光源装置.pdf

上传人:a2 文档编号:532472 上传时间:2018-02-21 格式:PDF 页数:19 大小:773.37KB
返回 下载 相关 举报
摘要
申请专利号:

CN200610163648.6

申请日:

2006.12.01

公开号:

CN1983016A

公开日:

2007.06.20

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

G03B21/14(2006.01); H01J61/20(2006.01); H01J61/04(2006.01)

主分类号:

G03B21/14

申请人:

优志旺电机株式会社;

发明人:

后藤一浩; 杉谷晃彦; 寺田庄一; 东间崇宽

地址:

日本国东京都千代田区

优先权:

2005.12.13 JP 2005-358476

专利代理机构:

中原信达知识产权代理有限责任公司

代理人:

钟强;关兆辉

PDF下载: PDF下载
内容摘要

本发明提供一种光源装置,即使使用DMD方式也能很好地控制突起的成长,由在放电容器内封入0.15mg/mm3以上的水银和溴的超高压放电灯(10)、供电装置(30)、椭圆反射镜(20)、和色轮(200)构成。其特征在于,被配置在放电灯(10)的椭圆反射镜(20)的开口侧的电极(15a),其前端粗径部的体积W(mm3)和电流值I(A)之间的关系为:0.06<W/I2<0.96。

权利要求书

1.  一种光源装置,具有:
超高压放电灯,在由石英玻璃构成的放电容器中,以1.5mm以下的间隔相对配置一对电极,并在该放电容器内封入0.15mg/mm3以上的水银,和10-6μmol/mm3~10-2μmol/mm3的范围的溴;
供电装置,向该放电灯供给交流电流,使其点灯;
椭圆反射镜,以使该放电灯的电极轴方向与光轴一致的方式配置,将放电灯的放射光反射到光轴前方;和
色轮,被配置在从该椭圆反射镜的焦点位置靠向灯的位置上,接收来自反射镜的光并将其分解成色成分,其特征在于,
所述一对电极,均具有前端粗径部,和形成在该前端粗径部上的突起,
并且在该电极中被配置在所述椭圆反射镜开口侧的电极,其前端粗径部的体积W(mm3)和从所述供电装置供给的电流值I(A)之间的关系为:0.06<W/I2<0.96。

2.
  根据权利要求1所述的光源装置,其特征在于:
在所述电极中被配置在反射镜顶部侧的电极,与配置在所述开口侧的电极相比,前端粗径部的体积较小。

说明书

光源装置
技术领域
本发明涉及一种光源装置。特别涉及一种适用于使用DLP(数字光处理)的投影装置的光源装置。
背景技术
使用液晶或DMD(Digital Micromirror Device,数字微镜装置)的投影装置利用反射镜或透镜系统,将从光源(放电灯)放射的光,集光照明到显示影像信息的小型元件上,将来自该小型元件的反射光或透过光通过透镜等光学系统照射到屏幕上。
此时,要求放电灯为点光源。这是因为小型元件小到1英寸以下,且入射光束的角度较小时,光的利用效率较高,且图像的对比度也变好。
将图像信息进行彩色投影的方法有单片方式和三片方式。
在三片方式中,来自光源的放射光被分离为3色(RGB)后,在各显示元件中使对应于图像信息的光透过或反射,其后,将透过各显示元件的3色合成,投影到屏幕上。
另一方面,单片方式将来自光源的放射光经由已分割形成有RGB区域的色轮,照射到DMD,在该DMD使特定的光反射,照射到屏幕上。所谓DMD,是在每一个象素上铺满数百万个微镜的器件,通过控制各个微镜的方向控制光的投影。
在DMD方式的情况下,虽然在屏幕上是在每个极短时间内投影RGB中任一个色的影像,但是由于该时间极短,因此对人类视觉而言显示的是已被合成的彩色图像。
该DMD方式与液晶方式相比,光学系统较为简易,并且不需要使用三片液晶面板,因此具有能将装置全体小型化、简易化的优点。
另一方面,投影装置的光源使用高水银蒸气压的高压放电灯。这是由于通过提高水银蒸气压,可以以高输出得到可见波长区域的光。并且,公知的是这种水银蒸气压较高的放电灯在点灯时会在电极前端形成突起。例如,在专利文献1中公开了将放电电弧的产生位置稳定地集束在突起上,有效抑制电弧跳跃现象的技术。具体而言,记载了通过特定的卤素量、水银量,和电极间距离、点灯频率等控制突起的成长的技术。
然而,在DMD方式的投影机的情况下,即使在应该能良好地控制突起的条件下点灯,也会产生该突起消失,电弧变得不稳定的问题。这个问题在配置在椭圆反射镜的前面开口侧的电极上特别容易发生。其原因可推论为是由于灯的反射光在色轮(色轮,color wheel)上反射,照射到电极上,因此该电极受到预计外的加热。特别是,色轮被配置在从椭圆反射镜的焦点位置稍稍靠前方(灯侧)的位置,因此位于反射镜的前面开口侧的电极会被加热。
专利文献1特开2001-312997号
发明内容
本发明要解决的课题是提供一种即使使用DMD方式也能良好地控制突起的成长的光源装置。
为了解决上述课题,本发明的光源装置,具有:超高压放电灯,在由石英玻璃构成的放电容器中,以1.5mm以下的间隔相对配置一对电极,并在该放电容器内封入0.15mg/mm3以上的水银,和10-6μmol/mm3~10-2μmol/mm3的范围的溴;供电装置,向该放电灯供给交流电流,使其点灯;椭圆反射镜,以使该放电灯的电极轴方向与光轴一致的方式配置,将放电灯的放射光反射到光轴前方;和色轮,被配置在从该椭圆反射镜的焦点位置靠向灯的位置上,接收来自反射镜的光并将其分解成色成分。
并且,所述一对电极,均具有前端粗径部,和形成在该前端粗径部上的突起,且在该电极中被配置在所述椭圆反射镜开口侧的电极,其前端粗径部的体积W(mm3)和从所述供电装置供给的电流值I(A)之间的关系为:0.06<W/I2<0.96。
进而,所述电极中被配置在反射镜顶部侧的电极,与配置在所述开口侧的电极相比,前端粗侧径部的体积较小。
发明的效果
本发明考虑到来自色轮的反射光的照射而设计了位于反射镜前面开口侧的电极,因此即使在将该放电灯用于需要使用色轮的DMD的情况下,突起也不会因为过剩的过热而消失。
附图说明
图1表示本发明的光源装置的概略结构。
图2表示本发明的放电灯。
图3表示本发明的放电灯的电极。
图4表示本发明的供电装置的结构。
图5表示本发明的效果的实验结果。
具体实施方式
发明实施的最佳方式
图1表示本发明的光源装置的概略结构。灯单元100由放电灯10与凹面型的椭圆反射镜20构成。在灯单元100前方依次配置有色轮200、棒形积分器透镜(rod integrator lens)300、透镜400、DMD 500、透镜600。
放电灯10被组装到椭圆反射镜中,将两者配置成放电灯10的电极延伸方向(长度方向)与椭圆反射镜的光轴方向一致,并且放电灯的电弧辉点与椭圆反射镜20的第1焦点大致一致。来自椭圆反射镜20的反射光经由色轮200入射到棒形积分器透镜300,色轮200位于比椭圆反射镜20的第2焦点稍稍靠向灯侧。色轮200由滤色轮驱动机构210进行旋转、停止等驱动控制,放电灯由供电装置30进行供电控制。
色轮,也称为旋转滤色轮,由圆盘状的玻璃构成。在滤色轮中,红(R)、绿(G)、蓝(B)、白(W)的区域分别形成为扇形。
来自灯单元100的反射光透过形成在色轮200上的光集光区域。通过色轮200的旋转,与光集光区域对应的颜色顺次被引导到后段的棒形透镜。因此,由于红(R)、绿(G)、蓝(B)被分时段地投影,因此虽然瞬间仅有任一种颜色通过图像显示元件被投影,但在人类视觉上将这些颜色或其混合色作为图像识别。另外,白(W)用于使图像整体变亮,通过在每一定周期内投影白色,使图像整体变亮。
在此,色轮200例如以180Hz旋转(每秒180次旋转),因此,1秒内红、绿、蓝、白被投影180次。
另外,考虑到最终图像的色平衡及亮度,色轮200规定了各个区域的面积。色轮200例如半径为25mm,光集光区域例如为3.6×4.8mm的矩形形状。
图2表示本发明的光源装置使用的高压放电灯的整体结构。
放电灯10具有由石英玻璃构成的放电容器所形成的大致球形的发光部11,在发光部11的两端部形成有封固部12。由钼构成的导电用金属箔13例如通过收缩密封气密地埋设在该封固部12中。金属箔13的一端与电极15的轴部接合,并且,金属箔13的另一端与外部引线14接合,由外部的供电装置30供电。在该发光部11中,一对电极15以2mm以下的间隔被相对配置。另外,电弧辉点形成在电极之间。
在发光部11中密封有水银、稀有气体、以及卤素气体。水银用以获得必要的可见光波长,例如波长为360~780nm的放射光,被密封有0.2mg/mm3以上。该密封量根据温度条件而不同,但在点灯时变成200个大气压以上的极高的蒸气压。并且,通过封入更多的水银,能够制作水银蒸气压在250个大气压以上,或300个大气压以上的高水银蒸气压的放电灯,而水银蒸气压越高,越能实现适于投影装置的光源。
稀有气体例如约13kPa的氩气被封入。其功能是改善点灯起动性。卤素是将碘、溴、氯等以与水银或其他金属的化合物的形态被密封。卤素的密封量可从10-6μmol/mm3~10-2μmol/mm3的范围选择。卤素的功能是利用所谓卤循环来达成长使用寿命,但在本发明的放电灯等超小型且极高点灯蒸气压的灯中也具有防止放电容器失透(devitrification)的功能。
放电灯的数值例例如为:发光部的最大外径9.5mm,电极间距离1.5mm,发光管内容积75mm3,额定电压70V,额定功率200W,并被交流点灯。
并且,这种放电灯被内置于小型DLP型投影装置,在要求其整体尺寸极小的同时,也要求高发光光量。因此,对发光部内的热的影响极为严峻。灯的管壁负荷值为0.8~2.0W/mm2,具体而言为1.5W/mm2
在将具有这种高水银蒸气压或管壁负荷值的灯安装在DLP型投影装置灯的显示用机器时,能提供彩色再现性优良的放射光。
椭圆反射镜20为短焦点型椭圆集光镜,将硼硅玻璃或结晶玻璃作为基板,蒸镀有二氧化钛、二氧化硅等多层膜。如上所述,放电灯10的电弧辉点位于椭圆反射镜20的一个焦点位置上,另个焦点位置位于色轮的稍稍后方(在光的直进方向上的后方)。有时在椭圆反射镜20的前方开口上安装有前面玻璃21。
在电极15前端(与另一个电极相对的端部),随着灯的点灯形成突起。形成有突起的现象不一定明显,但可如下推测。
即,在灯点灯中,从电极前端附近的高温部蒸发的钨(电极的构成材料)与存在于发光管内的卤素或是残留氧结合,例如若卤素是Br,则作为WBr、WBr2、WO、WO2、WO2Br、WO2Br2等钨化合物存在。这些化合物在电极前端附近的气相中的高温部分解,变成钨原子或阳离子。通过温度扩散(钨原子从气相中的高温部=电弧中,向低温部=电极前端附近扩散),及在电弧中钨原子电离变成阳离子,在阴极动作时通过电场被向阴极方向吸引(=飘移,drift),在电极前端附近的气相中的钨蒸汽密度变高,在电极前端析出,形成突起。
即使在初期并不存在突起的情况下,也会通过其后的点灯,可以说自然产生地形成。但是,突起并不是在任何的放电灯中均会产生。公知的是,在电极间距离为2mm以下、发光部内封入了0.15mg/mm3以上的水银、稀有气体、以及1×10-6~1×10-2范围的卤素的短弧型放电灯中,随着灯的点灯会形成突起。
该突起在本发明这种电极间距离为2mm以下、在发光管内含有0.15mg/mm3以上(特别是,0.2mg/mm3以上)的水银的放电灯作为投影装置的光源使用的情况下是不可缺少的。
其原因是因为在发光管内含有0.15mg/mm3(特别是2.0mg/mm3以上)的水银,动作压力高达200个大气压以上的放电灯中,由于高蒸气压,电弧放电被缩小,其结果使得放电起点也被缩小。
因此,如果是突起消失的球面状电极,则放电起点会微微移动,在投影装置的影像画面上导致闪烁(闪烁)的问题。特别是,因为在2mm以下的短电极间距离上形成的电弧辉点即使有0.5mm以下的微小移动,作为影像画面,也容易造成致命的闪烁。
图3表示电极和前端形成的突起。
(a)表示熔融线圈状的钨而制作的电极(所谓的熔融电极),(b)、(c)、(d)表示通过切削加工制作的电极(所谓的切削电极)。
在(a)中,电极15整体由前端粗径部151、线圈部152、轴部153构成,在前端粗径部151的前端(与另一个电极相对侧)形成有突起154。线圈部152,例如由线状钨卷绕成线圈状,在点灯起动时通过表面的凹凸效果作为起动的种(起动开始位置)起作用,且在点灯后,通过表面的凹凸效果及热容起到放热的作用。并且,由于线圈是细线,因此容易变成高温,具有使辉光放电容易转移成电弧放电的功能。
前端粗径部151是在该实施例中位于线圈部152与突起部154之间的部分,作为钨蒸发的部分。前端粗径部151是在轴上卷绕钨线圈,通过加热线圈或是通过激光照射将其熔融而形成。因此,卷绕在轴上的线圈中完全熔融的部分成为前端粗径部151,未熔融的部分成为线圈部152,前端粗径部151及线圈部152是一体的关系。
另外,前端粗径部152如上所述通过将线圈熔融而形成,但是并不一定如图所示能够将线圈、前端粗径部或轴部完全地区分开。在这种情况下,将勉强维持作为线圈的截面形状的部分称为线圈部,将线圈的截面形状被熔融一半以上的情况称为前端粗径部。
在(b)中,前端粗径部151预先通过切削加工形成。其后,通过在后端部分卷绕线圈,形成线圈部152。在这种电极的情况下,前端粗径部151与线圈部152并非为一体,变成通过组装构成的关系。前端粗径部151的形状并不限于(b)图的形状,也可以是(a)这样的球状。此时,前端粗径部151的范围如图中斜线所示,是比轴部153粗的部分,在本发明中,所谓“前端粗径部151”,可以定义为有助于钨蒸发、突起154生成及成长的部位。
在(c)中,前端粗径部151的外径大致维持相同直径并以棒状延伸。与(b)相同,线圈部152在前端粗径部151的范围内形成。此时,前端粗径部151也如图中斜线所示,是比轴部153粗的部分。
在(d)中,前端粗径部151在轴部153侧形成得较大,在突起部154侧形成得较小。线圈部152卷绕在突起部154侧。此时,前端粗径部151也如图中斜线所示,是比轴部153粗的部分。
如果线圈部在起动时的功能或稳定点灯时的放热功能没有问题,则并不限于熔融电极或切削电极,可采用任一种电极。并且,也有不存在线圈部的电极。
对于(a)所示的熔融电极,若举例说明,则前端粗径部151的最大外径为φ0.5mm~1.8mm左右,例如为1.7mm,轴方向的长度为0.7mm~3.5mm左右,例如为1mm。线圈部152的外径为φ0.5mm~1.8mm左右,例如为1.7mm,轴方向的长度为0.6mm~3.0mm左右,例如为0.8mm。轴部153的外径为φ0.3mm~0.8mm左右,例如为0.5mm。轴方向的长度为3mm~8mm左右,例如为5mm。突起154的外径为φ0.2~0.7mm,例如为0.4mm。
在此,本发明的特征在于,在将放电灯10组装入反射镜20的情况下,位于反射镜20的前面开口侧的电极15a的前端粗径部的体积通过与电流值的关系来限定。这是因为,我们发现通过这样规定,在放电灯的放射光中即使被色轮反射的光照射到电极15a,该照射也不会对突起的消失造成影响。
具体而言,前端粗径部152的体积W(mm3),与点灯电流值I(A)的关系,优选将W/(I2)从0.06~0.96的范围选择,并且更优选的是从0.12~0.7的范围选择的值。其根据可以通过后述的实验来表示。
在此,将前端粗径部152的体积作为要素的理由是前端粗径部152为电极15a的主体部分,通过高温化会导致钨的蒸发。即,可以说因为正是前端粗径部152利用来自色轮的反射光影响突起的消失。而且,将点灯电流值作为要素的理由是灯放射光的能量与电流值的平方相关。
进而,规定位于反射镜20的前面开口侧的电极15a的前端粗径部的体积的理由是因为色轮被配置成比反射镜的焦点位置稍稍靠向放电灯,因此来自色轮的反射光照射到电极15a。因此,优选的是,位于反射镜20的顶点侧的电极15b比位于前面开口侧的电极15a体积小。这是因为,对符合不会受到来自色轮的反射光的照射这一条件的体积进行规定,对突起的良好生成、成长来说较为理想。
然而,位于前面开口侧的电极15a的前端粗径部的体积,及位于反射镜20的顶点侧的电极15b的前端粗径部的体积,皆是不使突起生成的体积值,或者是从产生闪烁的观点而言,不会产生对投影装置而言是致命伤的程度的问题的体积值,具有一定程度的数值宽度,因此,即使将两电极的体积值设为相同,也可能不会产生问题。
若举出数值例,则在放电灯的额定功率为200W的情况下,电极15a的前端粗径部的体积为0.8~3mm3。并且,在放电灯的额定功率为250W的情况下,电极15a的前端粗径部的体积为1.2~4mm3
图4表示使上述放电灯点灯的供电装置。
点灯装置由放电灯10与供电装置构成。供电装置30由:被供给直流电压的降压斩波电路(chopper circuit)31;与降压斩波电路31的输出侧连接、将直流电压变为交流电压并供给到放电灯10的全桥逆变器电路32(以下也称为“全桥电路”),以及与放电灯串联连接的线圈L1,电容器C1,及起动电路33构成。
另外,由降压斩波电路31、全桥电路32、起动电路33构成供电装置30,包括放电灯10在内,称为点灯装置。
降压斩波电路31与直流电源VDc连接,由开关元件Qx、二极管Dx、线圈Lx、平滑电容器Cx、开关元件Qx的驱动电路Gx构成。开关元件Qx被驱动电路Gx驱动导通/截止。通过此驱动,调整开关元件Qx的占空比,控制供给到放电灯10的电流或功率。
全桥电路32由被连接成桥状的晶体管或FET的开关元件Q1~Q4、开关元件Q1~Q4的驱动电路G1~G4构成。另外,在开关元件Q1~Q4上有时将分别并联的二极管反并联连接,但在该实施例中省略了二极管。
上述开关元件Q1~Q4通过省略图示的控制部由驱动电路G1~G4驱动。
全桥电路32的动作是将开关元件Q1、Q4,和开关元件Q2、Q3交互重复导通、截止。当开关元件Q1、Q4导通时,电流以降压斩波电路31→开关元件Q1→线圈L1→放电灯10→该关元件Q4→降压斩波电路31的路径流过。另一方面,当开关元件Q2、Q3导通时,电流以降压斩波电路31→开关元件Q3→放电灯10→线圈L1→开关元件Q2→降压斩波电路31路径向放电灯10供给交流矩形波电流。
在驱动上述开关元件Q1~Q4时,为了防止开关元件Q1~Q4同时导通,在切换交流矩形波的极性时,设有将开关元件Q1~Q4全部设为截止的时间(停滞时间Td)。
另外,供给到放电灯10的交流矩形波输出的频率从60~1000Hz(恒定频率)的范围选择,例如为200Hz。并且,上述停滞时间(dead time)从0.5μs~10μs的范围选择。
并且,优选的是,通过供电装置,一边将放电灯以恒定频率(60~1000Hz)点灯,一边定期插入比该恒定频率低的频率。通过插入较低频率,对电极加热,其结果会有助于突起的稳定成长。
低频率为半周期~5周期的长度,以0.1秒~120秒的间隔被插入。
图5表示显示本发明的效果的实验结果。
实验观察在图1所示光源装置中,随着放电灯的点灯,电极前端的突起的状态。具体而言是观察点灯30分钟后配置在反射镜的前面开口侧的电极的突起的存在概率、点灯30分后在屏幕上的照度变动率、以及突起存在时的位置的稳定性。
放电灯是如图2所示形态的灯,且电极采用图3(a)所示的熔融电极,并准备有使前端粗径部的体积变化的20根灯(在图中用灯1~灯20表示)。通过对该20根灯变化电流值,使W/(I)2的值在0.02~1.04的范围变化,并对上述特性进行观察。
实验中所用的灯,其石英玻璃的发光管的最大外径为φ10.0mm,在发光部封入0.25mg/mm3的水银,10-4μmol/mm3的溴气体,以及稀有气体。另外,电极间距离为1.0mm,在200W~230W的范围内投入功率并使其交流点灯,反射镜使用前面开口为46mm四方的椭圆反射镜。
图5表示灯1~灯20各自的W/(I2)值、突起的存在概率、照度变动率、以及突起的位置的稳定性。各灯分别进行5~10次左右的观察(观察次数依灯有所不同),突起的存在概率是将观察次数(相对于试验数的存在数)以%表示。
并且,照度变动率以目视进行,并分别作如下评价:“◎”指完全不会感受到照度变动,“○”指几乎不用担心照度变动,“△”指虽然产生了微小的照度变动,但是就全体而言并不用担心,“×”指能够观察到照度变动,已经达到目视时感到不快的程度。
进而,位置稳定性是观察点灯30分钟后的突起的位置。各符号分别表示如下:“◎”是在电极轴上作为中心明显地形成的情况(参照图3(a)),“○”是在电极轴上形成突起的大部分的情况,“△”是在电极轴上形成突起的一部分的情况,“×”是指突起不在电极轴上的情况。
从图5的实验结果可知,当W/(I2)的值比0.04小的情况下,突起的存在概率为65%,较低,特别是,当为0.02时几乎不能观察到突起。进而,当W/(I2)的值比0.04小时,在电极前端不存在突起,因此重复所谓电弧跳跃现象,作为影像装置产生无法容许的程度的照度变动。而且,当W/(I2)的值比1.0大时,虽然在电极前端存在突起,但该突起的存在位置并不适当,其结果造成照度变动。其原因是前端粗径部的体积太大,明确地产生受到来自色轮的反射光照射的部位和没有受到照射的部位,在前端粗径部产生不平衡的温度分布,其结果可以说由于钨蒸发的部位变成极不理想的位置,而使其后的突起的成长也在不理想的位置产生。
特别是,当W/(I2)的值在0.1~0.7的范围内时,突起的存在概率高,照度变动或突起的位置稳定性也好,进而,当W/(I2)的值为0.12~0.7时,可以得知突起的存在概率为100%,极为理想。
另外,在该实验中,色轮不倾斜。即,以放电灯的放射光垂直投影的方式配置色轮。但是,本发明者们通过其后的实验,确认了在将色轮倾斜5°左右时,在实用上能够使反射光返回放电灯。因此,本发明规定的数值是至少将色轮倾斜0~5°时,即使受到色轮的反射光的照射,突起也不会消失的数值。另外,在将色轮倾斜5°以上时,色轮的反射光不会回到放电灯,而向不同方向反射,虽不会产生将电极高温化的作用,但是会产生光学系统变为大规模的问题。
如上所述,本发明考虑到从色轮返回的光,通过对电极(前端粗径部)与电流值所决定的参数规定数值,能够将灯在即使受到上述返回的光的照射、突起也不会消失,即,在点灯中不会产生电弧跳跃,不会产生照度不稳定的情况下点灯。

光源装置.pdf_第1页
第1页 / 共19页
光源装置.pdf_第2页
第2页 / 共19页
光源装置.pdf_第3页
第3页 / 共19页
点击查看更多>>
资源描述

《光源装置.pdf》由会员分享,可在线阅读,更多相关《光源装置.pdf(19页珍藏版)》请在专利查询网上搜索。

本发明提供一种光源装置,即使使用DMD方式也能很好地控制突起的成长,由在放电容器内封入0.15mg/mm3以上的水银和溴的超高压放电灯(10)、供电装置(30)、椭圆反射镜(20)、和色轮(200)构成。其特征在于,被配置在放电灯(10)的椭圆反射镜(20)的开口侧的电极(15a),其前端粗径部的体积W(mm3)和电流值I(A)之间的关系为:0.06W/I20.96。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 摄影术;电影术;利用了光波以外其他波的类似技术;电记录术;全息摄影术〔4〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1