金属加工液抑制细菌方法及系统.pdf

上传人:v**** 文档编号:5434374 上传时间:2019-01-17 格式:PDF 页数:13 大小:454.14KB
返回 下载 相关 举报
摘要
申请专利号:

CN201110231079.5

申请日:

2011.08.12

公开号:

CN102921024A

公开日:

2013.02.13

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):A61L 2/04申请日:20110812授权公告日:20150107终止日期:20170812|||授权|||实质审查的生效IPC(主分类):A61L 2/04申请日:20110812|||公开

IPC分类号:

A61L2/04

主分类号:

A61L2/04

申请人:

中国钢铁股份有限公司

发明人:

赖志雄; 杨本全; 卓俊逸

地址:

中国台湾高雄市小港区中钢路一号

优先权:

专利代理机构:

中国专利代理(香港)有限公司 72001

代理人:

原绍辉

PDF下载: PDF下载
内容摘要

本发明涉及一种金属加工液抑制细菌方法及系统,其中,金属加工液供应单元连接加工系统且提供金属加工液至该加工系统,该金属加工液供应单元在加工系统进行加工作业之前或之后,以65℃以上的温度加热该金属加工液至少1分钟,菌数检测单元用以检测该金属加工液所含的菌数,数据处理及控制单元连接该菌数检测单元及该金属加工液供应单元,用以记录菌数以及调控加热温度及加热时间。由此,可使金属加工液的菌数低于管制值,不需额外添加杀菌剂或停车加热升温杀菌,且不会影响金属加工液的品质特性。

权利要求书

权利要求书一种金属加工液抑制细菌方法,在加工系统进行加工作业之前或之后,以65℃以上的温度加热金属加工液至少1分钟。
 如权利要求1所述的金属加工液抑制细菌方法,其中加热该金属加工液的条件为65~70℃加热至少120分钟、70~80℃加热1~10分钟或80℃以上加热至少1分钟。
 如权利要求1所述的金属加工液抑制细菌方法,其中在该加工系统进行加工作业之前,另包括菌数检测步骤。
 如权利要求3所述的金属加工液抑制细菌方法,其中若检测该金属加工液所含的菌数大于菌数管制值,加热该金属加工液以进行杀菌,使该金属加工液所含的菌数小于该菌数管制值。
 如权利要求4所述的金属加工液抑制细菌方法,其中该菌数管制值为105。
 如权利要求1所述的金属加工液抑制细菌方法,另包括以下步骤:
(a) 在该加工系统进行加工作业之前,加热储存于加工液槽中的该金属加工液以进行杀菌;
(b) 传输该金属加工液至该加工系统进行加工作业;
(c) 净化加工后的金属加工液,以移除其中的杂质;及
(d) 传输净化后的金属加工液至该加工液槽。
 如权利要求6所述的金属加工液抑制细菌方法,其中在步骤(a)中,加热前的该金属加工液保持50~55℃的温度。
 如权利要求6所述的金属加工液抑制细菌方法,其中在步骤(c)之后,净化后的金属加工液另通过收纳槽及中间槽。
 如权利要求1所述的金属加工液抑制细菌方法,另包括以下步骤:
(a) 在该加工系统进行加工作业之前,使储存于加工液槽中的该金属加工液保持50~55℃的温度;
(b) 传输该金属加工液至该加工系统进行加工作业;
(c) 净化加工后的金属加工液,以移除其中的杂质;
(d) 加热净化后的金属加工液以进行杀菌;及
(e) 传输杀菌后的金属加工液至该加工液槽。
 如权利要求9所述的金属加工液抑制细菌方法,其中在步骤(c)之后,加热后的金属加工液另通过收纳槽及中间槽。
 如权利要求9所述的金属加工液抑制细菌方法,其中在步骤(d)中以加热装置加热该金属加工液。
 如权利要求9所述的金属加工液抑制细菌方法,其中在步骤(d)中,另包括补充水量至该金属加工液的步骤。
 如权利要求9所述的金属加工液抑制细菌方法,其中在步骤(d)之前另包括清洁该金属加工液传输路径的步骤。
 如权利要求1所述的金属加工液抑制细菌方法,其用以调控钢铁加工或非钢铁加工的热、温、冷塑性加工液的菌数。
 一种金属加工液抑制细菌系统,包括:
金属加工液供应单元,连接加工系统且提供金属加工液至该加工系统,该金属加工液供应单元在加工系统进行加工作业之前或之后,以65℃以上的温度加热该金属加工液至少1分钟;
菌数检测单元,用以检测该金属加工液所含的菌数;及
数据处理及控制单元,连接该菌数检测单元及该金属加工液供应单元,用以记录菌数以及调控加热温度及加热时间。
 如权利要求15所述的金属加工液抑制细菌系统,其中该金属加工液供应单元另包括杀菌装置,该杀菌装置包括加热装置及温控装置,该加热装置用以容纳该金属加工液,该温控装置用以调控加热温度及加热时间。
 如权利要求16所述的金属加工液抑制细菌系统,其中该数据处理及控制单元具有菌数管制值,若该菌数检测单元检测该金属加工液所含的菌数大于该菌数管制值,该杀菌装置加热该金属加工液以进行杀菌,使该金属加工液所含的菌数小于该菌数管制值。
 如权利要求17所述的金属加工液抑制细菌系统,其中该菌数管制值为105。
 如权利要求15所述的金属加工液抑制细菌系统,其中该金属加工液供应单元另包括清洁装置,用以清洁该金属加工液的传输路径。
 如权利要求15所述的金属加工液抑制细菌系统,其用以调控钢铁加工或非钢铁加工的热、温、冷塑性加工液的菌数。

说明书

说明书金属加工液抑制细菌方法及系统
技术领域
本发明涉及一种抑制细菌方法及系统,特别是一种金属加工液抑制细菌方法及系统。
背景技术
金属加工液被活性微生物分解过程常伴随质量损失、氧气消耗、水及二氧化碳生成,以及出现游离酸与新物质等现象,动植物油虽为环境友好及具生物分解优势的原料,然而其操作使用过程的低温环境适用度、耐氧化性及抗菌性等尚有改善空间。
通常金属加工液(例如润滑油)的微生物分解涉及酯的水解、长链碳水化合物的氧化及酶分解后芳香环开环等三步骤历程;不同的金属加工液的微生物分解难易程度不同,即使是相同类型,因为分子结构差异,其分解反应的活化能也不同,其虽与多种参数有关,但先决条件为大量细菌群、充足的氧气及合宜的系统环境温度。
由于细菌数超过管制值105易导致金属加工液腐败,造成加工液品质特性异常,易发生酸碱值变动,使得分散乳化系统走样或影响乳液粒径(EPS)与分布及油析出性能,而引起磨润性能不均或不足的问题,其均可能致使润滑轧延或金属加工质量产生缺陷。
在现有技术中,通过监测观察加工乳液系统菌数状况、酸碱值、塑性加工质量及塑性加工件表面质量等,若发现有异常则须添加杀菌剂、酸碱值缓冲剂等添加剂,甚至停车排放槽内加工乳液,并调配及追补新加工液以调降系统菌数至目标值以下,若系统状况严重,可能停车并排空槽内加工乳液,并调配新加工液。其中,须经常定期检测或停车追查确认及改善系统状况,易造成生产压力及作业安全潜在危机。
现有技术文献1 (US 5,198,440):
作法:金属加工液内添加复合配方杀菌剂,以发挥加成效果并调控霉菌及细菌数量于管制值内。
缺点:所用复合配方杀菌剂为2‑(氰硫基甲硫基)‑苯并噻唑(2‑(thiocyanomethylthio)‑benzothiazole)与六氢‑l,3,5‑三(2‑羟乙基)‑s‑三嗪(hexahydro‑l,3,5‑tris(2‑hydroxyethyl)‑s‑triazine)化合物,其或多或少存在于油雾水气内,对操作环境与人员身体造成危害及负担。
现有技术文献2 (US 7,115,461):
作法:金属加工液内添加不含甲醛的杀菌剂配方,剂量低于0.lwt%,可发挥调控霉菌及细菌数量于管制值的效果。
缺点:所用配方杀菌剂为恶唑烷/氨基甲酸碘丙炔丁酯(oxazolidine/iodopropynyl‑butyl carbamate)化合物,其或多或少存在于油雾水气内,对操作环境与人员身体造成危害及负担。
现有技术文献3 (US 5,681,851):
作法:金属加工乳化液内添加杀菌剂l,4‑二(溴代乙酸基)‑2‑丁烯(l,4‑bis(bromoacetoxy)‑2‑butene)化合物,可发挥调控霉菌及细菌数量于管制值的效果,并达防腐败目的。
缺点:所用配方杀菌剂为l,4‑二(溴代乙酸基)‑2‑丁烯化合物,其或多或少存在于油雾水气内,对操作环境与人员身体造成危害及负担。
现有技术文献4 (US 7,455,851):
作法:金属加工乳化液内添加杀菌剂羟基吡啶硫酮(Pyrithione)化合物,可发挥调控霉菌及细菌数量于管制值的效果,若有银、铜、锌等离子时则效果增强。
缺点:所用配方杀菌剂为羟基吡啶硫酮化合物,其或多或少存在于油雾水气内,对操作环境与人员身体造成危害及负担。
现有技术文献5 (JP 2003‑012413):
作法:冷却水循环槽、纸浆场、金属加工液等领域利用添加杀菌剂马来酸酐基的(maleic anhydride‑based)化合物、噻吩基的(thiophene‑based)化合物及/或卤代酰胺基的(halogenated amide‑based)化合物,可发挥调控霉菌、酵母菌及细菌数量于管制值的效果。
缺点:所用配方杀菌剂为马来酸酐基的化合物、噻吩基的化合物及/或卤代酰胺基的化合物,其或多或少存在于油雾水气内,对操作环境与人员身体造成危害及负担。
因此,有必要提供一创新且具进步性的金属加工液抑制细菌方法及系统,以解决上述问题。
发明内容
本发明提供一种金属加工液抑制细菌方法,其在加工系统进行加工作业之前或之后,以65℃以上的温度加热一金属加工液至少1分钟。
本发明另提供一种金属加工液抑制细菌系统,包括:金属加工液供应单元、菌数检测单元及数据处理及控制单元。该金属加工液供应单元连接加工系统且提供金属加工液至该加工系统,该金属加工液供应单元在加工系统进行加工作业之前或之后,以65℃以上的温度加热该金属加工液至少1分钟。该菌数检测单元用以检测该金属加工液所含的菌数。该数据处理及控制单元连接该菌数检测单元及该金属加工液供应单元,用以记录菌数以及调控加热温度及加热时间。
本发明的金属加工液抑制细菌方法及系统可使金属加工液的菌数低于管制值,并且依需求设置该杀菌装置的位置,于全产能生产时不需在线额外添加杀菌剂或停车加热升温杀菌,即可稳定金属加工液的菌数控管要求,且不会影响金属加工液的品质特性。
附图说明
图1显示本发明金属加工液抑制细菌系统应用于加工系统的方块示意图;
图2显示本发明另一实施例的金属加工液抑制细菌系统应用于加工系统的方块示意图;
图3显示本发明金属加工液抑制细菌方法的应用的第一实施例的流程图;及
图4显示本发明金属加工液抑制细菌方法的应用的第二实施例的流程图。
具体实施方式
参考图1,其显示本发明金属加工液抑制细菌系统应用于加工系统的方块示意图。本发明的金属加工液抑制细菌系统1包括:金属加工液供应单元11、菌数检测单元12及数据处理及控制单元13。该金属加工液供应单元11连接加工系统2且提供金属加工液至该加工系统2。该金属加工液供应单元11在加工系统2进行加工作业之前或之后,以65℃以上的温度加热该金属加工液至少1分钟。
在本实施例中,该金属加工液供应单元11包括加工液槽111、中间槽112、收纳槽113、杀菌装置114及清洁装置115。该加工液槽111连接该加工系统2,该中间槽112设置于该加工液槽111与该收纳槽113之间。该金属加工液供应至该加工系统2,加工后的金属加工液另经过净化以移除其中的杂质,接着该金属加工液再进入该金属加工液供应单元11。
在本实施例中,该杀菌装置114连接该加工液槽111,在其它实施例中,该杀菌装置114可连接该收纳槽113(如图2所示)。该杀菌装置114包括加热装置1141及温控装置1142,该加热装置1141用以容纳并加热该金属加工液,该温控装置1142用以调控该加热装置1141加热该金属加工液的温度及时间。
要说明的是,若无产量压力状况时,该杀菌装置114可选择连接该加工液槽111,如此,可停车于该加工液槽114完成加热杀菌;若有产量压力状况时,该杀菌装置114可连接该收纳槽113,于该收纳槽113完成加热杀菌,不须停车,如此可连续操作使用。其中,加工后的金属加工液具有较高的温度,因此于加工后对金属加工液进行加热杀菌所需的能源较少,故可降低能源消耗。
在图2所示的实施例中,该杀菌装置114对净化后的金属加工液进行加热杀菌,杀菌后的金属加工液再由该收纳槽113收纳。该金属加工液经该收纳槽113及该中间槽112后进入该加工液槽111。其中,该收纳槽113及该中间槽112对于该金属加工液可具有进一步的净化作用。
该清洁装置115用以清洁该金属加工液的传输路径。该清洁装置115可为高压水设备。举例说明,该杀菌装置114连接该收纳槽113,加工后的金属加工液经净化后,通过该杀菌装置114进行加热杀菌再至该收纳槽113中。净化后的金属加工液至该收纳槽113间的传输路径(例如:槽体内壁或/及管线),其中的杂质可能会残留于传输路径上,此时即可利用该清洁装置115(例如:高压水设备),进行传输路径上的冲洗,以确保该金属加工液供应单元操作运转顺畅。
在图1所示的金属加工液抑制细菌系统1中,该菌数检测单元12用以检测该加工液槽111的金属加工液所含的菌数,该数据处理及控制单元13连接该菌数检测单元12及该加工液槽111,用以记录菌数以及调控加热温度及加热时间。在图2所示的金属加工液抑制细菌系统1'中,该菌数检测单元12用以检测净化后进入该杀菌装置114的金属加工液所含的菌数,该数据处理及控制单元13连接该菌数检测单元12及该杀菌装置114,用以记录菌数以及调控加热温度及加热时间。
其中,该数据处理及控制单元13具有菌数管制值,若该菌数检测单元12检测该金属加工液所含的菌数大于该菌数管制值,该杀菌装置114加热该金属加工液以进行杀菌,使该金属加工液所含的菌数小于该菌数管制值。由于菌数的值超过105易导致金属加工液腐败,因此该菌数管制值较佳地被设定为105。
在应用上,本发明的金属加工液抑制细菌系统1可用以调控钢铁加工或非钢铁加工的热、温、冷塑性加工液的菌数。冷塑性加工液例如是:钢铁加工或非钢铁加工的热、温、冷塑性加工所使用的水性加工润滑液,或合金的轧延或塑性加工所使用的润滑液。钢铁或非钢铁例如包含钢、铁、镁、铝、铜、钛等,但不以此为限。
本发明金属加工液抑制细菌方法是在加工系统进行加工作业之前或之后,以65℃以上的温度加热金属加工液至少1分钟。
图3显示本发明金属加工液抑制细菌方法的应用的第一实施例流程图。配合参考图1及图3,在本实施例中,本发明的金属加工液抑制细菌方法包括以下步骤:首先参考步骤S31,在该加工系统2进行加工作业之前,利用该菌数检测单元12先对加工液槽111内的金属加工液进行菌数检测步骤。要说明的是,在步骤S31中,加热前的该加工液槽111内的金属加工液保持50~55℃的温度。
参考步骤S32,若该菌数检测单元12检测该金属加工液所含的菌数大于菌数管制值(较佳地被设定为105),该数据处理及控制单元13控制该杀菌装置114加热该金属加工液以进行杀菌,使该金属加工液所含的菌数小于该菌数管制值。
在本发明的一实施例中,在该加工系统2进行加工作业之前,加热储存于加工液槽中的该金属加工液,以65℃以上的温度加热该金属加工液至少1分钟。较佳地,加热该金属加工液的条件为65~70℃加热至少120分钟、70~80℃加热1~10分钟或80℃以上加热至少1分钟。
参考步骤S33,传输杀菌后的金属加工液至该加工系统2进行加工作业。
参考步骤S34,净化加工后的金属加工液,以移除其中的杂质。净化后的金属加工液另通过收纳槽113及中间槽112。该收纳槽113及该中间槽112对该金属加工液可具有进一步的净化作用。
较佳地,本发明的方法在加热杀菌之前更包括清洁该金属加工液传输路径的步骤,例如利用清洁装置115(例如:高压水设备),进行传输路径(例如:槽体内壁或/及管线)上杂质的冲洗,以确保该金属加工液供应单元操作运转顺畅。
参考步骤S35,传输净化后的金属加工液至该加工液槽111,如此完成金属加工液抑制细菌的一个循环。
图4显示本发明金属加工液抑制细菌方法的应用的第二实施例流程图。配合参考图2及图4,在本实施例中,本发明的金属加工液抑制细菌方法包括以下步骤:首先参考步骤S41,在该加工系统2进行加工作业之前,使储存于加工液槽111中的该金属加工液保持50~55℃的温度。
参考步骤S42,传输该金属加工液至该加工系统2进行加工作业。参考步骤S43,净化加工后的金属加工液,以移除其中的杂质。净化后的金属加工液另通过收纳槽113及中间槽112。该收纳槽113及该中间槽112对该金属加工液可具有进一步的净化作用。
较佳地,本发明的方法在加热杀菌之前更包括清洁该金属加工液传输路径的步骤,例如利用清洁装置115(例如:高压水设备),进行传输路径(例如:槽体内壁或/及管线)上杂质的冲洗,以确保该金属加工液供应单元操作运转顺畅。
参考步骤S44,利用该菌数检测单元12对金属加工液进行菌数检测,若检测该金属加工液所含的菌数大于菌数管制值(较佳地被设定为105),该数据处理及控制单元13控制该杀菌装置114加热该金属加工液以进行杀菌,使该金属加工液所含的菌数小于该菌数管制值。在本实施例中,利用该杀菌装置114以65℃以上的温度加热净化后的金属加工液至少1分钟,以进行金属加工液的杀菌。在步骤S44中,可另包括补充水量至该金属加工液的步骤,以补充不足的水分且降温加热杀菌后的金属加工液。
在本实施例中,该杀菌装置114连接该收纳槽113,于该收纳槽113完成加热杀菌,如此可连续操作使用,不须停车。其中,加工后的金属加工液具有较高的温度,因此于加工后对金属加工液进行加热杀菌所需的能源较少,故可降低能源消耗。
参考步骤S45,传输加热后的金属加工液至该加工液槽111,如此完成金属加工液抑制细菌的一个循环。
下面以下列实例予以详细说明本发明,但是这并不意谓本发明仅局限于这些实例所揭示的内容。
实例:
公知金属加工液(如市售金属加工液)于室温静置状态的酸碱值及细菌数随静置时间增长而有恶化趋势,但霉菌数则无影响,其追踪检测结果如表1所示。
表1
 酸碱值细菌数霉菌数当天检测5.85几乎无菌几乎无菌1天后检测5.55103几乎无菌2天后检测5.14105几乎无菌3天后检测4.84107几乎无菌
取样室温静置3天后市售金属加工液经不同杀菌方法处理的细菌菌数追踪检测结果如表2所示。
表2
杀菌方法菌数添加杀菌剂<103加热至40℃×1小时107加热至50℃×1小时107加热至60℃×1小时106加热至65℃×1小时104加热至70℃×1小时<103加热至80℃×1小时几乎无菌
投入杀菌剂的效果不错,但添加杀菌剂剂量不易掌握管控,可能会造成现场操作环境或人员危害及负担。温度低于60℃时,几乎无杀菌效果,无法达到菌数管制值低于105的目标。温度为65℃时,已有杀菌成效,且时间增长效果较佳。温度为70℃以上时,菌数皆小于103,甚至几乎无菌,效果更佳。更高的温度(如大于80℃)虽也有杀菌效果,然而会造成能源的浪费,甚至影响到金属加工液的品质特性,因此较佳的杀菌温度范围为65~80℃。
在实际应用上,更确认将金属加工液在高温80℃且持续6天以上的加热搅拌操作环境状态下,金属加工液的品质特性并无变异,如表3所示,其中◎表示符合标准。
表3
加热时间酸价(AV)皂化价(SV)1天2天3天6天10天微升
因此,在温度65℃以上,加热杀菌仅需持温1分钟以上即可达成完全杀菌的状态条件,且并不造成金属加工液有负面影响,如表4所示,其中○表示菌数≦105,×表示菌数>105。
表4
 公知例公知例公知例发明例发明例发明例1分钟40℃50℃60℃65℃70℃80℃10分钟×××30分钟×××1小时×××2小时×××4小时×××8小时×××
本发明的金属加工液抑制细菌方法及系统可使金属加工液的菌数低于管制值,并且依需求设置该杀菌装置的位置,于全产能生产时不需在线额外添加杀菌剂或停车加热升温杀菌,即可稳定金属加工液的菌数控管要求,且不会影响金属加工液的品质特性。
上述实施例仅为说明本发明的原理及其功效,并非限制本发明,因此所属领域的技术人员对上述实施例进行修改及变化仍不脱本发明的精神。本发明的权利保护范围由后附的权利要求书进行限定。
附图标记列表
1,1'           本发明的金属加工液抑制细菌系统
2                 加工系统
11                金属加工液供应单元
12                菌数检测单元
13                数据处理及控制单元
111              加工液槽
112              中间槽
113              收纳槽
114              杀菌装置
115              清洁装置
1141            加热装置
1142            温控装置

金属加工液抑制细菌方法及系统.pdf_第1页
第1页 / 共13页
金属加工液抑制细菌方法及系统.pdf_第2页
第2页 / 共13页
金属加工液抑制细菌方法及系统.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《金属加工液抑制细菌方法及系统.pdf》由会员分享,可在线阅读,更多相关《金属加工液抑制细菌方法及系统.pdf(13页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102921024 A (43)申请公布日 2013.02.13 CN 102921024 A *CN102921024A* (21)申请号 201110231079.5 (22)申请日 2011.08.12 A61L 2/04(2006.01) (71)申请人 中国钢铁股份有限公司 地址 中国台湾高雄市小港区中钢路一号 (72)发明人 赖志雄 杨本全 卓俊逸 (74)专利代理机构 中国专利代理(香港)有限公 司 72001 代理人 原绍辉 (54) 发明名称 金属加工液抑制细菌方法及系统 (57) 摘要 本发明涉及一种金属加工液抑制细菌方法及 系统, 其中, 金属加。

2、工液供应单元连接加工系统且 提供金属加工液至该加工系统, 该金属加工液供 应单元在加工系统进行加工作业之前或之后, 以 65以上的温度加热该金属加工液至少 1 分钟, 菌数检测单元用以检测该金属加工液所含的菌 数, 数据处理及控制单元连接该菌数检测单元及 该金属加工液供应单元, 用以记录菌数以及调控 加热温度及加热时间。 由此, 可使金属加工液的菌 数低于管制值, 不需额外添加杀菌剂或停车加热 升温杀菌, 且不会影响金属加工液的品质特性。 (51)Int.Cl. 权利要求书 2 页 说明书 6 页 附图 4 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 2 页 说。

3、明书 6 页 附图 4 页 1/2 页 2 1. 一种金属加工液抑制细菌方法, 在加工系统进行加工作业之前或之后, 以 65以上 的温度加热金属加工液至少 1 分钟。 2. 如权利要求 1 所述的金属加工液抑制细菌方法, 其中加热该金属加工液的条件为 6570加热至少 120 分钟、 7080加热 110 分钟或 80以上加热至少 1 分钟。 3. 如权利要求 1 所述的金属加工液抑制细菌方法, 其中在该加工系统进行加工作业 之前, 另包括菌数检测步骤。 4. 如权利要求 3 所述的金属加工液抑制细菌方法, 其中若检测该金属加工液所含的 菌数大于菌数管制值, 加热该金属加工液以进行杀菌, 使该。

4、金属加工液所含的菌数小于该 菌数管制值。 5. 如权利要求 4 所述的金属加工液抑制细菌方法, 其中该菌数管制值为 105。 6. 如权利要求 1 所述的金属加工液抑制细菌方法, 另包括以下步骤 : (a) 在该加工系统进行加工作业之前, 加热储存于加工液槽中的该金属加工液以进行 杀菌 ; (b) 传输该金属加工液至该加工系统进行加工作业 ; (c) 净化加工后的金属加工液, 以移除其中的杂质 ; 及 (d) 传输净化后的金属加工液至该加工液槽。 7. 如权利要求 6 所述的金属加工液抑制细菌方法, 其中在步骤 (a) 中, 加热前的该金 属加工液保持 5055的温度。 8. 如权利要求 6 。

5、所述的金属加工液抑制细菌方法, 其中在步骤 (c) 之后, 净化后的金 属加工液另通过收纳槽及中间槽。 9. 如权利要求 1 所述的金属加工液抑制细菌方法, 另包括以下步骤 : (a) 在该加工系统进行加工作业之前, 使储存于加工液槽中的该金属加工液保持 5055的温度 ; (b) 传输该金属加工液至该加工系统进行加工作业 ; (c) 净化加工后的金属加工液, 以移除其中的杂质 ; (d) 加热净化后的金属加工液以进行杀菌 ; 及 (e) 传输杀菌后的金属加工液至该加工液槽。 10. 如权利要求9所述的金属加工液抑制细菌方法, 其中在步骤(c)之后, 加热后的金 属加工液另通过收纳槽及中间槽。。

6、 11. 如权利要求 9 所述的金属加工液抑制细菌方法, 其中在步骤 (d) 中以加热装置加 热该金属加工液。 12. 如权利要求9所述的金属加工液抑制细菌方法, 其中在步骤(d)中, 另包括补充水 量至该金属加工液的步骤。 13. 如权利要求 9 所述的金属加工液抑制细菌方法, 其中在步骤 (d) 之前另包括清洁 该金属加工液传输路径的步骤。 14. 如权利要求 1 所述的金属加工液抑制细菌方法, 其用以调控钢铁加工或非钢铁加 工的热、 温、 冷塑性加工液的菌数。 15. 一种金属加工液抑制细菌系统, 包括 : 金属加工液供应单元, 连接加工系统且提供金属加工液至该加工系统, 该金属加工液 。

7、权 利 要 求 书 CN 102921024 A 2 2/2 页 3 供应单元在加工系统进行加工作业之前或之后, 以 65以上的温度加热该金属加工液至少 1 分钟 ; 菌数检测单元, 用以检测该金属加工液所含的菌数 ; 及 数据处理及控制单元, 连接该菌数检测单元及该金属加工液供应单元, 用以记录菌数 以及调控加热温度及加热时间。 16. 如权利要求 15 所述的金属加工液抑制细菌系统, 其中该金属加工液供应单元另 包括杀菌装置, 该杀菌装置包括加热装置及温控装置, 该加热装置用以容纳该金属加工液, 该温控装置用以调控加热温度及加热时间。 17. 如权利要求 16 所述的金属加工液抑制细菌系统。

8、, 其中该数据处理及控制单元具 有菌数管制值, 若该菌数检测单元检测该金属加工液所含的菌数大于该菌数管制值, 该杀 菌装置加热该金属加工液以进行杀菌, 使该金属加工液所含的菌数小于该菌数管制值。 18. 如权利要求 17 所述的金属加工液抑制细菌系统, 其中该菌数管制值为 105。 19. 如权利要求 15 所述的金属加工液抑制细菌系统, 其中该金属加工液供应单元另 包括清洁装置, 用以清洁该金属加工液的传输路径。 20. 如权利要求 15 所述的金属加工液抑制细菌系统, 其用以调控钢铁加工或非钢铁 加工的热、 温、 冷塑性加工液的菌数。 权 利 要 求 书 CN 102921024 A 3 。

9、1/6 页 4 金属加工液抑制细菌方法及系统 技术领域 0001 本发明涉及一种抑制细菌方法及系统, 特别是一种金属加工液抑制细菌方法及系 统。 背景技术 0002 金属加工液被活性微生物分解过程常伴随质量损失、 氧气消耗、 水及二氧化碳生 成, 以及出现游离酸与新物质等现象, 动植物油虽为环境友好及具生物分解优势的原料, 然 而其操作使用过程的低温环境适用度、 耐氧化性及抗菌性等尚有改善空间。 0003 通常金属加工液 (例如润滑油) 的微生物分解涉及酯的水解、 长链碳水化合物的氧 化及酶分解后芳香环开环等三步骤历程 ; 不同的金属加工液的微生物分解难易程度不同, 即使是相同类型, 因为分子。

10、结构差异, 其分解反应的活化能也不同, 其虽与多种参数有关, 但先决条件为大量细菌群、 充足的氧气及合宜的系统环境温度。 0004 由于细菌数超过管制值 105易导致金属加工液腐败, 造成加工液品质特性异常, 易 发生酸碱值变动, 使得分散乳化系统走样或影响乳液粒径 (EPS) 与分布及油析出性能, 而 引起磨润性能不均或不足的问题, 其均可能致使润滑轧延或金属加工质量产生缺陷。 0005 在现有技术中, 通过监测观察加工乳液系统菌数状况、 酸碱值、 塑性加工质量及塑 性加工件表面质量等, 若发现有异常则须添加杀菌剂、 酸碱值缓冲剂等添加剂, 甚至停车排 放槽内加工乳液, 并调配及追补新加工液。

11、以调降系统菌数至目标值以下, 若系统状况严重, 可能停车并排空槽内加工乳液, 并调配新加工液。 其中, 须经常定期检测或停车追查确认及 改善系统状况, 易造成生产压力及作业安全潜在危机。 0006 现有技术文献 1 (US 5,198,440) : 作法 : 金属加工液内添加复合配方杀菌剂, 以发挥加成效果并调控霉菌及细菌数量于 管制值内。 0007 缺点 : 所用复合配方杀菌剂为 2-( 氰硫基甲硫基 )- 苯并噻唑 (2-(thiocyanometh ylthio)-benzothiazole) 与六氢 -l,3,5- 三 (2- 羟乙基 )-s- 三嗪 (hexahydro-l,3,5-。

12、tri s(2-hydroxyethyl)-s-triazine) 化合物, 其或多或少存在于油雾水气内, 对操作环境与人 员身体造成危害及负担。 0008 现有技术文献 2 (US 7,115,461) : 作法 : 金属加工液内添加不含甲醛的杀菌剂配方, 剂量低于 0.lwt%, 可发挥调控霉菌 及细菌数量于管制值的效果。 0009 缺 点 : 所 用 配 方 杀 菌 剂 为 恶 唑 烷 / 氨 基 甲 酸 碘 丙 炔 丁 酯 (oxazolidine/ iodopropynyl-butyl carbamate) 化合物, 其或多或少存在于油雾水气内, 对操作环境与人 员身体造成危害及负担。

13、。 0010 现有技术文献 3 (US 5,681,851) : 作 法 : 金 属 加 工 乳 化 液 内 添 加 杀 菌 剂 l,4- 二 ( 溴 代 乙 酸 基 )-2- 丁 烯 (l,4-bis(bromoacetoxy)-2-butene) 化合物, 可发挥调控霉菌及细菌数量于管制值的效 说 明 书 CN 102921024 A 4 2/6 页 5 果, 并达防腐败目的。 0011 缺点 : 所用配方杀菌剂为l,4-二(溴代乙酸基)-2-丁烯化合物, 其或多或少存在 于油雾水气内, 对操作环境与人员身体造成危害及负担。 0012 现有技术文献 4 (US 7,455,851) : 作。

14、法 : 金属加工乳化液内添加杀菌剂羟基吡啶硫酮 (Pyrithione) 化合物, 可发挥调控 霉菌及细菌数量于管制值的效果, 若有银、 铜、 锌等离子时则效果增强。 0013 缺点 : 所用配方杀菌剂为羟基吡啶硫酮化合物, 其或多或少存在于油雾水气内, 对 操作环境与人员身体造成危害及负担。 0014 现有技术文献 5 (JP 2003-012413) : 作法 : 冷却水循环槽、 纸浆场、 金属加工液等领域利用添加杀菌剂马来酸酐基的 (maleic anhydride-based) 化合物、 噻吩基的 (thiophene-based) 化合物及 / 或卤代酰胺 基的 (halogenat。

15、ed amide-based) 化合物, 可发挥调控霉菌、 酵母菌及细菌数量于管制值的 效果。 0015 缺点 : 所用配方杀菌剂为马来酸酐基的化合物、 噻吩基的化合物及 / 或卤代酰胺 基的化合物, 其或多或少存在于油雾水气内, 对操作环境与人员身体造成危害及负担。 0016 因此, 有必要提供一创新且具进步性的金属加工液抑制细菌方法及系统, 以解决 上述问题。 发明内容 0017 本发明提供一种金属加工液抑制细菌方法, 其在加工系统进行加工作业之前或之 后, 以 65以上的温度加热一金属加工液至少 1 分钟。 0018 本发明另提供一种金属加工液抑制细菌系统, 包括 : 金属加工液供应单元。

16、、 菌数 检测单元及数据处理及控制单元。 该金属加工液供应单元连接加工系统且提供金属加工液 至该加工系统, 该金属加工液供应单元在加工系统进行加工作业之前或之后, 以 65以上 的温度加热该金属加工液至少 1 分钟。该菌数检测单元用以检测该金属加工液所含的菌 数。该数据处理及控制单元连接该菌数检测单元及该金属加工液供应单元, 用以记录菌数 以及调控加热温度及加热时间。 0019 本发明的金属加工液抑制细菌方法及系统可使金属加工液的菌数低于管制值, 并 且依需求设置该杀菌装置的位置, 于全产能生产时不需在线额外添加杀菌剂或停车加热升 温杀菌, 即可稳定金属加工液的菌数控管要求, 且不会影响金属加。

17、工液的品质特性。 附图说明 0020 图 1 显示本发明金属加工液抑制细菌系统应用于加工系统的方块示意图 ; 图 2 显示本发明另一实施例的金属加工液抑制细菌系统应用于加工系统的方块示意 图 ; 图 3 显示本发明金属加工液抑制细菌方法的应用的第一实施例的流程图 ; 及 图 4 显示本发明金属加工液抑制细菌方法的应用的第二实施例的流程图。 具体实施方式 说 明 书 CN 102921024 A 5 3/6 页 6 0021 参考图 1, 其显示本发明金属加工液抑制细菌系统应用于加工系统的方块示意图。 本发明的金属加工液抑制细菌系统1包括:金属加工液供应单元11、 菌数检测单元12及数 据处理及。

18、控制单元 13。该金属加工液供应单元 11 连接加工系统 2 且提供金属加工液至该 加工系统 2。该金属加工液供应单元 11 在加工系统 2 进行加工作业之前或之后, 以 65以 上的温度加热该金属加工液至少 1 分钟。 0022 在本实施例中, 该金属加工液供应单元 11 包括加工液槽 111、 中间槽 112、 收纳槽 113、 杀菌装置 114 及清洁装置 115。该加工液槽 111 连接该加工系统 2, 该中间槽 112 设置 于该加工液槽 111 与该收纳槽 113 之间。该金属加工液供应至该加工系统 2, 加工后的金 属加工液另经过净化以移除其中的杂质, 接着该金属加工液再进入该金。

19、属加工液供应单元 11。 0023 在本实施例中, 该杀菌装置 114 连接该加工液槽 111, 在其它实施例中, 该杀菌装 置 114 可连接该收纳槽 113(如图 2 所示) 。该杀菌装置 114 包括加热装置 1141 及温控装 置1142, 该加热装置1141用以容纳并加热该金属加工液, 该温控装置1142用以调控该加热 装置 1141 加热该金属加工液的温度及时间。 0024 要说明的是, 若无产量压力状况时, 该杀菌装置 114 可选择连接该加工液槽 111, 如此, 可停车于该加工液槽 114 完成加热杀菌 ; 若有产量压力状况时, 该杀菌装置 114 可连 接该收纳槽 113,。

20、 于该收纳槽 113 完成加热杀菌, 不须停车, 如此可连续操作使用。其中, 加 工后的金属加工液具有较高的温度, 因此于加工后对金属加工液进行加热杀菌所需的能源 较少, 故可降低能源消耗。 0025 在图2所示的实施例中, 该杀菌装置114对净化后的金属加工液进行加热杀菌, 杀 菌后的金属加工液再由该收纳槽 113 收纳。该金属加工液经该收纳槽 113 及该中间槽 112 后进入该加工液槽111。 其中, 该收纳槽113及该中间槽112对于该金属加工液可具有进一 步的净化作用。 0026 该清洁装置 115 用以清洁该金属加工液的传输路径。该清洁装置 115 可为高压水 设备。 举例说明, 。

21、该杀菌装置114连接该收纳槽113, 加工后的金属加工液经净化后, 通过该 杀菌装置 114 进行加热杀菌再至该收纳槽 113 中。净化后的金属加工液至该收纳槽 113 间 的传输路径 (例如 : 槽体内壁或 / 及管线) , 其中的杂质可能会残留于传输路径上, 此时即可 利用该清洁装置 115(例如 : 高压水设备) , 进行传输路径上的冲洗, 以确保该金属加工液供 应单元操作运转顺畅。 0027 在图 1 所示的金属加工液抑制细菌系统 1 中, 该菌数检测单元 12 用以检测该加工 液槽 111 的金属加工液所含的菌数, 该数据处理及控制单元 13 连接该菌数检测单元 12 及 该加工液槽。

22、111, 用以记录菌数以及调控加热温度及加热时间。 在图2所示的金属加工液抑 制细菌系统 1 中, 该菌数检测单元 12 用以检测净化后进入该杀菌装置 114 的金属加工液 所含的菌数, 该数据处理及控制单元 13 连接该菌数检测单元 12 及该杀菌装置 114, 用以记 录菌数以及调控加热温度及加热时间。 0028 其中, 该数据处理及控制单元13具有菌数管制值, 若该菌数检测单元12检测该金 属加工液所含的菌数大于该菌数管制值, 该杀菌装置 114 加热该金属加工液以进行杀菌, 使该金属加工液所含的菌数小于该菌数管制值。由于菌数的值超过 105易导致金属加工液 腐败, 因此该菌数管制值较佳。

23、地被设定为 105。 说 明 书 CN 102921024 A 6 4/6 页 7 0029 在应用上, 本发明的金属加工液抑制细菌系统 1 可用以调控钢铁加工或非钢铁加 工的热、 温、 冷塑性加工液的菌数。冷塑性加工液例如是 : 钢铁加工或非钢铁加工的热、 温、 冷塑性加工所使用的水性加工润滑液, 或合金的轧延或塑性加工所使用的润滑液。钢铁或 非钢铁例如包含钢、 铁、 镁、 铝、 铜、 钛等, 但不以此为限。 0030 本发明金属加工液抑制细菌方法是在加工系统进行加工作业之前或之后, 以 65 以上的温度加热金属加工液至少 1 分钟。 0031 图 3 显示本发明金属加工液抑制细菌方法的应用。

24、的第一实施例流程图。配合参考 图 1 及图 3, 在本实施例中, 本发明的金属加工液抑制细菌方法包括以下步骤 : 首先参考步 骤S31, 在该加工系统2进行加工作业之前, 利用该菌数检测单元12先对加工液槽111内的 金属加工液进行菌数检测步骤。要说明的是, 在步骤 S31 中, 加热前的该加工液槽 111 内的 金属加工液保持 5055的温度。 0032 参考步骤 S32, 若该菌数检测单元 12 检测该金属加工液所含的菌数大于菌数管制 值 (较佳地被设定为 105) , 该数据处理及控制单元 13 控制该杀菌装置 114 加热该金属加工 液以进行杀菌, 使该金属加工液所含的菌数小于该菌数管。

25、制值。 0033 在本发明的一实施例中, 在该加工系统 2 进行加工作业之前, 加热储存于加工液 槽中的该金属加工液, 以65以上的温度加热该金属加工液至少1分钟。 较佳地, 加热该金 属加工液的条件为 6570加热至少 120 分钟、 7080加热 110 分钟或 80以上加热至 少 1 分钟。 0034 参考步骤 S33, 传输杀菌后的金属加工液至该加工系统 2 进行加工作业。 0035 参考步骤 S34, 净化加工后的金属加工液, 以移除其中的杂质。净化后的金属加工 液另通过收纳槽 113 及中间槽 112。该收纳槽 113 及该中间槽 112 对该金属加工液可具有 进一步的净化作用。 。

26、0036 较佳地, 本发明的方法在加热杀菌之前更包括清洁该金属加工液传输路径的步 骤, 例如利用清洁装置 115 (例如 : 高压水设备) , 进行传输路径 (例如 : 槽体内壁或 / 及管线) 上杂质的冲洗, 以确保该金属加工液供应单元操作运转顺畅。 0037 参考步骤 S35, 传输净化后的金属加工液至该加工液槽 111, 如此完成金属加工液 抑制细菌的一个循环。 0038 图 4 显示本发明金属加工液抑制细菌方法的应用的第二实施例流程图。配合参考 图 2 及图 4, 在本实施例中, 本发明的金属加工液抑制细菌方法包括以下步骤 : 首先参考步 骤 S41, 在该加工系统 2 进行加工作业之。

27、前, 使储存于加工液槽 111 中的该金属加工液保持 5055的温度。 0039 参考步骤 S42, 传输该金属加工液至该加工系统 2 进行加工作业。参考步骤 S43, 净化加工后的金属加工液, 以移除其中的杂质。净化后的金属加工液另通过收纳槽 113 及 中间槽 112。该收纳槽 113 及该中间槽 112 对该金属加工液可具有进一步的净化作用。 0040 较佳地, 本发明的方法在加热杀菌之前更包括清洁该金属加工液传输路径的步 骤, 例如利用清洁装置 115 (例如 : 高压水设备) , 进行传输路径 (例如 : 槽体内壁或 / 及管线) 上杂质的冲洗, 以确保该金属加工液供应单元操作运转顺。

28、畅。 0041 参考步骤 S44, 利用该菌数检测单元 12 对金属加工液进行菌数检测, 若检测该金 属加工液所含的菌数大于菌数管制值 (较佳地被设定为 105) , 该数据处理及控制单元 13 控 说 明 书 CN 102921024 A 7 5/6 页 8 制该杀菌装置 114 加热该金属加工液以进行杀菌, 使该金属加工液所含的菌数小于该菌数 管制值。在本实施例中, 利用该杀菌装置 114 以 65以上的温度加热净化后的金属加工液 至少 1 分钟, 以进行金属加工液的杀菌。在步骤 S44 中, 可另包括补充水量至该金属加工液 的步骤, 以补充不足的水分且降温加热杀菌后的金属加工液。 004。

29、2 在本实施例中, 该杀菌装置114连接该收纳槽113, 于该收纳槽113完成加热杀菌, 如此可连续操作使用, 不须停车。其中, 加工后的金属加工液具有较高的温度, 因此于加工 后对金属加工液进行加热杀菌所需的能源较少, 故可降低能源消耗。 0043 参考步骤 S45, 传输加热后的金属加工液至该加工液槽 111, 如此完成金属加工液 抑制细菌的一个循环。 0044 下面以下列实例予以详细说明本发明, 但是这并不意谓本发明仅局限于这些实例 所揭示的内容。 0045 实例 : 公知金属加工液 (如市售金属加工液) 于室温静置状态的酸碱值及细菌数随静置时间 增长而有恶化趋势, 但霉菌数则无影响, 。

30、其追踪检测结果如表 1 所示。 0046 表 1 酸碱值 细菌数霉菌数 当天检测5.85几乎无菌几乎无菌 1 天后检测5.55103几乎无菌 2 天后检测5.14105几乎无菌 3 天后检测4.84107几乎无菌 取样室温静置 3 天后市售金属加工液经不同杀菌方法处理的细菌菌数追踪检测结果 如表 2 所示。 0047 表 2 杀菌方法菌数 添加杀菌剂 103 加热至 40 1 小时107 加热至 50 1 小时107 加热至 60 1 小时106 加热至 65 1 小时104 加热至 70 1 小时 103 加热至 80 1 小时几乎无菌 投入杀菌剂的效果不错, 但添加杀菌剂剂量不易掌握管控,。

31、 可能会造成现场操作环境 或人员危害及负担。温度低于 60时, 几乎无杀菌效果, 无法达到菌数管制值低于 105的目 标。温度为 65时, 已有杀菌成效, 且时间增长效果较佳。温度为 70以上时, 菌数皆小于 103, 甚至几乎无菌, 效果更佳。更高的温度 (如大于 80) 虽也有杀菌效果, 然而会造成能 源的浪费, 甚至影响到金属加工液的品质特性, 因此较佳的杀菌温度范围为 6580。 0048 在实际应用上, 更确认将金属加工液在高温 80且持续 6 天以上的加热搅拌操作 环境状态下, 金属加工液的品质特性并无变异, 如表 3 所示, 其中表示符合标准。 0049 表 3 加热时间酸价 (。

32、AV) 皂化价 (SV) 1 天 2 天 3 天 说 明 书 CN 102921024 A 8 6/6 页 9 6 天 10 天微升 因此, 在温度 65以上, 加热杀菌仅需持温 1 分钟以上即可达成完全杀菌的状态条件, 且并不造成金属加工液有负面影响, 如表4所示, 其中表示菌数105, 表示菌数105。 0050 表 4 公知例 公知例 公知例 发明例 发明例 发明例 1 分钟405060657080 10 分钟 30 分钟 1 小时 2 小时 4 小时 8 小时 本发明的金属加工液抑制细菌方法及系统可使金属加工液的菌数低于管制值, 并且依 需求设置该杀菌装置的位置, 于全产能生产时不需在。

33、线额外添加杀菌剂或停车加热升温杀 菌, 即可稳定金属加工液的菌数控管要求, 且不会影响金属加工液的品质特性。 0051 上述实施例仅为说明本发明的原理及其功效, 并非限制本发明, 因此所属领域的 技术人员对上述实施例进行修改及变化仍不脱本发明的精神。 本发明的权利保护范围由后 附的权利要求书进行限定。 0052 附图标记列表 1, 1 本发明的金属加工液抑制细菌系统 2 加工系统 11 金属加工液供应单元 12 菌数检测单元 13 数据处理及控制单元 111 加工液槽 112 中间槽 113 收纳槽 114 杀菌装置 115 清洁装置 1141 加热装置 1142 温控装置 说 明 书 CN 102921024 A 9 1/4 页 10 图 1 说 明 书 附 图 CN 102921024 A 10 2/4 页 11 图 2 说 明 书 附 图 CN 102921024 A 11 3/4 页 12 图 3 说 明 书 附 图 CN 102921024 A 12 4/4 页 13 图 4 说 明 书 附 图 CN 102921024 A 13 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1