含大量氧的气体生产方法.pdf

上传人:b*** 文档编号:540712 上传时间:2018-02-21 格式:PDF 页数:17 大小:454.57KB
返回 下载 相关 举报
摘要
申请专利号:

CN92111676.4

申请日:

1992.10.17

公开号:

CN1071601A

公开日:

1993.05.05

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的终止(未缴年费专利权终止)申请日:1992.10.17公告日:1997.5.21|||授权||||||公开

IPC分类号:

B01D53/04; C01B13/02

主分类号:

B01D53/04; C01B13/02

申请人:

乔治·克劳德工艺研究开发有限公司;

发明人:

黑·利昂; 艾特伏·西尔维亚

地址:

法国巴黎

优先权:

1991.10.17 FR 9112806

专利代理机构:

中国国际贸易促进委员会专利代理部

代理人:

吴大建

PDF下载: PDF下载
内容摘要

从空气中选择吸附氮的工艺用于包括多台吸附器的系统以提供高压富氧气体,吸附器大气压下用泵减压并用富氧气体再压缩而更新。泵送时间至多等于生产步骤的时间。

权利要求书

1: 1、含大量氧的气体生产方法,流量为例如60吨/天,其中空气中存在的氮吸附,该方法中在多台 n 吸附器上按时间T就每台吸附器依序循环分配时间段T/n,并从一台吸附器进入以下步骤: a)并流生产氧的步骤,其中时间 x ,压力至少等于大气压,至少在该生产步骤的大部分时间引入空气; b)减压步骤,其中至少在其最后阶段逆流减压至泵送获得的低于大气压;泵送后可通过富氧气体逆流而冲洗一洗脱;在该泵送步骤期间达到的最低循环压为Pm; c)再压缩步骤,其中至少包括用富氧气逆流再压缩阶段,其特征在于联合以下步骤 d)吸附器的数量至少为3; e)生产步骤时间长于分时段T/n; f)逆流再加压和必要时的冲洗-洗脱时间总和至多等于生产步骤时间; g)b)的泵送步骤“ k ”泵送系统(K≥1)进行,每一系统适宜于部分减压水平并且在泵送时间 y 内依序作用于相同吸附器,其中(k-1) (T)/(n) <y≤k (T)/(n) ,而“k”比至少一部分时间间隔T/n内同时生产的最大吸附器数目少至少一台装置。 2、权利要求1的制氧方法,其中在生产步骤和逆流减压步骤之间进行h)并流减压步骤以为另一台吸附器按步骤b)进行的冲洗一洗脱。 3、权利要求1的制氧方法,其中在生产步骤和逆流减压步骤之间进行h)并流减压步骤以为再压缩步骤c)提供部分再压缩气。 4、权利要求2的制氧方法,其中先按i)进行减压后按h)进行减压。 5、权利要求1的制氧方法,其中步骤b)和/或c)的富氧气体由生产氧气组成。 6、权利要求1的制氧方法,其中再压缩步骤(c)的逆流再压缩期间用生产气进行。 7、权利要求1的制氧方法,其中生产步骤至少部分在高压下进行。 8、权利要求1的制氧方法,其中生产步骤至少部分在增压情况下进行。 9、权利要求1的制氧方法,其中再压缩步骤(c)包括至少一段时间用空气并流再压缩。 10、权利要求1的制氧方法,其中最高循环压力P M 在大气压至
2: 6×10 5 Pa,而最低循环压为0.2×10 5 -0.5×10 5 Pa。 11、权利要求的含大量氧的气体生产方法,其中(b)的泵送时间为循环时间T的20-40%。

说明书


本发明涉及用空气生产富氧气体的方法,其中在高压PM和低压Pm(低于大气压)之间泵送进行“PSA”吸附(变压吸附)。

    这种设备存在用空气经沸石,如5A或13X类沸石分馏而制造工业用氧气,可提供氧含量高达95%的富氧空气(其余5%基本上由氩组成)。

    但在大量应用中,氧含量达到90/93%就已足够。在这一含量范围内,生产氧量可达几吨/天至几百吨/天。

    已开发的这种已知工业设备产量10-50T/j,与低温设备所得液态氧比较,投资方面似乎很具有竞争性。

    已提出在这些设备中应用的不同类型循环包括2-4台吸附器,其中之一进行生产,而其它则进行再生或处于中间阶段(冲洗,增压……)。

    由于这些循环耗时一般90秒至几分钟,所以对于给定循环和预定操作时间,吸附器容积会随着待生产物流而成比例增大。为避免吸附剂磨损,则在某些阶段要满足气流速度要求就要使气流达到最小横截面,而对于大尺寸,这又直接或间接变为限制因素。在立柱形吸附器用气体垂直循环的情况下,吸附器直径就会太大,超过设备的某一尺寸(限制底和套的直径,运输问题……)。

    在水平柱形吸附剂用气体垂直循环的情况下,相同直径时可使其中通过的流量比前一种情况大,但应用大流量会导致在吸附剂两侧的内部收集器中出现气体分布问题以及使这些收集器中出现死角问题。另一方面,在相同阶段,动力现象要求最短的时间以防止性能降低,而对于给定粒度的吸附剂而言,这又决定了最佳循环时间。

    只要记住研磨,动力和技术方面的限制要求,则这种制氧设备的产量限制据说为60T/j。

    在应用条件要求大量富氧空气,如300T/j时,实际上的解决办法是设置大量装置,并行操作(如3台装置,每台50T/j,产量150T/j)或应用低温装置解决。

    本发明解决的问题是在生产投资比并行应用多台独立装置时的投入少的情况下提高工业制氧设备的实际产量限制。更具体地讲,本发明目的是提出用单一装置生产远高于60T/j的氧产量,与并用多台装置时的费用相比,其生产成本中降低固定资产投资(土建,通用工程,装备及启动设施)并且还可降低流动资金投入(原材料,吸附剂……)。

    本发明这些目地可用上述类型的方法达到,其中在多台n吸附器上按时间T就每台吸附器依序循环分配时间段T/n,并从一台吸附器进入以下步骤:

    a)并流生产氧的步骤,其中时间x,压力至少等于大气压,至少在该生产步骤的大部分时间引入空气;

    b)减压步骤,其中至少在其最后阶段逆流减压至泵送获得的低于大气压;泵送后可通过富氧气体逆流而冲洗-洗脱;在该泵送步骤期间达到的最低循环压为Pm;

    c)再压缩步骤,其中至少包括用富氧气逆流再压缩阶段,

    其特征在于联合以下步骤

    d)吸附器的数量至少为3;

    e)生产步骤时间长于分时段T/n;

    f)逆流再加压和必要时的冲洗-洗脱时间总和至多等于生产步骤时间;

    g)b)的泵送步骤用“k”泵送系统(K≥1)进行,每一系统适宜于部分减压水平并且在泵送时间y内依序作用于相同吸附器,其中(k-1) (T)/(n) <y≤k (T)/(n) ,而“k”比至少一部分时间间隔T/n内同时生产的最大吸附器数目少至少一台装置。

    “泵送系统”指泵及其附属马达或泵段或泵体,此时多台泵送系统可连于单一马达上或多台泵并行设置并在给定时刻从相同的单一吸附器泵送气体。

    按步骤c)逆流引入的减压气为来自另一吸附器的初始减压气和/或来自至少又一吸附器的生产气。一部分步骤c)的再压缩气还可能由并流引入的空气组成。

    最大循环压力一般为大气压至1.6×105Pa,而最小循环压力为0.2×105-0.5×105Pa。

    以下参照附图详述本发明。

    图1至8均示出了时间T内的操作循环“压力(纵坐标)一时间(横坐标)”其中n台吸附器组的吸附器以分时间T/n依序操作。

    作为通常的情况,应当指出在气体于吸附器中分别从待处理混合物入孔向生产气出孔以及反过来的分别情况下循环时才应用“并流”和“逆流”描述。在压力图线上,并流方向伸向与纵坐标“(压力)”轴平行的图顶部,而逆流方向则正好相反。指出气流方向的箭头穿过图时意指气体经过吸附器,即从一个开孔(入孔或出孔)到另一孔(分别为出孔或入孔)。

    箭头起始于或终止于图时意指一个开孔关闭,即分别表示排空或填充。

    图及文字说明中应用以下符号:

    T  循环时间或区段;

    n  吸附器组中吸附器数;

    T/n  依序的两台吸附器之间的分时段;

    N  同时生产的吸附器数;

    t1  并流生产步骤开始;

    t2  并流生产步骤结束或必要时的初始并流减压步骤开始;

    t3  必要时的初始并流减压步骤结束或逆流减压步骤开始;

    t4  逆流减压步骤在必要时的冲洗-洗脱之前结束;

    t5  必要时的冲洗-洗脱步骤结束;

    t6  必要时的部分再压缩达到中压的步骤开始;

    t7  最终再压缩步骤结束;

    d1  并流生产步骤时间;

    d2  必要时的并流减压步骤时间;

    d3  必要时的冲洗-洗脱之前的逆流减压时间;

    d4  冲洗-洗脱时间;

    d5  逆流再压缩时间;

    d6  并流再压缩时间;

    d7  逆流泵送与必要时的冲洗-洗脱时间;

    k  泵送系统数。

    现参照图1-8,其中对应于循环区段和不同步骤的时间作为举例以吸附时间为基础给出,包括空气进入吸附器,定为60s(秒);这一时间在“PSA”工业制氧情况下一般为30-120s,其中用的是直径1-3mm的球状吸附剂或直径相当的其它粒度吸附剂。

    图1

    T  sec:120sec

    n:4

    T/n:30

    N:2

    d1:60sec

    d2:10sec

    d3:20sec

    d4:10sec

    d5:20sec

    d7:30sec

    k:1

    这一循环中有4台吸附器,两台同时生产,每一台时间60s并且每台吸附器逆流泵送后洗脱30s,采用了单一泵送系统,同时保证该泵送系统连续操作。

    与该循环,即相同类型的循环(步骤顺序相同,60s吸附时间相同,泵系统连续操作,每台吸附器体积相同)但只包括单一吸附器在其操作的给定时刻进行生产相比,得到了三台吸附器并且生产减少一半的设备。

    就每立方米氧产品而言,既不大量降低产率,又不大量提高能耗。如图1有4台吸附器的设备与两台各包括3台吸附器的单独设备相同的产量,这表明产率提高了50%,而且每装置的产量限制已得以由因子2相乘。

    图2

    T:100sec

    n:5

    T/n:20

    N:3

    d1:60sec

    d2:10sec

    d3:10sec

    d4:10sec

    d5:10sec

    d7:20sec

    k:1.

    图2的循环不同于前一循环,其中在吸附器组中增加了一台吸附器,并且增加一台连续生产的吸附器。循环时间T缩短到100sec,生产时间d1保持60sec并且泵送时间d7降为20sec。

    图3

    T:120sec

    n:6

    T/N:20sec

    N:3

    d1:60sec

    d2:10sec

    d3:30sec

    d4:10sec

    d5:10sec

    d7:40sec

    k:2

    在该方案中,泵送时间d7为40sec,为分时段T/n的2倍,因此用了两套泵送系统(泵1和2)连续操作,每一台适宜于其吸入和驱动背压水平。

    图4

    T:90sec

    n:3

    T/N:30sec

    N:依序为1和2

    d1:40sec

    d2:10sec

    d3:10sec

    d4:10sec

    d5:10sec

    d6:20sec

    d7:20sec

    k:1

    仅用了三台吸附器,单一泵并不连续操作,时间d7为分时段的2/3。另一方面,两台吸附器同时生产,至少在相当于分时段T/n的一部分的给定时刻如此,在另一部分时间内以单一吸附器进行生产。

    应当注意到,再压缩在10秒内进行,其中在吸附器的两端送入气体,即空气并流,并且最初减压气在初减压期间从另一吸附器并流轴出并在再压缩期间再逆流送入吸附器。在最终再压缩阶段,仅有空气并流输送。

    图5

    T:144sec

    n:6

    T/N:24sec

    N:顺序为2和3

    d1:60sec

    d2:12sec

    d3:36sec

    d4:12sec

    d5:24sec

    d7:48sec

    k:2

    在该方案中,泵送期间(d7=48sec)要求两台泵(泵1和泵2),其中一台在相对高压下操作,而另一台在不那么高的压力下操作。在吸附器上的操作时间每种情况下均为24sec,均连续操作。

    图6

    T:120sec

    n:6

    T/N:20sec

    N:3

    d1:60sec

    d2:0sec

    d3:40sec

    d5:20sec

    d7:40sec

    k:2

    在该方案中,最大循环压力PM等于或仅稍高于大气压Pa时,减压就完全用两台泵(泵1和泵2)泵送进行,每一台在分时间T/n期间操作。不进行洗脱,并且沿生产物流抽出气体即可进行完全的再压缩。

    图7

    T:120sec

    n:6

    T/n:20sec

    N:3

    d1:60sec

    d2:10sec

    d3:30sec

    d5:20sec

    d7:30sec

    k:2

    在此,泵送时间d7(30秒)超过20秒的分时段。即使压力降低足够温和,也宜于采用两泵,其中第一泵(泵1)仅操作10秒,而第二泵(泵2)在更大减压量情况下操作,时间为分时段。该第二泵2因此连续操作,而第一泵1仅操作一半时间。应注意到,再压缩完全逆流进行,其中用来自另一吸附器初始减压(d′5=10秒)的气体,然后用生产气(d″5=10秒)。

    图8

    T:120sec

    n:4

    T/n:30sec

    N:2

    d1:60sec

    d2:0sec

    d3:30sec

    d4:0sec

    d5:30sec

    d7:25sec

    k:1

    其中泵送时间d7短于逆流减压时间,因为在此之前已有曝露在吸附器逆流空气中的步骤。

    这一步骤可在启动泵送步骤在大气压下开始。

    从下表中可以看出,泵送时间d7总是短于或等于生产步骤d1的时间。与循环总时间T相比,这一泵送时间为循环时间T中的0.20(图2的循环)至0.33(图5的循环)。下表中,Fig.X表示图X。

    Fig.1Fig.2Fig.3Fig.4Fig.5Fig.6Fig.7Fig.8T(sec)1201002090144120120120n45636664T/n3020203024202030N2331 ou22 ou3332dl(awx)6060604060606060d2(awx)10101010120100d3(awx)2010301036403030d4(awx)1010101012000d5(awx)2010101024202030d6(awx)00010+100000d7(awx)3020402048403025k11212221

    

含大量氧的气体生产方法.pdf_第1页
第1页 / 共17页
含大量氧的气体生产方法.pdf_第2页
第2页 / 共17页
含大量氧的气体生产方法.pdf_第3页
第3页 / 共17页
点击查看更多>>
资源描述

《含大量氧的气体生产方法.pdf》由会员分享,可在线阅读,更多相关《含大量氧的气体生产方法.pdf(17页珍藏版)》请在专利查询网上搜索。

从空气中选择吸附氮的工艺用于包括多台吸附器的系统以提供高压富氧气体,吸附器大气压下用泵减压并用富氧气体再压缩而更新。泵送时间至多等于生产步骤的时间。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般的物理或化学的方法或装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1