有壮观霉素(60μg/ml)的LBPSG上。将来自每个板的10个单菌落分别在含有红霉素(5μg/ml)和壮观霉素(60μg/ml)的重复的板上划线。大部分菌落为红霉素敏感型,表明了IR-res-spc-res-IR片段的正确转座和供体质粒的丢失。将源于各pSJ3475和pSJ3476转化体的2个SpcR、Erms菌落用作与作为供体的pSJ3309接合的受体,并在30℃下,在含有卡那霉素(10μg/ml)和有或没有壮观霉素(60μg/ml)的板上选择反式接合体。在卡那霉素板上观察到良好的生长,但源于四种菌株中三种的反式接合体在含有两种抗生素的板上生长较差。在任何情况下,通过从卡那霉素板上再分离均能得到壮观霉素敏感型、卡那霉素抗性菌落。

    因此,所述修饰过的转座子可以在枯草芽胞杆菌中起作用,并且随后可以用解离酶将壮观霉素抗性基因缺失。例17构建一种含有res-kan-res框的可移动的转座子输送载体

    A)扩增kan抗性基因

    由pUB110通过PCR扩增kan基因,采用引物

    LWN8516:5′-GACTGAATTCGGATCCACGCGTGAGTAGTTCAACAAACGGGCC-3′和

    LWN8517:5′-GACTAAGCTTGAGCTCCAACATGATTAACAATTATTAGAGG-3′;退火温度为59℃。从琼脂糖凝胶中纯化该片段,用EcoRI和HindIII消化,并连接于EcoRI+HindIII消化的pUC19。通过电击转化大肠杆菌SJ2。在含有IPTG和X-gal的板上选择氨苄青霉素(100μg/ml)抗性。在含有氨苄青霉素(100μg/ml)和卡那霉素(20μg/ml)的板上对白色菌落进行再分离。保存菌株SJ3316(SJ2/pSJ3316)和SJ3317(SJ2/pSJ3317)(图23)。

    B)构建kan-res片段

    从琼脂糖凝胶中分离pSJ3316的1.0kb的SacI-EcoRI片段,并连接于SacI+EcoRI消化的pSJ3328上。通过电击将连接混合物导入大肠杆菌SJ6中,在含有氨苄青霉素(100μg/ml)和卡那霉素(10μg/ml)的板上选择转化体。保留两个转化体SJ3339(SJ6/pSJ3339)和SJ3340(SJ6/pSJ3340)(图24)。

    C)构建res-kan-res片段。

    从琼脂糖凝胶中纯化pSJ3326的2.0kb EcoRI-MluI片段,并连接于EcoRI+MluI消化的pSJ3340上。通过电击将连接混合物导入大肠杆菌SJ6,并在含有氨苄青霉素(100μg/ml)和卡那霉素(10μg/ml)的板上选择转化体。保存两个转化体SJ3356(SJ6/pSJ3356)和SJ3357(SJ6/pSJ3357)(图25)。

    D)构建含有res-kan-res的转座子供体质粒

    i)克隆一个转座子IR序列。

    以pMOL553为模板通过PCR扩增“下游”转座子IR序列,采用引物

                                  LWN8760:5′-GACGGAATTCTC-TAGAGTCGACAGATCCGAACCATTTGATCATATGACAAGATGTG-3′和LWN8761:5′-GACGGAATTCGCGGCCGCGGTAAATAGCAATAAATTGGCC-3′.用EcoRI消化纯化片段,连接于EcoRI消化的pUC19上,并通过电击导入大肠杆菌SJ2,在含有IPTG和X-gal的板上选择氨苄青霉素抗性(100μg/ml)。从500个菌落中获得约20个白色菌落。采用引物LWN4123:5′-AGC GGA TAA CAA TTT CAC ACA GGA-3′对来自其中3个菌落的质粒进行DNA测序。保存2个正确的克隆SJ3385(SJ2/pSJ3385)(图26)和SJ3386(SJ2/pSJ3386)。

    ii)将一个IR与res-kan-res序列结合。

    将IR序列以0.3kb的NotI-XbaI片段的形式从pSJ3385上切除,连接于NotI+XbaI消化的、磷酸酶处理的pSJ3356上,并通过电击导入SJ6,选择氨苄青霉素(100μg/ml)和卡那霉素(10μg/ml)抗性。保存两个转化体SJ3459(SJ6/pSJ3459)SJ3460(SJ6/pSJ3460)(图27)。

    iii)构建最终的转座子供体质粒。

    在这一步,用pSJ3459的相应的kan-res片段取代供体质粒pSJ3476上的spc-res片段。因此,用MluI和BamHI从pSJ3459上切除1.15kb的片段,并将纯化过的该片段与pSJ3476的8.2kb的MluI-BamHI片段连接。通过电击将混合物导入大肠杆菌SJ6中,选择氨苄青霉素(100μg/ml)和卡那霉素(10μg/ml)抗性。保存两个转化体SJ3586(SJ6/pSJ3586)和SJ3587(SJ6/pSJ3587)(图28)。例18用例16的转座子输送载体将淀粉酶基因转座到枯草芽胞杆菌基因组中

    以3.2kb BgIII-BclI片段形式将地衣型芽胞杆菌淀粉酶基因(amyL)从pDN1981上切除,并连接于BamHI消化的pSJ3476上。将连接混合物转化到枯草芽胞杆菌DN1885中,在30℃下选择红霉素抗性(5μg/ml)。在红霉素(5μg/ml)和壮观霉素(60μg/ml)板上对4个淀粉酶阳性菌落进行再分离,并保存SJ3524(DN1885/pSJ3524)、SJ3525(DN1885/pSJ3525)、SJ3526(DN1885/pSJ3526)和SJ3527(DN1885/SJ3527)(图29)。

    检验菌株SJ3524-SJ3527的转座作用。将各菌株接种到含有红霉素(5μg/ml)和壮观霉素(6μg/ml)的LB中,在30℃下培养过夜,并将样品转移到含有壮观霉素(60μg/ml)的LB中。将所述培养物在50℃下摇5小时,然后铺板于壮观霉素板上(60μg/ml)并在30℃下培养过夜。SJ3524-SJ3526的板几乎过分生长;对各菌株的8个菌落进行检验,并发现红霉素抗性。对SJ3527的板进行复制铺板,并发现几个红霉素敏感型、壮观霉素抗性和淀粉酶阳性菌落。保存其中的一个SJ3549。例19

    由解离酶介导的例18菌株的标记缺失

    通过上述接合作用将解离酶表达质粒从SJ3309导入SJ3549。在卡那霉素(10μg/ml)和壮观霉素(60μg/ml)上选择反式接合体,并在有卡那霉素(10μg/ml)、有或没有壮观霉素(60μg/ml)的培养基上进行再分离。在含有两种抗生素的板上生长比较差,在有卡那霉素的板上生长比较好。在LBPSG上对来自卡那霉素板的10个菌落进行再分离,然后复制铺板。将由此分离到的8个壮观霉素敏感型、卡那霉素抗性菌落接种到TY中,并在50℃下培养过夜,然后铺板于LBPSG上,在37℃下培养过夜,然后对这些板进行复制。除了培养物1的某些菌落外,所有菌落均为卡那霉素敏感型。再分离证实了对卡那霉素(10μg/ml)和红霉素(5μg/ml)的敏感性。保存3个菌株:

             SJ3558(SpcS,ErmS,KanS,Amy+)

             SJ3559(SpcS,ErmS,KanS,Amy+)

             SJ3560(SpcS,ErmS,KanS,Amy+)

    这3个菌株是四环素敏感型的,表明其缺乏pBC16,而pBC16存在于接合供体菌株中。例20

    构建用于接合转移例18的转座子输送载体的供体菌株

    将质粒pSJ3524和pSJ3526转化到用于接合的枯草芽胞杆菌供体菌株的感受态细胞(dal,px0503(ermR),pBC16(tetR)),在30℃下铺板于含有红霉素(5μg/ml)、四环素(5μg/ml)、壮观霉素(60μg/ml)和D-丙氨酸(100μg/ml)的LBPSG上,保存含有每种质粒的1个菌株:含有pSJ3524的SJ3547和含有pSJ3526的SJ3548。例21

    将例18的转座子输送载体再次导入例19的无标记菌株,并分离其中发生了转座作用的菌株

    通过上述接合作用将质粒pSJ3524从SJ3547中转移到在例19中构建的无标记的amyL表达菌株SJ3559中。保存1个四环素敏感型反式接合体SJ3592。在30℃下于含有壮观霉素(60μg/ml)的TY中将该菌株摇动培养过夜,用新的含有壮观霉素(60μg/ml)的TY培养液将其稀释100倍,并在30℃下摇动培养3小时。然后用新的含有壮观霉素(60μg/ml)的TY培养基将其稀释50倍,并在50℃下摇动培养3小时,随后在50℃下铺板于含有壮观霉素(60μg/ml)的LBPSG上。通过复制铺板发现,几乎所有得到的菌落均为红霉素敏感型。保存其中的4个,为SJ3626-SJ3629。

    在1个类似实验中,通过接合作用将pSJ3524从SJ3547中转移到SJ3560中,保存2个四环素敏感型反式接合体SJ3593和SJ3594。在30℃下将所述菌株置于含有壮观霉素(60μg/ml)的TY中摇动培养过夜。用新的含有壮观霉素(60μg/ml)的TY培养液将其稀释100倍,在50℃下摇动培养6小时,并在50℃下铺板于含有壮观霉素(60μg/ml)的LBPSG上。通过复制铺板从SJ3593(作为SJ3599保存)中发现1个壮观霉素抗性和红霉素敏感型菌落,而在SJ3594(作为SJ3600和SJ3601保存)中发现2个此类菌落。例22

    解离酶介导的例21菌株的标记缺失

    将菌株SJ3626-SJ3629用作受体,通过接合作用从菌株SJ3309中接收解离酶表达质粒。在含有卡那霉素(10μg/ml)的LBPSG上选择反式接合体。将这些板上的菌落复制到卡那霉素(10μg/ml)和壮观霉素(60μg/ml)上,发现所有菌落均为壮观霉素敏感型。将源于各受体菌株的4个菌落通过在30℃下过夜的TY培养物进行3次连续转移,在30℃下铺板于LBPSG上,并复制铺板于含有红霉素的LBPSG上。在每种情况下均能得到敏感型菌落,然后检查其卡那霉素抗性。保存源于各受体菌株的1个红霉素、卡那霉素和壮观霉素敏感型分离体:SJ3634(源于SJ3626),SJ3635(源于SJ3627),SJ3636(源于SJ3628),和SJ3637(源于SJ3629)。

    将来自1和2转座轮的菌株接种到BPX摇瓶中,在37℃下摇动培养6天。用购自Kabi Pharmacia的Phadebas Amylase Test测定其α-淀粉酶活性。下面给出其结果,采用相对任意单位:

                                             单位/ml

    枯草芽胞杆菌DN1885宿主菌株                 0.4

          (3个重复)                            0.26

                                               0.25

    SJ3549(1.转座,SpcR)                      2.45

          (2个重复)                            2.42

    SJ3559(1.转座,SpcS)                      2.4

          (3个重复)                            2.16

    SJ3626)                              3.28

    sJ3627)(2.转座,                     3.6

    SJ3628)SpcR)                        3.25

    SJ3629)                              3.14

    SJ3634)                              3.21

    sJ3635)(2.转座,                     3.3

    SJ3636)Spcs)                        3.38

    SJ3637)                              3.1

    很显然,从1.转座菌株中得到了一定的α-淀粉酶产量,其含量未受随后的由解离酶介导的壮观霉素抗性基因缺失的影响,在2.转座菌株中的含量被提高,而且当发生由解离酶介导的壮观霉素抗性基因缺失时,仍能保持这一较高含量。

    在一个类似实验中,将菌株SJ3599-3601用作受体,通过接合作用从菌株SJ3309中接收解离酶表达质粒。在含有卡那霉素(10μg/ml)的LBPSG上选择反式接合体。将来自这些板的菌落复制到卡那霉素(10μg/ml)、壮观霉素(60μg/ml)和四环素(5μg/ml)。从每种受体菌株中均可分离到卡那霉素抗性但为壮观霉素和四环素敏感型的菌落。

    然后通过在30℃下在液体TY培养基(无抗生素)中进行连续转移,可以将赋予卡那霉素和红霉素抗性的解离酶表达质粒从所述细胞中清除,通过复制铺板于含有红霉素(5μg/ml)的板上分离无质粒细胞。保存1个从SJ3600的卡那霉素抗性反式接合体中分离的这样的红霉素敏感型菌株SJ3640。例23

    将例18的转座子输送载体导入例13的无标记菌株,并分离发生了转座作用的菌株

    在该实施例和以下实施例中将在前面的实施例中开发出的工具组合用于形成枯草芽胞杆菌菌株,该菌株无抗生素抗性标记,在其基因组上含有2个拷贝的Savinase基因和1个拷贝的地衣型芽胞杆菌淀粉酶基因。

    将各自含有2个拷贝的Savinase基因的菌株SJ3565和SJ3566用作与菌株SJ3547接合的受体。在含有壮观霉素(60μg/ml)和红霉素(5μg/ml)的LBPSG上选择反式接合体。均为淀粉酶阳性和蛋白酶阳性。约半数为四环素敏感型,表明其缺乏pBC16。保存2个源于各受体菌株的四环素敏感型菌落:源于SJ3565的SJ3595和SJ3596,和源于SJ3566的SJ3597和SJ3598。

    在30℃下将所述菌株置于含有壮观霉素(60μg/ml)的TY中摇动培养过夜,用新的含有壮观霉素(60μg/ml)的TY培养液将其稀释100倍,在50℃下摇动培养6小时,并在50℃下铺板于含有壮观霉素(60μg/ml)的LBPSG上。然后将这些板复制到含有壮观霉素(60μg/ml)或红霉素(5μg/ml)的板上。由SJ3598不能得到红霉素敏感型菌落,而来自其他3个菌株的约90%的菌落为壮观霉素抗性,红霉素敏感型。保存来自各菌株的1个这样的菌落:SJ3602(源于SJ3595),SJ3603(源于SJ3596),和SJ3604(源于SJ3597)。例24

    解离酶介导的例23菌株的标记缺失

    通过上述接合作用,将解离酶表达质粒从菌株SJ3309转移到菌株SJ3602-SJ3604的每一菌株中。在30℃下,在含有卡那霉素(10μg/ml)的LBPSG板上选择反式接合体,并复制铺板于含有卡那霉素(10μg/ml),壮观霉素(60μg/ml)或四环素(5μg/ml)的板上。由各受体菌株得到壮观霉素和四环素敏感型菌落。

    然后,通过在30℃下在液体TY培养基(无抗生素)中进行几次连续转移,可以将赋予卡那霉素和红霉素抗性的解离酶表达质粒从所述细胞中清除,并通过复制铺板于含有红霉素(5μg/ml)的板上分离无质粒细胞。保存自菌株SJ3602-SJ3604中每一种的卡那霉素抗性反式接合体中分离的1个这样的红霉素敏感型菌株:SJ3641(源于SJ3602),SJ3642(源于SJ3603)和SJ3643(源于SJ3604)。例25

    含有转座酶基因以及其侧翼为res序列的标记基因的转座子供体质粒的构建和应用

    该实施例的目的是制备并应用一种转座子供体质粒,其中,转座酶和标记一起位于res序列之间。然后将该质粒用于分离发生了转座作用而供体质粒又丢失了的菌株。该转座片段能够进行进一步的转座,可以通过较高的抗生素抗性对其进行选择。当得到想要的菌株之后,可按照上述实施例的方法用解离酶将抗性基因和转座酶缺失。

    先前构建的res-标记-res框(例16和例17)含有1个单一Mlul位点转座酶可插入其中。

    (1)由pHV1248 PCR扩增转座酶,采用引物

                  BamHI MluI<-pHV1248 125-142->

    Tnasel:5′-TGACGGATCCACGCGTGGCGCACTCCCGTTCTGG-3′

    和

                  BamHI MluI<-pHV1248 1550-1531->

    Tnase2:5′-GTACGGATCCACGCGTAAAGGCACCTTTGGTCACGG-3′

    对该PCR片段进行凝胶纯化,用BamHI消化,并克隆用BamHI消化的pUC19上,对某些克隆进行DNA测序,并将一个正确克隆用于进一步操作。

    (2)通过将上述来自(1)的MluI片段克隆到pSJ3444上构建1个具有转座酶的壮观霉素抗性框。

    (3)分两步构建具有转座酶的卡那霉素抗性框:i)将来自pSJ3586的HindIII片断克隆到pUC19上。 ii)将(1)的MluI片段克隆到i)上。

    然后可以将所述HindIII片段克隆到pSJ3476或pSJ3282上。所得到的质粒将具有两个转座酶基因,具有反平行方向的上述基因的克隆可用作转座子输送载体,可将诸如地衣型芽胞杆菌淀粉酶或Savinase基因插入其中。

    仅有1个转座酶基因的载体质粒的制备如下:

    (4)pSJ3475的NheI-XbaI片段含有该质粒的大肠杆菌载体的部分,而转座酶已缺失,然后将该质粒用作克隆含有上述res-标记-转座酶-res片段的HindIII片段的载体。

    (5)用pUC18的ScaI-HindIII片段取代pSJ3282的ScaI-Hind III片段(由此使整个转座子部分缺失)。然后将该新质粒用于按上述方法克隆Hind III片段。

                                     序列表(1)一般资料:

    (i)申请人:

        (A)名称:Novo Nordisk A/S

        (B)街道:Novo Allc

        (C)市:DK-2880 Bagsvaerd

        (E)国家:丹麦

        (F)邮编(ZIP):DK-2880

        (G)电活:+45 44 44 88 88

        (H)传真:+45 44 49 32 56

        (I)电传:37304

    (ii)发明名称:标题

    (iii)序列数:36

    (iv)计算机可读形式:

        (A)媒体类型:软盘

        (B)计算机:IBM PC兼容

        (C)操作系统:PC-DOC/MS-DOs

        (D)软件:PatentIn Release#1.0,Version#1.30(EPO)(2)序列1资料:

    (i)序列特征:

        (A)长度:10216bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“pMOL553”

        (xi)序列描述:序列1TTCTCATGTT  TGACAGCTTA  TCATCGACTG  CACGGTGCAC  CAATGCTTCT  GGCGTCAGGC     60AGCCATCGGA  AGCTGTGGTA  TGGCTGTGCA  GGTCGTAAAT  CACTGCATAA  TTCGTGTCGC     120TCAAGGCGCA  CTCCCGTTCT  GGATAATGTT  TTTTGCGCCG  ACATCATAAC  GGTTCTGGCA     180AATATTCTGA  AATGAGCTGT  TGACAATTAA  TCATCGGCTC  GTATAATGTG  TGGAATTGTG     240AGCGGATAAC  AATTTCACAC  AGGAAACAGG  ATCAAATGGT  TTCGAATTCA  TTAAAGAGGA     300GAAATTAACT  ATGTGCGAAC  TCGATATTTT  ACACGACTCT  CTTTACCAAT  TCTGCCCCGA     360ATTACACTTA  AAACGACTCA  ACAGCTTAAC  6TTGGCTTGC  CACGCATTAC  TTGACTGTAA     420AACTCTCACT  CTTACCGAAC  TTGGCCGTAA  CCTGCCAACC  AAAGCGAGAA  CAAAACATAA     480CATCAAACGA  ATCGACCGAT  TGTTAGGTAA  TCGTCACCTC  CACAAAGAGC  GACTCGCTGT    540ATACCGTTGG  CATGCTAGCT  TTATCTGTTC  GCGCAATACG  ATGCCCATTG  TACTTGTTGA    600CTGGTCTGAT  ATTCGTGAGC  AAAAACGACT  TATGGTATTG  CGAGCTTCAG  TCGCACTACA    660CGGTCGTTCT  GTTACTCTTT  ATGAGAAAGC  GTTCCCGCTT  TCAGAGCAAT  GTTCAAAGAA    720AGCTCATGAC  CAATTTCTAG  CCGACCTTGC  GAGCATTCTA  CCGAGTAACA  CCACACCGCT    780CATTGTCAGT  GATGCTGGCT  TTAAAGTGCC  ATGGTATAAA  TCCGTTGAGA  AGCTGGGTTG    840GTACTGGTTA  AGTCGAGTAA  GAGGAAAAGT  ACAATATGCA  GACCTAGGAG  CGGAAAACTG    900GAAACCTATC  AGCAACTTAC  ATGATATGTC  ATCTAGTCAC  TCAAAGACTT  TAGGCTATAA    960GAGGCTGACT  AAAAGCAATC  CAATCTCATG  CCAAATTCTA  TTGTATAAAT  CTCGCTCTAA    1020AGGCCGAAAA  AATCAGCGCT  CGACACGGAC  TCATTGTCAC  CACCCGTCAC  CTAAAATCTA    1080CTCAGGGTCG  GCAAAGGAGC  CATGGTTCTA  GCAACTAACT  TACCTGTTGA  AATTCGAACA    1140CCCAAACAAC  TTGTTAATAT  CTATTCGAAG  CGAATGCAGA  TTGAAGAAAC  CTTCCGAGAC    1200TTGAAAAGTC  CTGCCTACGG  ACTAGGCCTA  CGCCATAGCC  GAACGAGCAG  CTCAGAGCGT    1260TTTGATATCA  TGCTGCTAAT  CGCCCTGATG  CTTCAACTAA  CATGTTGGCT  TGCGGGCGTT    1320CATGCTCAGA  AACAAGGTTG  GGACAAGCAC  TTCCAGGCTA  ACACAGTCAG  AAATCGAAAC    1380GTACTCTCAA  CAGTTCGCTT  AGGCATGGAA  GTTTTGCGGC  ATTCTGGCTA  CACAATAACA    1440AGGGAAGACT  TACTCGTGGC  TGCAACCCTA  CTAGCTCAAA  ATTTATTCAC  ACATGGTTAC    1500GCTTTGGGGA  AATTATGAGG  GGATCTTCGA  CCGTGACCAA  AGGTGCCTTT  TATCATCACT    1560TTAAAAATAA  AAAACAATTA  CTCAGTGCCT  GTTATAAGCA  GCAATTAATT  ATGATTGATG    1620CCTACATCAC  AACAAAAACT  GATTTAACAA  ATGGTTGGTC  TGCCTTAGAA  AGTATATTTG    1680AACATTATCT  TGATTATATT  ATTGATAATA  ATAAAAACCT  TATCCCTATC  CAAGAAGTGA    1740TGCCTATCAT  TGGTTGGAAT  GAACTTGAAA  AAATTAGCCT  TGAATACATT  ACTGGTAAGG    1800TAAACGCCAT  TGTCAGCAAA  TTGATCCAAG  AGAACCAACT  TAAAGCTTTC  CTGACGGAAT    1860GTTAATTCTC  GTTGACCCTG  AGCACTGATG  AATCCCCTAA  TGATTTTGGT  AAAAATCATT    1920AAGTTAAGGT  GGATACACAT  CTTGTCATAT  GATCCCGGAT  CTGGGCAATA  GTTACCCTTA    1980TTATCAAGAT  AAGAAAGAAA  AGGATTTTTC  GCTACGCTCA  AATCCTTTAA  AAAAACACAA    2040AAGACCACAT  TTTTTAATGT  GGTCTTTATT  CTTCAACTAA  AGCACCCATT  AGTTCAACAA    2100ACGAAAATTG  GATCCAAGGG  GTGATCGGTC  GGCGGAAATG  AAGGCCTGCG  GCGAGTGCGG    2160GCCTTCTGTT  TTGAGGATTA  TAATCAGAGT  ATATTGAAAG  TTTCGCGATC  TTTTCGTATA    2220ATTGTTTTAG  GCATAGTGCA  ATCGATTGTT  TGAGAAAAGA  AGAAGACCAT  AAAAATACCT    2280TGTCTGTCAT  CAGACAGGGT  ATTTTTTATG  CTGTCCAGAC  TGTCCGCTGT  GTAAAAATAA    2340GGAATAAAGG  GGGGTTGTTA  TTATTTTACT  GATATGTAAA  ATATAATTTG  TATAAGAAAA    2400TGAGAGGGAG  AGGAAACATG  ATTCAAAAAC  GAAAGCGGAC  AGTTTCGTTC  AGACTTGTGC    2460TTATGTGCAC  GCTGTTATTT  GTCAGTTTGC  CGATTACAAA  AACATCAGCC  GTAAATGGCA    2520CGCTGATGCA  GTATTTTGAA  TGGTATACGC  CGAACGACGG  CCAGCATTGG  AAACGATTGC    2580AGAATGATGC  GGAACATTTA  TCGGATTAAC  TTAACGTTAA  TATTTGTTTC  CCAATAGGCA    2640AATCTTTCTA  ACTTTGATAC  GTTTAAACTA  CCAGCTTGGA  CAAGTTGGTA  TAAAAATGAG    2700GAGGGAAACC  GAATGAAGAA  ACCGTTGGGG  AAAATTGTCG  CAAGCACCGC  ACTACTCATT    2760TCTGTTGCTT  TTAGTTCATC  GATCGCATCG  GCTGCTGAAG  AAGCAAAAGA  AAAATATTTA    2820ATTGGCTTTA  ATGAGCAGGA  AGCTGTCAGT  GAGTTTGTAG  AACAAGTAGA  GGCAAATGAC    2880GAGGTCGCCA  TTCTCTCTGA  GGAAGAGGAA  GTCGAAATTG  AATTGCTTCA  TGAATTTGAA    2940ACGATTCCTG  TTTTATCCGT  TGAGTTAAGC  CCAGAAGATG  TGGACGCGCT  TGAACTCGAT    3000CCAGCGATTT  CTTATATTGA  AGAGGATGCA  GAAGTAACGA  CAATGGCGCA  ATCGGTACCA    3060TGGGGAATTA  GCCGTGTGCA  AGCCCCAGCT  GCCCATAACC  GTGGATTGAC  AGGTTCTGGT    3120GTAAAAGTTG  CTGTCCTCGA  TACAGGGATA  TCCACTCATC  CAGATCTAAA  TATTCGTGGT    3180GGCGCAAGCT  TTGTACCAGG  GGAACCGTCG  ACTCAAGATG  GGAATGGGCA  TGGCACGCAT    3240GTGGCCGGGA  CGATCGCTGC  TTTAAACAAT  TCGATTGGCG  TTCTTGGCGT  AGCGCCGAGC    3300GCTGAGCTAT  ACGCTGTTAA  AGTCCTAGGG  GCGAGCGGTT  CAGGTTCGGT  CAGCTCGATT    3360GCCCAAGGAT  TGGAATGGGC  AGGGAACAAT  GGCATGCACG  TTGCTAATTT  GAGTTTAGGA    3420AGCCCTTCGC  CAAGTGCCAC  ACTCGAGCAA  GCTGTTAATA  GCGCGACTTC  TAGAGGCGTT    3480CTTGTTGTAG  CGGCATCTGG  GAATTCAGGT  GCAGGCTCAA  TCAGCTATCC  GGCGCGCTAT    3540GCGAACGCAA  TGGCAGTCGG  AGCTACTGAT  CAAAACAACA  ACCGCGCTAG  CTTTTCACAG    3600TATGGCGCAG  GCCTTGACAT  TGTCGCACCC  GGGGTAAACG  TGCAGAGCAC  ATACCCAGGT    3660TCAACATATG  CCAGCTTAAA  CGGTACATCG  ATGGCTACTC  CTCATGTTGC  AGGTGCGGCC    3720GCCCTTGTTA  AACAAAAGAA  CCCATCTTGG  TCTAATGTAC  AAATTCGAAA  TCATCTAAAG    3780AATACGGCAA  CTAGTTTAGG  AAGCACGAAC  TTGTATGGAA  GCGGACTTGT  TAACGCAGAA    3840GCGGCAACGC  GTTAATCAAT  AAAAAAACGC  TGTGCGGTTA  AAGGGCACAG  CGTTTTTTTG    3900TGTATGGATC  CAGTGGGATA  TTTTTAAAAT  ATATATTTAT  GTTACAGTAA  TATTGACTTT    3960TAAAAAAGGA  TTGATTCTAA  TGAAGAAAGC  AGACAAGTAA  GCCTCCTAAA  TTCACTTTAG    4020ATAAAAATTT  AGGAGGCATA  TCAAATGAAC  TTTAATAAAA  TTGATTTAGA  CAATTGGAAG    4080AGAAAAGAGA  TATTTAATCA  TTATTTGAAC  CAACAAACGA  CTTTTAGTAT  AACCACAGAA    4140ATTGATATTA  GTGTTTTATA  CCGAAACATA  AAACAAGAAG  GATATAAATT  TTACCCTGCA    4200TTTATTTTCT  TAGTGACAAG  GGTGATAAAC  TCAAATACAG  CTTTTAGAAC  TGGTTACAAT    4260AGCGACGGAG  AGTTAGGTTA  TTGGGATAAG  TTAGAGCCAC  TTTATACAAT  TTTTGATGGT    4320GTATCTAAAA  CATTCTCTGG  TATTTGGACT  CCTGTAAAGA  ATGACTTCAA  AGAGTTTTAT    4380GATTTATACC  TTTCTGATGT  AGAGAAATAT  AATGGTTCGG  GGAAATTGTT  TCCCAAAACA    4440CCTATACCTG  AAAATGCTTT  TTCTCTTTCT  ATTATTCCAT  GGACTTCATT  TACTGGGTTT    4500AACTTAAATA  TCAATAATAA  TAGTAATTAC  CTTCTACCCA  TTATTACAGC  AGGAAAATTC    4560ATTAATAAAG  GTAATTCAAT  ATATTTACCG  CTATCTTTAC  AGGTACATCA  TTCTGTTTGT    4620GATGGTTATC  ATGCAGGATT  GTTTATGAAC  TCTATTCAGG  AATTGTCAGA  TAGGCCTAAT    4680GACTGGCTTT  TATAATATGA  GATAATGCCG  ACTGTACTTT  TTACAGTCGG  TTTTCTAATG    4740TCACTAACCT  GCCCCGTTAG  TTGAAGAAGG  TTTTTATATT  ACAGCTCCAG  ATCCGGGATC    4800ATATGACAAG  ATGTGTATCC  ACCTTAACTT  AATGATTTTT  ACCAAAATCA  TTAGGGGATT    4860CATCAGTGCT  CAGGGTCAAC  GAGAATTAAC  ATTCCGTCAG  GAAAGCTTAG  CTTATGATGA    4920TGATGTGCTT  AAAAACTTAC  TCAATGGCTG  GTTTATGCAT  ATCGCAATAC  ATGCGAAAAA    4980CCTAAAAGAG  CTTGCCGATA  AAAAAGGCCA  ATTTATTGCT  ATTTACCGCG  GCTTTTTATT    5040GAGCTTGAAA  GATAAATAAA  ATAGATAGGT  TTTATTTGAA  GCTAAATCTT  CTTTATCGTA    5100AAAAATGCCC  TCTTGGGTTA  TCAAGAGGGT  CATTATATTT  CGCGGAATAA  CATCATTTGG    5160TGACGAAATA  ACTAAGCACT  TGTCTCCTGT  TTACTCCCCT  GAGCTTGAGG  GGTTAACATG    5220AAGGTCATCG  ATAGAAAGCG  TGAGAAACAG  CGTACAGACG  ATTTAGAGAT  GTAGAGGTAC    5280TTTTATGCCG  AGAAAACTTT  TTGCGTGTGA  CAGTCCTTAA  AATATACTTA  GAGCGTAAGC    5340GAAAGTAGTA  GCGACAGCTA  TTAACTTTCG  GTTGCAAAGC  TCTAGGATTT  TTAATGGACG    5400CAGCGCATCA  CACGCAAAAA  GGAAATTGGA  ATAAATGCGA  AATTTGAGAT  GTTAATTAAA    5460GACCTTTTTG  AGGTCTTTTT  TTCTTAGATT  TTTGGGGTTA  TTTAGGGGAG  AAAACATAGG    5520GGGGTACTAC  GACCTCCCCC  CTAGGTGTCC  ATTGTCCATT  GTCCAAACAA  ATAAATAAAT    5580ATTGGGTTTT  TAATGTTAAA  AGGTTGTTTT  TTATGTTAAA  GTGAAAAAAA  CAGATGTTGG    5640GAGGTACAGT  GATAGTTGTA  GATAGAAAAG  AAGAGAAAAA  AGTTGCTGTT  ACTTTAAGAC    5700TTACAACAGA  AGAAAATGAG  ATATTAAATA  GAATCAAAGA  AAAATATAAT  ATTAGCAAAT    5760CAGATGCAAC  CGGTATTCTA  ATAAAAAAAT  ATGCAAAGGA  GGAATACGGT  GCATTTTAAA    5820CAAAAAAAGA  TAGACAGCAC  TGGCATGCTG  CCTATCTATG  ACTAAATTTT  GTTAAGTGTA    5880TTAGCACCGT  TATTATATCA  TGAGCGAAAA  TGTAATAAAA  GAAACTGAAA  ACAAGAAAAA    5940TTCAAGAGGA  CGTAATTGGA  CATTTGTTTT  ATATCCAGAA  TCAGCAAAAG  CCGAGTGGTT    6000AGAGTATTTA  AAAGAGTTAC  ACATTCAATT  TGTAGTGTCT  CCATTACATG  ATAGGGATAC    6060TGATACAGAA  GGTAGGATGA  AAAAAGAGCA  TTATCATATT  CTAGTGATGT  ATGAGGGTAA    6120TAAATCTTAT  GAACAGATAA  AAATAATTAA  CAGAAGAATT  GAATGCGACT  ATTCCGCAGA    6180TTGCAGGAAG  TGTGAAAGGT  CTTGTGAGAT  ATATGCTTCA  CATGGACGAT  CCTAATAAAT    6240TTAAATATCA  AAAAGAAGAT  ATGATAGTTT  ATGGCGGTGT  AGATGTTGAT  GAATTATTAA    6300AGAAAACAAC  AACAGATAGA  TATAAATTAA  TTAAAGAAAT  GATTGAGTTT  ATTGATGAAC    6360AAGGAATCGT  AGAATTTAAG  AGTTTAATGG  ATTATGCAAT  GAAGTTTAAA  TTTGATGATT    6420GGTTCCCGCT  TTTATGTGAT  AACTCGGCGT  ATGTTATTCA  AGAATATATA  AAATCAAATC    6480GGTATAAATC  TGACCGATAG  ATTTTGAATT  TAGGTGTCAC  AAGACACTCT  TTTTTCGCAC    6540CAGCGAAAAC  TGGTTTAAGC  CGACTGCGCA  AAAGACATAA  TCGGGAATTC  CCGATTCACA    6600AAAAATAGGC  ACACGAAAAA  CAAGTTAAGG  GATGCAGTTT  ATGCATCCCT  TAACTTACTT    6660ATTAAATAAT  TTATAGCTAT  TGAAAAGAGA  TAAGAATTGT  TCAAAGCTAA  TATTGTTTAA    6720ATCGTCAATT  CCTGCATGTT  TTAAGGAATT  GTTAAATTGA  TTTTTTGTAA  ATATTTTCTT    6780GTATTCTTTG  TTAACCCATT  TCATAACGAA  ATAATTATAC  TTTTGTTTAT  CTTTGTGTGA    6840TATTCTTGAT  TTTTTTCTAC  TTAATCTGAT  AAGTGAGCTA  TTCACTTTAG  GTTTAGGATG    6900AAAATATTCT  CTTGGAACCA  TACTTAATAT  AGAAATATCA  ACTTCTGCCA  TTAAAAGTAA    6960TGCCAATGAG  CGTTTTGTAT  TTAATAATCT  TTTAGCAAAC  CCGTATTCCA  CGATTAAATA    7020AATCTCATTA  GCTATACTAT  CAAAAACAAT  TTTGCGTATT  ATATCCGTAC  TTATGTTATA    7080AGGTATATTA  CCATATATTT  TATAGGATTG  GTTTTTAGGA  AATTTAAACT  GCAATATATC    7140CTTGTTTAAA  ACTTGGAAAT  TATCGTGATC  AACAAGTTTA  TTTTCTGTAG  TTTTGCATAA    7200TTTATGGTCT  ATTTCAATGG  CAGTTACGAA  ATTACACCTC  TTTACTAATT  CAAGGGTAAA    7260ATGGCCTTTT  CCTGAGCCGA  TTTCAAAGAT  ATTATCATGT  TCATTTAATC  TTATATTTGT    7320CATTATTTTA  TCTATATTAT  GTTTTGAAGT  AATAAAGTTT  TGACTGTGTT  TTATATTTTT    7380CTCGTTCATT  ATAACCCTCT  TTAATTTGGT  TATATGAATT  TTGCTTATTA  ACGATTCATT    7440ATAACCACTT  ATTTTTTGTT  TGGTTGATAA  TGAACTGTGC  TGATTACAAA  AATACTAAAA    7500ATGCCCATAT  TTTTTCCTCC  TTATAAAATT  AGTATAATTA  TAGCACGAGC  TCTGATAAAT    7560ATGAACATGA  TGAGTGATCG  TTAAATTTAT  ACTGCAATCG  GATGCGATTA  TTGAATAAAA    7620GATATGAGAG  ATTTATCTAA  TTTCTTTTTT  CTTGTAAAAA  AAGAAAGTTC  TTAAAGGTTT    7680TATAGTTTTG  GTCGTAGAGC  ACACGGTTTA  ACGACTTAAT  TACGAAGTAA  ATAAGTCTAG    7740TGTGTTAGAC  TTTATGAAAT  CTATATACGT  TTATATATAT  TTATTATCCG  GAGGTGTAGC    7800ATGTCTCATT  CAATTTTGAG  GGTTGCCAGA  GTTAAAGGAT  CAAGTAATAC  AAACGGGATA    7860CAAAGACATA  ATCAAAGAGA  GAATAAAAAC  TATAATAATA  AAGACATAAA  TCATGAGGAA    7920ACATATAAAA  ATTATGATTT  GATTAACGCA  CAAAATATAA  AGTATAAAGA  TAAAATTGAT    7980GAAACGATTG  ATGAGAATTA  TTCAGGGAAA  CGTAAAATTC  GGTCAGATGC  AATTCGACGA    8040TAAGCTAGCT  TTAATGCGGT  AGTTTATCAC  AGTTAAATTG  CTAACGCAGT  CAGGCACCGT    8100GTATGAAATC  TAACAATGCG  CTCATCGTCA  TCCTCGGCAC  CGTCACCCTG  GATGCTGTAG    8160GCATAGGCTT  GGTTATGCCG  GTACTGCCGG  GCCTCTTGCG  GGATGCTCTT  CCGCTTCCTC    8220GCTCACTGAC  TCGCTGCGCT  CGGTCGTTCG  GCTGCGGCGA  GCGGTATCAG  CTCACTCAAA    8280GGCGGTAATA  CGGTTATCCA  CAGAATCAGG  GGATAACGCA  GGAAAGAACA  TGTGAGCAAA    8340AGGCCAGCAA  AAGGCCAGGA  ACCGTAAAAA  GGCCGCGTTG  CTGGCGTTTT  TCCATAGGCT    8400CCGCCCCCCT  GACGAGCATC  ACAAAAATCG  ACGCTCAAGT  CAGAGGTGGC  GAAACCCGAC    8460AGGACTATAA  AGATACCAGG  CGTTTCCCCC  TGGAAGCTCC  CTCGTGCGCT  CTCCTGTTCC    8520GACCCTGCCG  CTTACCGGAT  ACCTGTCCGC  CTTTCTCCCT  TCGGGAAGCG  TGGCGCTTTC    8580TCAATGCTCA  CGCTGTAGGT  ATCTCAGTTC  GGTGTAGGTC  GTTCGCTCCA  AGCTGGGCTG    8640TGTGCACGAA  CCCCCCGTTC  AGCCCGACCG  CTGCGCCTTA  TCCGGTAACT  ATCGTCTTGA    8700GTCCAACCCG  GTAAGACACG  ACTTATCGCC  ACTGGCAGCA  GCCACTGGTA  ACAGGATTAG    8760CAGAGCGAGG  TATGTAGGCG  GTGCTACAGA  GTTCTTGAAG  TGGTGGCCTA  ACTACGGCTA    8820CACTAGAAGG  ACAGTATTTG  GTATCTGCGC  TCTGCTGAAG  CCAGTTACCT  TCGGAAAAAG    8880AGTTGGTAGC  TCTTGATCCG  GCAAACAAAC  CACCGCTGGT  AGCGGTGGTT TTTTTGTTTG     8940CAAGCAGCAG  ATTACGCGCA  GAAAAAAAGG  ATCTCAAGAA  GATCCTTTGA  TCTTTTCTAC    9000GGGGTCTGAC  GCTCAGTGGA  ACGAAAACTC  ACGTTAAGGG  ATTTTGGTCA  TGAGATTATC    9060AAAAAGGATC  TTCACCTAGA  TCCTTTTAAA  TTAAAAATGA  AGTTTTAAAT  CAATCTAAAG    9120TATATATGAG  TAAACTTGGT  CTGACAGTTA  CCAATGCTTA  ATCAGTGAGG  CACCTATCTC    9180AGCGATCTGT  CTATTTCGTT  CATCCATAGT  TGCCTGACTC  CCCGTCGTGT  AGATAACTAC    9240GATACGGGAG  GGCTTACCAT  CTGGCCCCAG  TGCTGCAATG  ATACCGCGAG  ACCCACGCTC    9300ACCGGCTCCA  GATTTATCAG  CAATAAACCA  GCCAGCCGGA  AGGGCCGAGC  GCAGAAGTGG    9360TCCTGCAACT  TTATCCGCCT  CCATCCAGTC  TATTAATTGT  TGCCGGGAAG  CTAGAGTAAG    9420TAGTTCGCCA  GTTAATAGTT  TGCGCAACGT  TGTTGCCATT  GCTGCAGGCA  TCGTGGTGTC    9480ACGCTCGTCG  TTTGGTATGG  CTTCATTCAG  CTCCGGTTCC  CAACGATCAA  GGCGAGTTAC    9540ATGATCCCCC  ATGTTGTGCA  AAAAAGCGGT  TAGCTCCTTC  GGTCCTCCGA  TCGTTGTCAG    9600AAGTAAGTTG  GCCGCAGTGT  TATCACTCAT  GGTTATGGCA  GCACTGCATA  ATTCTCTTAC    9660TGTCATGCCA  TCCGTAAGAT  GCTTTTCTGT  GACTGGTGAG  TACTCAACCA  AGTCATTCTG    9720AGAATAGTGT  ATGCGGCGAC  CGAGTTGCTC  TTGCCCGGCG  TCAACACGGG  ATAATACCGC    9780GCCACATAGC  AGAACTTTAA  AAGTGCTCAT  CATTGGAAAA  CGTTCTTCGG  GGCGAAAACT    9840CTCAAGGATC  TTACCGCTGT  TGAGATCCAG  TTCGATGTAA  CCCACTCGTG  CACCCAACTG    9900ATCTTCAGCA  TCTTTTACTT  TCACCAGCGT  TTCTGGGTGA  GCAAAAACAG  GAAGGCAAAA    9960TGCCGCAAAA  AAGGGAATAA  GGGCGACACG  GAAATGTTGA  ATACTCATAC  TCTTCCTTTT    10020TCAATATTAT  TGAAGCATTT  ATCAGGGTTA  TTGTCTCATG  AGCGGATACA  TATTTGAATG    10080TATTTAGAAA  AATAAACAAA  TAGGGGTTCC  GCGCACATTT  CCCCGAAAAG  TGCCACCTGA    10140CGTCTAAGAA  ACCATTATTA  TCATGACATT  AACCTATAAA  AATAGGCGTA  TCACGAGGCC    10200CTTTCGTCTT  CAAGAA                                                        10216(2)序列2资料:

    (i)序列特征:

         (A)长度:6169bp

         (B)类型:核酸

         (C)链型:单链

         (D)拓朴结构:线性(ii)分子类型:其它核酸

    (A)说明:/dcsc=“pSJ2739”(vi)原始来源:

    (A)生物:pSJ2739

      (xi)序列描述:序列2:TCTGGACTGT  CCAAACATGG  TTTAAGCCGC  TTGCTTACGC  TTTTATTCTC  ACAAGGGAAT              60CTGGATACCC  TCAGGTTTTC  TACGGGGATA  TGTACGGGAC  GAAAGGAGAC  TCCCAGCGCG            120AAATTCCTGC  CTTGAAACAC  AAAATTGAAC  CGATCTTAAA  AGCGAGAAAA  CAGTATGCGT     180ACGGAGCACA  GCATGATTAT  TTCGACCACC  ATGACATTGT  CGGCTGGACA  AGGGAAGGCG     240ACAGCTCGGT  TGCAAATTCA  GGTTTGGCGG  CATTAATAAC  AGACGGACCC  GGTGGGGCAA     300AGCGAATGTA  TGTCGGCCGG  CAAAACGCCG  GTGAGACATG  GCATGACATT  ACCGGAAACC     360GTTCGGAGCC  GGTTGTCATC  AATTCGGAAG  GCTGGGGAGA  GTTTCACGTA  AACGGCGGGT     420CGGTTTCAAT  TTATGTTCAA  AGATAGAAGA  GCAGAGAGGA  CGGATTTCCT  GAAGGAAATC     480CGTTTTTTTA  TTTTGCCCGT  CTTATAAATT  TCGTTGATTA  CATTTTATAA  TTAATTTTAA     540CAAAGTGTCA  TAAGCCCTCA  GGAATATTGC  TGACAGTTTA  GAATCCCTAG  GTAAGGCGGG     600GATGAAATGG  CAACGTTATC  TGATGTAGCA  AAGAAAGAAA  TGTGTCGAAA  ATGACGGTAT     660CGCGGGTGAT  CAATCATCCT  GAGACTGTGA  CGGATGAATT  GAAAAAGCTT  GCATGCCTGC     720AGGTCGATTC  ACAAAAAATA  GGCACACGAA  AAACAAGTTA  AGGGATGCAG  TTTATGCATC     780CCTTAACTTA  CTTATTAAAT  AATTTATAGC  TATTGAAAAG  AGATAAGAAT  TGTTCAAAGC     840TAATATTGTT  TAAATCGTCA  ATTCCTGCAT  GTTTTAAGGA  ATTGTTAAAT  TGATTTTTTG     900TAAATATTTT  CTTGTATTCT  TTGTTAACCC  ATTTCATAAC  GAAATAATTA  TACTTTTGTT     960TATCTTTGTG  TGATATTCTT  GATTTTTTTC  TACTTAATCT  GATAAGTGAG  CTATTCACTT     1020TAGGTTTAGG  ATGAAAATAT  TCTCTTGGAA  CCATACTTAA  TATAGAAATA  TCAACTTCTG     1080CCATTAAAAG  TAATGCCAAT  GAGCGTTTTG  TATTTAATAA  TCTTTTAGCA  AACCCGTATT     1140CCACGATTAA  ATAAATCTCA  TTAGCTATAC  TATCAAAAAC  AATTTTGCGT  ATTATATCCG     1200TACTTATGTT  ATAAGGTATA  TTACCATATA  TTTTATAGGA  TTGGTTTTTA  GGAAATTTAA     1260ACTGCAATAT  ATCCTTGTTT  AAAACTTGGA  AATTATCGTG  ATCAACAAGT  TTATTTTCTG     1320TAGTTTTGCA  TAATTTATGG  TCTATTTCAA  TGGCAGTTAC  GAAATTACAC  CTCTTTACTA     1380ATTCAAGGGT  AAAATGGCCT  TTTCCTGAGC  CGATTTCAAA  GATATTATCA  TGTTCATTTA    1440ATCTTATATT  TGTCATTATT  TTATCTATAT  TATGTTTTGA  AGTAATAAAG  TTTTGACTGT    1500GTTTTATATT  TTTCTCGTTC  ATTATAACCC  TCTTTAATTT  GGTTATATGA  ATTTTGCTTA    1560TTAACGATTC  ATTATAACCA  CTTATTTTTT  GTTTGGTTGA  TAATGAACTG  TGCTGATTAC    1620AAAAATACTA  AAAATGCCCA  TATTTTTTCC  TCCTTATAAA  ATTAGTATAA  TTATAGCACG    1680AGCTCTGATA  AATATGAACA  TGATGAGTGA  TCGTTAAATT  TATACTGCAA  TCGGATGCGA    1740TTATTGAATA  AAAGATATGA  GAGATTTATC  TAATTTCTTT  TTTCTTGTAA  AAAAAGAAAG    1800TTCTTAAAGG  TTTTATAGTT  TTGGTCGTAG  AGCACACGGT  TTAACGACTT  AATTACGAAG    1860TAAATAAGTC  TAGTGTGTTA  GACTTTATGA  AATCTATATA  CGTTTATATA  TATTTATTAT    1920CCGGAGGTGT  AGCATGTCTC  ATTCAATTTT  GAGGGTTGCC  AGAGTTAAAG  GATCAAGTAA    1980TACAAACGGG  ATACAAAGAC  ATAATCAAAG  AGAGAATAAA  AACTATAATA  ATAAAGACAT    2040AAATCATGAG  GAAACATATA  AAAATTATGA  TTTGATTAAC  GCACAAAATA  TAAAGTATAA    2100AGATAAAATT  GATGAAACGA  TTGATGAGAA  TTATTCAGGG  AAACGTAAAA  TTCGGTCAGA    2160TGCAATTCGA  CATGTGGACG  GACTGGTTAC  AAGTGATAAA  GATTTCTTTG  ATGATTTAAG    2220CGGAGAAGAA  ATAGAACGAT  TTTTTAAAGA  TAGCTTGGAG  TTTCTAGAAA  ATGAATACGG    2280TAAGGAAAAT  ATGCTGTATG  CGACTGTCCA  TCTGGATGAA  AGAGTCCCAC  ATATGCACTT    2340TGGTTTTGTC  CCTTTAACAG  AGGACGGGAG  ATTGTCTGCA  AAAGAACAGT  TAGGCAACAA    2400GAAAGACTTT  ACTCAATTAC  AAGATAGATT  TAATGAGTAT  GTGAATGAGA  AAGGTTATGA    2460ACTTGAAAGA  GGCACGTCCA  AAGAGGTTAC  AGAACGAGAA  CATAAAGCGA  TGGATCAGTA    2520CAAGAAAGAT  ACTGTATTTC  ATAAACAGGA  ACTGCAAGAA  GTTAAGGATG  AGTTACAGAA    2580GGCAAATAAG  CAGTTACAGA  GTGGAATAGA  GCATATGAGG  TCTACGAAAC  CCTTTGATTA    2640TGAAAATGAG  CGTACAGGTT  TGTTCTCTGG  ACGTGAAGAG  ACTGGTAGAA  AGATATTAAC    2700TGCTGATGAA  TTTGAACGCC  TGCAAGAAAC  AATCTCTTCT  GCAGAACGGA  TTGTTGATGA    2760TTACGAAAAT  ATTAAGAGCA  CAGACTATTA  CACAGAAAAT  CAAGAATTAA  AAAAACGTAG    2820AGAGAGTTTG  AAAGAAGTAG  TGAATACATG  GAAAGAGGGG  TATCACGAAA  AAAGTAAAGA    2880GGTTAATAAA  TTAAAGCGAG  AGAATGATAG  TTTGAATGAG  CAGTTGAATG  TATCAGAGAA    2940ATTTCAAGCT  AGTACAGTGA  CTTTATATCG  TGCTGCGAGG  GCGAATTTCC  CTGGGTTTGA    3000GAAAGGGTTT  AATAGGCTTA  AAGAGAAATT  CTTTAATGAT  TCCAAATTTG  AGCGTGTGGG    3060ACAGTTTATG  GATGTTGTAC  AGGATAATGT  CCAGAAGGTC  GATAGAAAGC  GTGAGAAACA    3120GCGTACAGAC  GATTTAGAGA  TGTAGAGGTA  CTTTTATGCC  GAGAAAACTT  TTTGCGTGTG    3180ACAGTCCTTA  AAATATACTT  AGAGCGTAAG  CGAAAGTAGT  AGCGACAGCT  ATTAACTTTC    3240GGTTTCAAAG  CTCTAGGATT  TTTAATGGAC  GCAGCGCATC  ACACGCAAAA  AGGAAATTGG    3300AATAAATGCG  AAATTTGAGA  TGTTAATTAA  AGACCTTTTT  GAGGTCTTTT  TTTCTTAGAT    3360TTTTGGGGTT  ATTTAGGGGA  GAAAACATAG  GGGGGTACTA  CGACCTCCCC  CCTAGGTGTC    3420CATTGTCCAT  TGTCCAAACA  AATAAATAAA  TATTGGGTTT  TTAATGTTAA  AAGGTTGTTT    3480TTTATGTTAA  AGTGAAAAAA  ACAGATGTTG  GGAGGTACAG  TGATGGTTGT  AGATAGAAAA    3540GAAGAGAAAA  AAGTTGCTGT  TACTTTAAGA  CTTACAACAG  AAGAAAATGA  GATATTAAAT    3600AGAATCAAAG  AAAAATATAA  TATTAGCAAA  TCAGATGCAA  CCGGTATTCT  AATAAAAAAA    3660TATGCAAAGG  AGGAATACGG  TGCATTTTAA  ACAAAAAAAG  ATAGACAGCA  CTGGCATGCT    3720GCCTATCTAT  GACTAAATTT  TGTTAAGTGT  ATTAGCACCG  TTATTATATC  ATGAGCGAAA    3780ATGTAATAAA  AGAAACTGAA  AACAAGAAAA  ATTCAAGAGG  ACGTAATTGG  ACATTTGTTT    3840TATATCCAGA  ATCAGCAAAA  GCCGAGTGGT  TAGAGTATTT  AAAAGAGTTA  CACATTCAAT    3900TTGTAGTGTC  TCCATTACAT  GATAGGGATA  CTGATACAGA  AGGTAGGATG  AAAAAAGAGC    3960ATTATCATAT  TCTAGTGATG  TATGAGGGTA  ATAAATCTTA  TGAACAGATA  AAAATAATTA    4020CAGAAGAATT  GAATGCGACT  ATTCCGCAGA  TTGCAGGAAG  TGTGAAAGGT  CTTGTGAGAT    4080ATATGCTTCA  CATGGACGAT  CCTAATAAAT  TTAAATATCA  AAAAGAAGAT  ATGATAGTTT    4140ATGGCGGTGT  AGATGTTGAT  GAATTATTAA  AGAAAACAAC  AACAGATAGA  TATAAATTAA    4200TTAAAGAAAT  GATTGAGTTT  ATTGATGAAC  AAGGAATCGT  AGAATTTAAG  AGTTTAATGG    4260ATTATGCAAT  GAAGTTTAAA  TTTGATGATT  GGTTCCCGCT  TTTATGTGAT  AACTCGGCGT    4320ATGTTATTCA  AGAATATATA  AAATCAAATC  GGTATAAATC  TGACCGATAG  ATTTTGAATT    4380TAGGTGTCAC  AAGACACTCT  TTTTTCGCAC  CAGCGAAAAC  TGGTTTAAGC  CGACTGCGCA    4440AAAGACATAA  TCGACTCTAG  AGGATCCCCG  GGTACCGAGC  TCTGCCTTTT  AGTCCAGCTG    4500ATTTCACTTT  TTGCATTCTA  CAAACTGCAT  AACTCATATG  TAAATCGCTC  CTTTTTAGGT    4560GGCACAAATG  TGAGGCATTT  TCGCTCTTTC  CGGCAACCAC  TTCCAAGTAA  AGTATAACAC    4620ACTATACTTT  ATATTCATAA  AGTGTGTGCT  CTGCGAGGCT  GTCGGCAGTG  CCGACCAAAA    4680CCATAAAACC  TTTAAGACCT  TTCTTTTTTT  TACGAGAAAA  AAGAAACAAA  AAAACCTGCC    4740CTCTGCCACC  TCAGCAAAGG  GGGGTTTTGC  TCTCGTGCTC  GTTTAAAAAT  CAGCAAGGGA    4800CAGGTAGTAT  TTTTTGAGAA  GATCACTCAA  AAAATCTCCA  CCTTTAAACC  CTTGCCAATT    4860TTTATTTTGT  CCGTTTTGTC  TAGCTTACCG  AAAGCCAGAC  TCAGCAAGAA  TAAAATTTTT    4920ATTGTCTTTC  GGTTTTCTAG  TGTAACGGAC  AAAACCACTC  AAAATAAAAA  AGATACAAGA    4980GAGGTCTCTC  GTATCTTTTA  TTCAGCAATC  GCGCCCGATT  GCTGAACAGA  TTAATAATGA    5040GCTCGAATTC  ATGAGATCCA  AATGTAAAAG  TTCAAATGAT  TCGACCGAAA  AATAAATATA    5100AATCGGATAT  ACAATCGGCA  ATTGACGAAA  CTGCAAAATA  TCCTGTAAAG  GATACGGATT    5160TTATGACCGA  TGATGAAGAA  AAGAATTTGA  AACGTTTGTC  TGATTTGGAG  GAAGGTTTAC    5220ACCGTAAAAG  GTTAATCTCC  TATGGTGGTT  TGTTAAAAGA  AATACATAAA  AAATTAAACC    5280TTGATGACAC  AGAAGAAGGC  GATTTGATTC  ATACAGATGA  TGACGAAAAA  GCCGATGAAG    5340ATGGATTTTG  TATTATTGCA  ATGTGGAATT  GGGAACGGAA  AAATTATTTT  ATTAAAGAGT    5400AGTTCAACAA  ACGGGCCAGT  TTGTTGAAGA  TTAGATGCTA  TAATTGTTAT  TAAAAGGATT    5460GAAGGATGCT  TAGGAAGACG  AGTTATTAAT  AGCTGAATAA  GAACGGTGCT  CTCCAAATAT    5520TCTTATTTAG  AAAAGCAAAT  CTAAAATTAT  CTGAAAAGGG  AATGAGAATA  GTGAATGGAC    5580CAATAATAAT  GACTAGAGAA  GAAAGAATGA  AGATTGTTCA  TGAAATTAAG  GAACGAATAT    5640TGGATAAATA  TGGGGATGAT  GTTAAGGCTA  TTGGTGTTTA  TGGCTCTCTT  GGTCGTCAGA    5700CTGATGGGCC  CTATTCGGAT  ATTGAGATGA  TGTGTGTCAT  GTCAACAGAG  GAAGCAGAGT    5760TCAGCCATGA  ATGGACAACC  GGTGAGTGGA  AGGTGGAAGT  GAATTTTGAT  AGCGAAGAGA    5820TTCTACTAGA  TTATGCATCT  CAGGTGGAAT  CAGATTGGCC  GCTTACACAT  GGTCAATTTT    5880TCTCTATTTT  GCCGATTTAT  GATTCAGGTG  GATACTTAGA  GAAAGTGTAT  CAAACTGCTA    5940AATCGGTAGA  AGCCCAAACG  TTCCACGATG  CGATTTGTGC  CCTTATCGTA  GAAGAGCTGT    6000TTGAATATGC  AGGCAAATGG  CGTAATATTC  GTGTGCAAGG  ACCGACAACA  TTTCTACCAT    6060CCTTGACTGT  ACAGGTAGCA  ATGGCAGGTG  CCATGTTGAT  TGGTCTGCAT  CATCGCATCT    6120GTTATACGAC  GAGCGCTTCG  GTCTTAACTG  AAGCAGTTAA  GCAATCAGA                 6169(2)序列3资料:

    (i)序列特征:

        (A)长度:27bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN5037”

    (xi)序列描述:序列3:CCCACTGGAT CCAATTTTCG TTTGTTG                                          27(2)序列4资料:

    (i)序列特征:

        (A)长度:24bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN5038”

    (xi)序列描述:序列4:GCAAATTGAT CCAAGAGAAC CAAC                                            24(2)序列5资料:   (i)序列特征:

        (A)长度:27bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN5036”

    (xi)序列描述:序列5:CAACAAACGA AAATTGGATC CAGTGGG                                        27(2)序列6资料:

    (i)序列特征:

        (A)长度:19bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN5039”

    (xi)序列描述:序列6:GCACATCATC ATCATAAGC                                                  19(2)序列7资料:

    (i)序列特征:

        (A)长度:23bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN5136”

    (xi)序列描述:序列7:CCGGCGGATC CAAGGGGTGA TCG                                             23(2)序列8资料:

    (i)序列特征:

        (A)长度:45bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN2043”

    (xi)序列描述:序列8:GGGGTACTAG TAACCCGGGC CCGGCGTAGA GGATCCATAC ACAAA                      45(2)序列9资料:

    (i)序列特征:

        (A)长度:36bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN5232”

    (xi)序列描述:序列9:GTCGGAGCTC ATTATTAATC TGTTCAGCAA TCGGGC                               36(2)序列10资料:

    (i)序列特征:

        (A)长度:35bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN5233”

    (xi)序列描述:序列10:GTCGGAGCTC TGCCTTTTAG TCCAGCTGAT TTCAC                                35(2)序列11资料:

    (i)序列特征:

        (A)长度:44bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

    (A)说明:/desc=“LWN7839”

    (xi)序列描述:序列11:GACGGGATCC CTGCAGTATC CAATTTATTT TTTTCTTAAC AAGG                       44(2)序列12资料:

    (i)序列特征:

        (A)长度:40bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN7840”

    (xi)序列描述:序列12:GACGGATTCA AAGCTTAAAG CACTTGCATA GGCTAATGCC                           40(2)序列13资料:

    (i)序列特征:

        (A)长度:46bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN7794”

    (xi)序列描述:序列13:GACGGGTACC ACGCGTTAAT CAATAAAAAA ACGCTGTGCG GTTAAA                      46(2)序列14资料:

    (i)序列特征:

        (A)长度:43bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN7790”

    (xi)序列描述:序列14:TATATATTTT AAAAATATCC CACGGTTCTT CAAATATTTC TCC                       43(2)序列15资料:

    (i)序列特征:

        (A)长度:44bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN7789”

    (xi)序列描述:序列15:GGAGAAATAT TTGAAGAACC GTGGGATATT TTTAAAATAT ATAT                       44(2)序列16资料:

    (i)序列特征:

        (A)长度:45bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN7788”

    (xi)序列描述:序列16:CAAGTGTTCG CTTCGCTCTC ACGGAGCTGT AATATAAAAA CCTTC                       45(2)序列17资料:

    (i)序列特征:

        (A)长度:45bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN7787”

    (xi)序列描述:序列17:GAAGGTTTTT ATATTACAGC TCCGTGAGAG CGAAGCGAAC ACTTG                        45(2)序列18资料:

    (i)序列特征:

        (A)长度:45bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN7784”

    (xi)序列描述:序列18:CATATGATCA AATGGTTCGG ATCTGATTTT CCTCCTCTAA TATGC                       45(2)序列19资料:

    (i)序列特征:

        (A)长度:55bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8197”

    (xi)序列描述:序列19:GCATATTAGA GGAGGAAAAT CAGATCCGAA CCATTTGATC ATATGACAAG ATGTG            55(2)序列20资料:

    (i)序列特征:

        (A)长度:35bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN7791”

    (xi)序列描述:序列20:GACGGAATTC CCGCGGTAAA TAGCAATAAA TTGGC                                  35(2)序列21资料:

    (i)序列特征:

        (A)长度:21bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN7780”

    (xi)序列描述:序列21:GACGGGTACC ACGCGTTAAT C                                                21(2)序列22资料:

    (i)序列特征:

        (A)长度:20bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN5067”

    (xi)序列描述:序列22:CCAGAACCTG TCAATCCACG                                                   20(2)序列23资料:

    (i)序列特征:

        (A)长度:50bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8524”

    (xi)序列描述:序列23:GACTGAATTC GGATCCACGC GTATAATAAA GAATAATTAT TAATCTGTAG                    50(2)序列24资料:

    (i)序列特征:

        (A)长度:42bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8528”

    (xi)序列描述:序列24:GACTAAGCTT GAGCTCCACT AATATTAATA AACTATCGAA 6G                           42(2)序列25资料:

    (i)序列特征:

        (A)长度:42bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8529”

    (xi)序列描述:序列25:GACTGAATTC CTGCAGGAGC TCAGTGAGAG CGAAGCGAAC AC                          42(2)序列26资料:

    (i)序列特征:

        (A)长度:88bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8531”

    (xi)序列描述:序列26:GACTAAGCTT TGATCAAATG GTTGCGGCCG CGTCGACTCT AGACCCGGGT ACCAGATCTG   60GATCCTCGGG TTCTTCAAAT ATTTCTCC                                      88(2)序列27资料:

    (i)序列特征:

        (A)长度:39bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8518”

    (xi)序列描述:序列27:GACTAAGCTT ACGCGTTCGG GTTCTTCAAA TATTTCTCC                              39(2)序列28资料:

    (i)序列特征:

        (A)长度:44bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8527”

    (xi)序列描述:序列28:GACTGAATTC TGATCAAATG GTTCAGTGAG AGCGAAGCGA ACAC                         44(2)序列29资料:

    (i)序列特征:

        (A)长度:17bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN7191”

    (xi)序列描述:序列29:GTTTTCCCAG TCACGAC                                                       17(2)序列30资料:

    (i)序列特征:

        (A)长度:43bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8516”

    (xi)序列描述:序列30:GACTGAATTC GGATCCACGC GTGAGTAGTT CAACAAACGG GCC                         43(2)序列31资料:

    (i)序列特征:

        (A)长度:41bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8517”

    (xi)序列描述:序列31:GACTAAGCTT GAGCTCCAAC ATGATTAACA ATTATTAGAG G                          41(2)序列32资料:

    (i)序列特征:

      (A)长度:56bp

      (B)类型:核酸

      (C)链型:单链

      (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8760”

    (xi)序列描述:序列32:GACGGAATTC TCTAGAGTCG ACAGATCCGA ACCATTTGAT CATATGACAA GATGTG       56(2)序列33资料:

    (i)序列特征:

        (A)长度:40bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

        (A)说明:/desc=“LWN8761”

    (xi)序列描述:序列33:GACGGAATTC GCGGCCGCGG TAAATAGCAA TAAATTGGCC                             40(2)序列34资料:

    (i)序列特征:

       (A)长度:24bp

       (B)类型:核酸

       (C)链型:单链

       (D)拓朴结构:线性

    (ii)分子类型:其它核酸

       (A)说明:/desc=“LWN4123”

    (xi)序列描述:序列34:AGCGGATAAC AATTTCACAC AGGA                                               24(2)序列35资料:

    (i)序列特征:

        (A)长度:34bp

        (B)类型:核酸

        (C)链型:单链

        (D)拓朴结构:线性

    (ii)分子类型:其它核酸

     (A)说明:/desc=“Tnasel”

    (xi)序列描述:序列35:TGACGGATCC ACGCGTGGCG CACTCCCGTT CTGG                               34(2)序列36资料:

    (i)序列特征:

       (A)长度:36bp

       (B)类型:核酸

       (C)链型:单链

       (D)拓朴结构:线性

    (ii)分子类型:其它核酸

       (A)说明:/desc=“Tnase2”

    (xi)序列描述:序列36:GTACGGATCC ACGCGTAAAG GCACCTTTGG TCACGG                            36

通过转座的DNA整合.pdf_第1页
第1页 / 共119页
通过转座的DNA整合.pdf_第2页
第2页 / 共119页
通过转座的DNA整合.pdf_第3页
第3页 / 共119页
点击查看更多>>
资源描述

《通过转座的DNA整合.pdf》由会员分享,可在线阅读,更多相关《通过转座的DNA整合.pdf(119页珍藏版)》请在专利查询网上搜索。

革兰氏阳性细菌的多拷贝菌株,含有多拷贝感兴趣的DNA序列,该菌株通过以下方法构建:通过转座将含有感兴趣的DNA序列的DNA结构导入受体细胞基因组,然后通过一个解离系统使用于选择具有接收到的DNA结构的细胞的标记基因缺失。该多拷贝菌株最好没有编码不需要的标记如抗生素抗性标记的基因。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 生物化学;啤酒;烈性酒;果汁酒;醋;微生物学;酶学;突变或遗传工程


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1