CN200580011841.1
2005.04.06
CN1972804A
2007.05.30
授权
有权
授权|||实质审查的生效|||公开
B41J2/05(2006.01)
B41J2/05
惠普开发有限公司;
T·L·本杰明; J·P·阿克斯特尔
美国德克萨斯州
2004.04.19 US 10/827,163
中国专利代理(香港)有限公司
王岳;梁永
一种流体喷射装置,包括点火单元(70,120)、配置成接收脉冲序列的信号线(106,212)、以及一个地址产生器(1000,1200),该地址产生器被配置成接收来自脉冲序列的脉冲,并且响应于所接收的脉冲而产生地址信号集,其中地址信号集适于为激活而使能点火单元(70,120)。
1、 一种流体喷射装置,包括:点火单元;信号线,被配置成接收脉冲序列;以及地址产生器,被配置成接收来自所述脉冲序列的脉冲,并且响应于所接收的脉冲而产生一个地址信号集,其中所述地址信号集适于为激活而使能点火单元。2、 如权利要求1所述的流体喷射装置,其中重复所述脉冲序列,并且所述地址产生器被配置成响应于所述重复的脉冲序列而产生一个地址信号集。3、 如权利要求2所述的流体喷射装置,其中在对应的地址时隙序列中提供所述地址信号集序列。4、 如权利要求1所述的流体喷射装置,其中所述信号线的每条信号线被配置成接收脉冲序列中的一个脉冲,并且地址产生器被配置成接收来自所述脉冲序列中的六个脉冲。5、 如权利要求1所述的流体喷射装置,其中所述地址产生器包括:存储元件,被配置成响应于所接收的脉冲而提供有效输出信号;以及逻辑电路,被配置成接收所述有效输出信号,并提供所述地址信号集中的有效地址信号。6、 如权利要求5所述的流体喷射装置,其中所述存储元件适于响应于所述脉冲序列而提供有效输出信号序列。7、 如权利要求6所述的流体喷射装置,其中所述逻辑电路接收有效输出信号序列,并响应于所述有效输出信号序列而提供地址信号集序列。8、 一种流体喷射装置,包括:多个点火单元;一条点火线,适于接收具有能量脉冲的能量信号;以及一个地址产生器,被配置成提供地址信号序列,适于在地址时隙序列中使能多个点火单元中的一些点火单元,其中在地址时隙序列中的每个地址时隙期间,所述能量信号提供至少一个能量脉冲,从而使所选的已使能的点火单元通电。9、 如权利要求8所述的流体喷射装置,其中所述地址产生器包括:存储元件,被配置成提供输出信号;以及逻辑电路,被配置成接收所述输出信号,并且响应于所述输出信号而提供地址信号序列,其中,所述逻辑电路被配置成响应于存储元件以第一输出顺序提供所述序列而以第一顺序提供地址信号序列,并且逻辑电路被配置成响应于存储元件以第二输出顺序提供所述序列而以第二顺序提供地址信号序列。10、 如权利要求8所述的流体喷射装置,其中所述地址产生器包括:第一存储元件,被配置成提供第一输出信号;第二存储元件,被配置成提供第二输出信号;第一逻辑电路,被配置成接收第一输出信号,并且响应于所述第一输出信号而以所述第一顺序提供地址信号序列;第二逻辑电路,被配置成接收第二输出信号,并且响应于所述第二输出信号而以所述第二顺序提供地址信号序列。11、 如权利要求8所述的流体喷射装置,其中所述地址产生器包括:存储元件,被配置成提供输出信号;第一逻辑电路,被配置成接收所述输出信号,并且响应于所述输出信号而以所述第一顺序提供地址信号序列;以及第二逻辑电路,被配置成接收所述输出信号,并且响应于所述输出信号而以所述第二顺序提供地址信号序列。12、 如权利要求8所述的流体喷射装置,其中所述地址产生器在地址时隙序列的每个地址时隙期间,提供地址信号集中的两个有效地址信号。13、 如权利要求8所述的流体喷射装置,还包括信号线,被配置成接收脉冲序列,其中所述逻辑电路被配置成接收脉冲序列中的三个脉冲。14、 如权利要求13所述的流体喷射装置,其中所述逻辑电路为所述脉冲序列中的三个连续脉冲提供有效地址信号。15、 如权利要求13所述的流体喷射装置,其中所述逻辑电路在所述脉冲序列中的三个连续脉冲期间提供无效地址信号。16、 一个打印头冲模,包括:控制器,被配置成产生信号集;第一线,适于传导第一脉冲;第二线,适于传导第二脉冲;第一组电阻器,被连接以便根据所述信号集和所述第一脉冲而导电;以及第二组电阻器,被连接以便根据所述信号集和所述第二脉冲而导电。17、 如权利要求16所述的打印头冲模,其中所述控制器按照预定模式提供所述信号集。18、 如权利要求17所述的打印头冲模,其中所述预定模式包括在任意时间段期间,顺序地提供所述信号集中的至少两个信号。19、 如权利要求16所述的打印头冲模,其中所述控制器包括:包括多个移位寄存器单元的移位寄存器,其每一个被配置成提供至少一个输出信号;多个输出,其每一个被配置成提供所述信号集中的一个信号;以及多个开关,被配置以使得所述多个开关中的至少两个开关连接,以便接收一个移位寄存器单元的输出,并且其中所述多个开关中的一个开关连接到多个输出中的一个输出。20、 如权利要求16所述的打印头冲模,其中所述控制器包括:移位寄存器,被配置成提供输出信号;以及逻辑电路,被配置成接收所述输出信号并响应于所述输出信号而提供所述信号序列。21、 如权利要求16所述的打印头冲模,其中所述信号集包括至少第一状态和第二状态,并且其中当所述信号集处于第一状态时,只有第一组电阻器连接而导通,并且当所述信号集处于第二状态时,只有第二组电阻器连接而导通。22、 如权利要求16所述的打印头冲模,其中所述信号集包括多个状态,并且其中所述控制器按按所述信号集的顺序提供所述状态。
液体喷射装置 相关申请的交叉引用 本申请涉及申请号(尚未分配)、代理人案号为200210152-1、名称为“Fluid Ejection Device”的专利申请,申请号(尚未分配)、代理人案号为2002091688-1、名称为“Fluid Ejection Device”的专利申请,申请号(尚未分配)、代理人案号为200311485-1、名称为“Device With Gates Configured In Loop Structures”的专利申请,申请号(尚未分配)、代理人案号为200209559-1、名称为“Fluid Ejection Device”的专利申请,以及申请号(尚未分配)、代理人案号为200209237-1、名称为“Fluid Ejection Device WithIdentification Cells”的专利申请,上述每项专利申请都已转让给本申请的受让人,并与本申请于同一日期提出申请,每项申请都被完全地引用作为参考,如同在此完全地阐述了一样。 背景技术 一个喷墨打印系统,作为液体喷射系统的一个具体实施例,可以包括打印头、为打印头提供墨水的供墨源,以及控制打印头的电子控制器。作为液体喷射装置的一个实施例,该打印头通过多个喷孔或喷嘴喷出墨滴。墨水被喷射到比如一张纸之类的打印介质上,从而在打印介质上打印出一幅图像。这些喷嘴一般分布成一列或者多列,当打印头和打印介质之间相对移动时,喷嘴完全顺序地喷出墨水,从而将字符或其它图像打印到打印介质上。 在一个典型的热喷墨打印系统中,通过迅速加热汽化室中的少量墨水,打印头从喷嘴喷出墨滴。墨水通过小型电子加热器加热,这些小型电子加热器是在此称为点火电阻器的薄膜电阻器。墨水加热后汽化,然后通过喷嘴喷出。 为了喷出一滴墨水,控制打印头的电子控制器从打印头的外部电源激发出一个电流。该电流流过选定的点火电阻器,从而加热对应的选定的汽化室中的墨水,并通过对应的喷嘴喷出墨水。已知的墨滴产生器包括点火电阻器、对应的汽化室以及对应的喷嘴。 随着喷墨打印头的逐渐发展,增加了打印头中的墨滴产生器的数目,从而改善了打印速度和/或质量。每个打印头中墨滴产生器数目的增加已经导致为了向数目增加的点火电阻器供电而相应增加打印头冲模上所需的输入焊盘的数目。在一种打印头中,每个点火电阻器都与对应的输入焊盘连接,以向点火电阻器供电。由于点火电阻器数目增加,因而无法现实每个点火电阻器都具有一个输入焊盘。 在另一种具有基元(primitive)的打印头中,每个输入焊盘的墨滴产生器的数目显著增加。单条的电源线向一个基元中的全部点火电阻器提供电源。每个点火电阻器与该电源线和对应的场效应晶体管(FET)的漏极-源极通路串联。基元中的每个FET的栅极都与一个独立的可通电地址线相连接,所述地址线由多个基元共用。 制造商不断降低输入焊盘的数目,并不断增加打印头冲模中墨滴产生器的数目。通常,带有较少输入焊盘的打印头比带有更多输入焊盘的打印头成本更低。而且,带有更多墨滴产生器的打印头通常具有较好的打印质量和/或打印速度。为了保持成本并提供一个特定的打印条带高度,打印头冲模未必随着墨滴产生器数目增加而发生显著改变。由于墨滴产生器密度增加并且输入焊盘的数目减少,打印头冲模的设计可能会变得越来越复杂。 基于上述理由及其它原因,因而有本发明的需求。 附图说明 图1说明一个喷墨打印系统的一个具体实施例。 图2是说明打印头冲模的一个具体实施例的一部分的示意图。 图3是说明打印头冲模的一个具体实施中位于供墨槽的墨滴产生器的示意图。 图4是说明打印头冲模的一个具体实施例中的点火单元的一个具体实施例的示意图。 图5是说明喷墨打印头点火单元阵列的一个具体实施例的原理图。 图6是说明预充电点火单元的一个具体实施例的原理图。 图7是说明喷墨打印头点火单元阵列的一个具体实施例的原理图。 图8是说明点火单元阵列的一个具体实施例操作过程的时序图。 图9是说明打印头冲模中的地址产生器的一个具体实施例的示意图。 图10A是说明移位寄存器中的一个移位寄存器单元的示意图。 图10B是说明方向电路的示意图。 图11是说明地址产生器以正向操作的时序图。 图12是说明地址产生器以反向操作的时序图。 图13是说明打印头冲模中的两个地址产生器和六个点火组的一个具体实施例的框图。 图14是说明打印头冲模中的地址产生器正向和反向操作的时序图。 图15是说明打印头冲模中的一个地址产生器、一个锁存电路和六个点火组的一个具体实施例的框图。 图16是说明锁存寄存器的一个具体实施例的示意图。 图17是说明锁存寄存器的一个具体实施例的操作实例的时序图。 图18是说明单向移位寄存器单元的一个具体实施例的示意图。 图19是说明使用单向移位寄存器单元在正向和反向提供地址的地址产生器的示意图。 图20是说明使用移位寄存器中的单向移位寄存器单元在正向和反向提供地址的一个地址产生器的示意图。 图21是说明打印头冲模的一个具体实施例的设计实例的示意图。 图22是说明打印头冲模的一个具体实施例的设计实例的另一个方面的示意图。 图23是说明打印头冲模的一个具体实施例的一部分的平面视图的示意图。 图24是说明打印头冲模的另一个具体实施例的设计实例的示意图。 图25A和25B是说明将外部电路连接到打印头冲模的一个扰性电路的接触区的示意图。 具体实施方式 在下述详细说明中,对附图进行了标记,附图标记形成本文的一部分,用于说明本发明可实现的指定具体实施例。在这点上,指示方向的术语,比如“顶部”、“底部”、“前面”、“后面”、“开头”、“结尾”等,用于指示所述附图的方向。因为本发明的具体实施例的组件能够在许多不同的方向定位,所以该指示方向的术语用于说明的目的,而并非限制。应当理解,可以利用其它具体实施例,并进行结构上或合乎逻辑的变化,但这些都不脱离本发明的范围。因此,下列详细说明并非一种限制,本发明的范围由附着的权利要求书确定。 图1说明喷墨打印系统20的一个具体实施例。喷墨打印系统20构成液体喷射系统的一个具体实施例,该系统包括比如打印头组件22的液体喷射装置,以及比如供墨组件24的液体供给组件。该喷墨打印系统20还包括安装组件26、介质传送组件28、以及电子控制器30。至少一个电源32向喷墨打印系统20的各个电子部件提供电源。 在一个具体实施例中,喷墨打印头组件22包括至少一个打印头或打印头冲模40,其通过多个喷孔或喷嘴34向打印介质36上喷射墨滴,从而在打印介质36上打印。打印头40是液体喷射装置的一个具体实施例。打印介质36可以是任何一种合适的薄板材料,比如纸张、卡片纸材、透明胶片、聚酯胶片、纤维织物等等。通常,喷嘴34以一或多列或者阵列的形式排列,使得当喷墨打印头组件22和打印介质36之间相对移动时,按正确顺序地从喷嘴34喷出墨水,从而在打印介质36上形成字符、符号和/或其它的图形或图像。尽管在下面的描述中提到可从打印头组件22喷出墨水,但应当理解,其它的液体、流体或可流动的物质,包括清澈的液体在内,都可从打印头组件22喷出。 供墨组件24作为流体提供组件的一个具体实施例,向打印头组件22提供墨水,并包括用于存储墨水的储液器38。这样,墨水从储液器38流入喷墨打印头组件22。供墨组件24和喷墨打印头组件22可以组成单向墨水输送系统或者循环墨水输送系统。单向墨水输送系统在打印期间消耗掉了提供到喷墨打印头组件22中的几乎全部的墨水。循环墨水输送系统在打印期间仅仅消耗掉了提供到打印头组件22的墨水中的一部分。这样,在打印期间未被消耗的墨水返回到供墨组件24。 在一个具体实施例中,喷墨打印头组件22和供墨组件24共同放置在一个喷墨盒或喷墨笔中。该喷墨盒或喷墨笔是液体喷射装置的一个具体实施例。在另一个具体实施例中,供墨组件24与喷墨打印头组件22分离,并且通过比如供给管(未示出)的连接接口向喷墨打印头组件22提供墨水。在另一个具体实施例中,供墨组件24的储液器38可以拆卸、替换和/或再次充填。在一个具体实施例中,喷墨打印头组件22和供墨组件24共同放置在喷墨盒中,储液器38包括位于喷墨盒中的局部储液器,并还可以包括与喷墨盒分离放置的较大储液器。这样,该分离的、较大的储液器用来再次充填该局部储液器。因此,该分离的、较大的储液器和/或该局部储液器可以拆卸、替换和/或再次充填。 安装组件26相对于介质传送组件28定位喷墨打印头组件22,介质传送组件28相对于喷墨打印头组件22定位打印介质36。因此,喷墨打印头组件22和打印介质36之间接近于喷嘴34的区域被定义为打印区37。在一个具体实施例中,喷墨打印头组件22是扫描类型的打印头组件。这样,安装组件26包括托架(未示出),该托架用于使喷墨打印头组件22相对于介质传送组件28移动以便扫描打印介质36。在另一个具体实施例中,喷墨打印头组件22是非扫描类型的打印头组件。这样,安装组件26将喷墨打印头组件22固定在相对于介质传送组件28的指定位置。因此,介质传送组件28相对于喷墨打印头组件22定位打印介质36。 电子控制器或打印机控制器30通常包括处理器、固件及其它电子设备或它们的任意组合,以便与控制喷墨打印头组件22、安装组件26和介质传送组件28通信。电子控制器30从比如计算机的主系统接收数据39,并且通常包括用于临时储存数据39的存储器。通常通过电子的、红外线的、光学的或其它信息传输路线将数据39发送到喷墨打印系统20。例如,数据39表示待打印的文档和/或文件。这样,数据39形成喷墨打印系统20的打印作业,数据39包括一个或多个打印作业命令和/或命令参数。 在一个具体实施例中,电子控制器30控制喷墨打印头组件22从喷嘴34喷出墨滴。这样,电子控制器30定义了在打印介质36上形成字符、符号和/或其它图形或图像的喷射墨滴的模式。该喷射墨滴的模式由打印作业命令和/或命令参数决定。 在一个具体实施例中,喷墨打印头组件22包括一个打印头40。在另一个具体实施例中,喷墨打印头组件22是宽阵列或多打印头组件。在一个宽阵列具体实施例中,喷墨打印头组件22包括支撑打印头40的支座,喷墨打印头组件22提供打印头冲模40和电子控制器30之间的电子通信,还提供打印头冲模40和供墨组件24之间的流体传递。 图2是打印头冲模40的一个具体实施例的一部分的示意图。该打印头冲模40包括打印或流体喷射元件42的阵列。打印元件42在基座44上形成,基座44中形成供墨槽46。这样,供墨槽46向打印元件42提供一定量的墨水。供墨槽46是流体供给源的一个具体实施例。流体供给源的其它具体实施例包括但不局限于向对应的汽化室馈送墨水的对应的单独供墨孔,以及多个较短的墨水供料槽,它们各自向对应的多组流体喷射元件馈送墨水。薄膜结构48具有供墨通道54,供墨通道54与基座44中的供墨槽46连接。喷孔层50有一个前面50a以及在前面50a中形成的喷嘴口34。喷孔层50还形成喷嘴室或在其中形成的与喷嘴口34和薄膜结构48的供墨通道54相通的汽化室56。点火电阻器52定位在汽化室56之内,导线58将点火电阻器52电连接到一个电路,该电路控制流经所选点火电阻器的电流的应用。这里提到的墨滴产生器60包括点火电阻器52、喷嘴室或汽化室56和喷嘴口34。 在打印期间,供墨槽46的墨水通过供墨通道54流入汽化室56。喷嘴口34可操作地与点火电阻器52相关联,以便汽化室56内的墨滴经由喷嘴口34喷出(例如,实质上垂直于点火电阻器52的平面),并且依靠通电的点火电阻器52将墨滴喷在打印介质36上。 打印头冲模40的具体实施例包括热敏打印头、压电打印头、静电打印头或现有技术中可以集成到一个多层结构中的其它任何类型的流体喷射装置。基底44由比如硅、玻璃、陶瓷或一种稳定的聚合物形成,薄膜结构48包括由二氧化硅、碳化硅、四氮化三硅、钽、多晶硅玻璃或其它合适的材料形成的一个或多个钝化层或非导通层。薄膜结构48还包括至少一个导通层,导通层定义点火电阻器52和导线58。在一个具体实施例中,该导通层包括比如:铝、黄金、钽、钽-铝合金,或者其它金属或金属合金。在一个具体实施例中,如下所述,在比如基底44和薄膜结构48的基底和薄膜层中实现点火单元电路。 在一个具体实施例中,喷孔层50由一种可感光环氧树脂构成,例如一种马萨诸塞州牛顿市的Micro-Chem公司销售的称为SU8的环氧树脂。在美国专利号6,162,589的专利中详细描述了制造带有SU8或其它聚合物的喷孔层50的示范性技术,合并引用于此以作参考。在一个具体实施例中,一种称为阻挡层(例如,一个干膜光致抗蚀剂阻挡层)的两个隔离层形成了喷孔层50,在该阻挡层上方形成一个金属(例如,一个镍、铜、铁/镍合金、钯、金或铑层)喷孔层。然而,其它合适的材料都可以用于形成喷孔层50。 图3是说明打印头冲模40的一个具体实施例中供墨槽46的墨滴产生器60的示意图。供墨槽46包括方向相反的供墨槽侧边46a和46b。沿着方向相反的供墨槽侧边46a和46b排列了多个墨滴产生器60。沿着供墨槽46共分布了n个墨滴产生器60,其中沿着供墨槽侧边46a分布了m个墨滴产生器60,沿着供墨槽侧边46b分布了n-m个墨滴产生器60。在一个具体实施例中,n等于200个沿着供墨槽46设置的墨滴产生器60,m等于100个沿着相反的供墨槽侧边46a和46b每一个设置的墨滴产生器60。在其它具体实施例中,可以沿着供墨槽46放置任何合适数量的墨滴产生器60。 供墨槽46向沿着供墨槽46布置的n个墨滴产生器60中的每个产生器提供墨水。n个墨滴产生器60中的每个墨滴产生器都包括点火电阻器52、汽化室56和喷口34。n个汽化室56中的每个都经由至少一个供墨通道54以流动方式连接到供墨槽46。可控顺序使墨滴产生器60的点火电阻器52通电,以便从汽化室56喷射流体,并经由喷口34在打印介质36上打印图像。 图4是说明打印头冲模40的具体实施例中点火单元70的一个具体实施例的示意图。点火单元70包括点火电阻器52、电阻器驱动开关72和存储电路74。点火电阻器52是墨滴产生器60的一部分。驱动开关72和存储电路74是控制流经点火电阻器52电流应用的控制电路的一部分。在薄膜结构48中和基底44之上形成点火单元70。 在一个具体实施例中,点火电阻器52是薄膜电阻器,并且驱动开关72是场效应晶体管(FET)。点火电阻器52电连接点火线76和驱动开关72的漏极-源极通路。驱动开关72的漏极-源极通路还电连接基准线78,基准线78电连接比如地线的基准电压。驱动开关72的栅极电连接存储电路74,存储电路74控制驱动开关72的状态。 存储电路74电连接一条数据线80和多条使能线82。数据线80接收代表一幅图像的一部分的数据信号,并且使能线82接收使能信号,从而控制存储电路74的操作。通过使能信号使能存储电路74,存储电路74存储一个数据位。存储的数据位的逻辑电平设定驱动开关72的状态(例如接通或关断、导通或非导通)。该使能信号可以包括一个或多个选择信号和一个或多个地址信号。 点火线76接收包括能量脉冲的能量信号,并且向点火电阻器52提供能量脉冲。在一个具体实施例中,电子控制器30提供的能量脉冲具有定时的起始时间和持续时间,从而向墨滴产生器60的汽化室56提供适量的能量以加热并汽化其中的流体。如果驱动开关72接通(导通),能量脉冲加热点火电阻器52,从而加热并喷出墨滴产生器60中的流体。如果驱动开关72关断(非导通),能量脉冲不加热点火电阻器52,并且流体仍然保持在墨滴产生器60中。 图5是说明标记为100的喷墨点火单元阵列的一个具体实施例的示意图。点火单元阵列100包括多个点火单元70,点火单元70排列成n个点火组102a-102n。在一个具体实施例中,点火单元70排列成六点火组102a-102n。在其它具体实施例中,点火单元70可以排列成任何合适数量的点火组102a-102n,比如四个或更多的点火组102a-102n。 阵列100中的点火单元70示意性地排列成L行、m列。L行点火单元70电连接到接收使能信号的使能线104。每行点火单元70,在此称为点火单元70的行子组或子组,电连接子组使能线106a-106L的一个集合。子组使能线106a-106L接收子组使能信号SG1、SG2...SGL,从而使能对应的点火单元70子组。 m列电连接m条数据线108a-108m,分别接收数据信号D1、D2...Dm。m列中的每列都包括n个点火组102a-102n中的每个点火单元70,并且每列点火单元70,在此称为数据线组或数据组,电连接多条数据线108a-108m中的一条数据线。可替换地,每条数据线108a-108m电连接一列中的每个点火单元70,其中包括每个点火组102a-102n中的点火单元70。例如,在最左列中,数据线108a电连接每个点火单元70,其中包括每个点火组102a-102n中的点火单元70。数据线108b电连接相邻列中每个点火单元70,直到并包括数据线108m,数据线108m电连接最右列的每个点火单元70,其中包括每个点火组102a-102n中的点火单元70。 在一个具体实施例中,阵列100排列成六点火组102a-102n,并且六点火组102a-102n中的每组都包括13个子组和8个数据线组。在其它具体实施例中,阵列100可以排列成任何合适数量的点火组102a-102n,并排列成任何合适数量的子组和数据线组。在任何具体实施例中,点火组102a-102n不局限于具有相同数量的子组和数据线组。作为替代,与其它任何点火组102a-102n相比,点火组102a-102n的每组都可以具有一个不同数量的子组和/或数据线、数据组。另外,与其它任何子组相比,每个子组可有不同数量的点火单元70,而且与其它任何数据线组相比,每个数据线组可有不同数量的点火单元70。 每组点火组102a-102n中的点火单元70电连接多条点火线110a-110n中的一条点火线。在点火组102a,每个点火单元70电连接点火线110a,点火线110a接收点火信号或能量信号FIRE1。在点火组102b,每个点火单元70电连接点火线110b,点火线110b接收点火信号或能量信号FIRE2,依此类推,直到并包括点火组102n,其中每个点火单元70电连接点火线110n,点火线110n接收点火信号或能量信号FIREn。另外,每个点火组102a-102n中的每个点火单元70电连接一个连到地线的通用基准线112。 在操作中,子组使能信号SG1、SG2...SGL提供到子组使能线106a-106L,从而使能点火单元70的一个子组。使能的点火单元70存储提供给数据线108a-108m的数据信号D1、D2..Dm。这些数据信号D1、D2...Dm存储在使能的点火单元70的存储电路74中。每个存储数据信号D1、D2...Dm在一个使能的点火单元70中设定驱动开关72的状态。驱动开关72根据存储数据信号的值设成导通或非导通状态。 设定所选择的驱动开关72的状态之后,在对应于点火组102a-102n的点火线110a-110n上提供能量信号FIRE 1-FIREn,点火组102a-102n包括所选的点火单元70的子组。能量信号FIRE 1-FIREn包括能量脉冲。在选定的点火线110a-110n提供能量脉冲,从而使具有导通驱动开关72的点火单元70中的点火电阻器52通电。通电的点火电阻器52加热并且将墨水喷射在打印介质36上,从而打印出由数据信号D1、D2...Dm代表的一幅图像。使能点火单元70的一个子组,在使能的子组中存储数据信号D1、D2...Dm,向使能的子组中的点火电阻器52提供一个能量信号FIRE 1-FIREn,使点火电阻器52通电,上述过程一直会持续到打印结束。 在一个具体实施例中,当将能量信号FIRE 1-FIREn提供到选定的点火组102a-102n时,子组使能信号SG1、SG2...SGL变化以便选择和使能不同的点火组102a-102n中的另一个子组。将新的使能子组存储提供给数据线108a-108m的数据信号D1、D2...Dm,并且将能量信号FIRE1-FIREn提供给点火线110a-110n中的一条点火线,从而在新的使能点火单元70中使点火电阻器52通电。在任一时刻,点火单元70中只有一个子组由子组使能信号SG1、SG2...SGL使能,从而存储提供给数据线108a-108m的数据信号D1、D2...Dm。在这方面,数据线108a-108m中的数据信号D1、D2...Dm是时分多路复用数据信号。同样,选定的点火组102a-102n中只有一个子组包括驱动开关72,当将一个能量信号FIRE 1-FIREn提供到选定的点火组102a-102n时,驱动开关72设定成导通状态。然而,提供到不同的点火组102a-102n的能量信号FIRE 1-FIREn可以部分重叠并且确实部分重叠。 图6是说明预充电点火单元120的一个具体实施例的示意图。预充电点火单元120是点火单元70的一个具体实施例。预充电点火单元120包括电连接点火电阻器52的一个驱动开关172。在一个具体实施例中,驱动开关172是一个场效应晶体管,包括一个漏极-源极通路,其一端电连接点火电阻器52的一端,另一端电连接基准线122。基准线122连接到一个比如地线的基准电压。点火电阻器52的另一端电连接点火线124,点火线124接收包含能量脉冲的点火信号或能量信号FIRE。如果驱动开关172已接通(导通),那么能量脉冲使点火电阻器52通电。 驱动开关172的栅极形成一个存储结点电容126,其作为存储元件,按照预充电晶体管128和选择晶体管130的激活顺序来存储数据。预充电晶体管128的漏极-源极通路和栅极电连接到接收预充电信号的预充电线132。驱动开关172的栅极电连接到预充电晶体管128的漏极-源极通路以及选择晶体管130的漏极-源极通路。选择晶体管130的栅极电连接到接收选择信号的选择线134。存储结点电容126是驱动开关172的一部分,以虚线表示。可选地,可以采用与驱动开关172分开的电容作为存储元件。 数据晶体管136、第一地址晶体管138和第二地址晶体管140都包括并联的漏极-源极通路。数据晶体管136、第一地址晶体管138和第二地址晶体管140的并联组合电连接在选择晶体管130的漏极-源极通路和基准线122之间。串联电路包括选择晶体管130,选择晶体管130连接到数据晶体管136、第一地址晶体管138和第二地址晶体管140的并联组合,串联电路电连接驱动开关172的结点电容126。数据晶体管136的栅极电连接到数据线142以接收数据信号~DATA。第一地址晶体管138的栅极电连接到地址线144以接收地址信号~ADDRESS1,并且第二地址晶体管140的栅极电连接到第二地址线146以接收地址信号~ADDRESS2。数据信号~DATA和地址信号~ADDRESS和~ADDRESS2为低时有效,在信号名称前出现的符号(~)表示这些信号为低。结点电容126、预充电晶体管128、选择晶体管130、数据晶体管136和140形成存储单元。 在操作中,预充电晶体管128通过提供高电平脉冲,在预充电线132上预充电结点电容126。在一个具体实施例中,在预充电线132上的高电平脉冲之后,在数据线142上提供数据信号~DATA以便设定数据晶体管136的状态,并且在地址线144和146上提供地址信号~ADDRESS1和~ADDRESS2以便设定第一地址晶体管138和第二地址晶体管140的状态。如果数据晶体管136、第一地址晶体管138和/或第二地址晶体管140接通,那么在选择线134上提供足够的电压脉冲,以接通选择晶体管130并使结点电容126放电。可替换地,如果数据晶体管136、第一地址晶体管138和第二地址晶体管140全部关断,那么结点电容126仍然保持充电状态。 如果两个地址信号~ADDRESS1和~ADDRESS2为低,那么预充电点火单元120是寻址的点火单元,而如果数据信号~DATA为高,则结点电容126放电,如果数据信号~DATA为低,那么结点电容126仍然是充电。如果地址信号~ADDRESS1和~ADDRESS2中至少一个为高,那么预充电点火单元120不是寻址的点火单元,而且无论数据信号~DATA的电压电平如何,结点电容126都放电。第一和第二地址晶体管136和138包含地址译码器,并且如果预充电点火单元120被寻址,那么数据晶体管136控制结点电容126上的电压电平。 只要能够保持如上所述的操作关系,预充电点火单元120可以采用许多其它的拓扑结构或布线方式。例如,可以用“或”门连接地址线144和146,其输出连接到单独的晶体管。 图7是说明喷墨打印头点火单元阵列200的一个具体实施例的原理图。点火单元阵列200包括多个预充电点火单元120,其排列成六点火组202a-202f。每个点火组202a-202f中的预充电点火单元120示意性地排列成13行和八列。阵列200中的点火组202a-202f和预充电点火单元120示意性地排列成78行和八列,不过预充电点火单元的数量和它们的布局可以根据需求而变化。 八列预充电点火单元120电连接到8条数据线208a-208h,数据线208a-208h分别接收数据信号~D1、~D2...~D8。八列中的每列,在此称为数据线组或数据组,包括六点火组202a-202f中每个点火组中的预充电点火单元120。每列预充电点火单元120中的点火单元120电连接到数据线208a-208h中的一条数据线。数据线组中的全部预充电点火单元120都电连接到相同的数据线208a-208h,数据线电连接到该列预充电点火单元120的数据晶体管136的栅极。 数据线208a电连接到最左列的每个预充电点火单元120,其中包括每个点火组202a-202f的预充电点火单元。数据线208b电连接到相邻列的每个预充电点火单元120,依此类推,直到并包括数据线208h,该数据线208h电连接到最右列的每个预充电点火单元120,其中包括每个点火组202a-202f中的预充电点火单元120。 多行的预充电点火单元120电连接地址线206a-206g,206a-206g,这些地址线分别接收地址信号~A1、~A2...~A7。一行预充电点火单元120中的每个预充电点火单元120,在此称为预充电点火单元120的行子组或子组,电连接到地址线206a-206g中的两条地址线。行子组中的全部预充电点火单元120电连接206a-206g中相同的两条地址线。 点火组202a-202f的子组被标识为点火组1(FG1)202a中的子组SG1-1到SG1-13,点火组2(FG1)202b中的子组SG2-1到SG2-13,依此类推,直到并包括点火组6(FG6)202f中的子组SG6-1到SG6-13。在其它具体实施例中,每个点火组202a-202f可以包括任何合适的子组数量,比如14个或更多的子组。 预充电点火单元120的每个子组电连接到地址线206a-206g中的两条地址线。对应于子组的两条地址线206a-206g电连接到子组中全部预充电点火单元120的第一和第二地址晶体管138和140。地址线206a-206g中的一条地址线电连接到第一地址晶体管138和第二地址晶体管140二者之一的栅极,地址线206a-206g中的其它地址线电连接到第一地址晶体管138和第二地址晶体管140二者之一的另一个栅极。地址线206a-206g接收地址信号~A1、A2...~A7并且向如下所述的阵列200的子组提供地址信号~A1、~A2...~A7: 行子组地址信号 行子组~A1,~A2 SG1-1,SG2-1...SG6-1~A1,~A3 SG1-2,SG2-2...SG6-2~A1,~A4 SG1-3,SG2-3...SG6-3~A1,~A5 SG1-4,SG2-4...SG6-4~A1,~A6 SG1-5,SG2-5...SG6-5~A1,~A7 SG1-6,SG2-6...SG6-6~A2,~A3 SG1-7,SG2-7...SG6-7~A2,~A4 SG1-8,SG2-8...SG6-8~A2,~A5 SG1-9,SG2-9...SG6-9~A2,~A6 SG1-10,SG2-10...SG6-10~A2,~A7 SG1-11,SG2-11...SG6-11~A3,~A4 SG1-12,SG2-12...SG6-12~A3,~A5 SG1-13,SG2-13...SG6-13预充电点火单元120的子组通过在地址线206a-206g上提供地址信号~A1、~A2...~A7被寻址。在一个具体实施例中,地址线206a-206g电连接到打印头冲模40上的一个或多个地址产生器。 预充电线210a-210f接收预充电信号PRE1、PRE2...PRE6,并且将预充电信号PRE1、PRE2...PRE6提供给对应的点火组202a-202f。预充电线210a电连接到FG1202a中的全部预充电点火单元120。预充电线210b电连接到FG2202b中的全部预充电点火单元120等等,直到并包括预充电线210f电连接到FG6202f中的全部预充电点火单元120。每条预充电线210a-210f电连接到对应的点火组202a-202f中的全部预充电晶体管128的栅极和漏极-源极通路,并且在点火组202a-202f中的全部预充电点火单元120仅仅电连接到预充电线210a-210f中的一条。因此,点火组202a-202f中的全部预充电点火单元120的结点电容126都通过向对应的预充电线210a-210f提供对应的预充电信号PRE1、PRE2...PRE6得以充电。 选择线212a-212f接收选择信号SEL1、SEL2...SEL6并且提供选择信号SEL1、SEL2...SEL6到对应的点火组202a-202f。选择线212a电连接到FG1 202a的全部预充电点火单元120。选择线212b电连接到FG2202b中的全部预充电点火单元120,依此类推,直到并包括选择线212f电连接到FG6 202f中的全部预充电点火单元120。每条选择线212a-212f电连接到对应的点火组202a-202f中全部选择晶体管130的栅极,并且点火组202a-202f中的全部预充电点火单元120仅仅电连接到选择线212a-212f中的一条。 点火线214a-214f接收点火信号或能量信号FIRE1、FIRE2...FIRE6并提供能量信号FIRE1、FIRE2...FIRE6到对应的点火组202a-202f。点火线214a电连接到FG1 202a的全部预充电点火单元120。点火线214b电连接到FG2 202b中的全部预充电点火单元120,依此类推,直到并包括点火线214f电连接到FG6 202f中的全部预充电点火单元120。每条点火线214a-214f电连接到对应的点火组202a-202f中的全部点火电阻器52,点火组202a-202f中的全部预充电点火单元120仅仅电连接到点火线214a-214f中的一条。点火线214a-214f通过适当的接口焊盘电连接到外部的馈电电路(参见图25a和25b)。阵列200中的全部预充电点火单元120电连接到基准线216,基准线216连接到比如地线的基准电压。因此,预充电点火单元120的行子组中的预充电点火单元120电连接到相同的地址线206a-206g、预充电线210a-210f、选择线212a-212f和点火线214a-214f。 在操作中,一个具体实施例中,选择在点火组202a-202f以便连续点火。在FG2 202b之前选中FG1 202a,在FG3 202c之前选中FG2202b,依此类推,直到FG6 202f。选中FG6 202f后,点火组从FG1 202a开始循环。但是,可进行其它的连续顺序选择和非连续顺序选择。 在重复行子组地址之前,地址信号~A1、~A2...~A7循环经过13个行子组地址。在点火组202a-202f的每个循环期间内,将在地址线206a-206g提供的地址信号~A1、~A2...~A7设置为一个行子组地址。对于经过点火组202a-202f的一个循环,地址信号~A1、~A2...~A7在每个点火组202a-202f中选择一个行子组。对于经过点火组202a-202f的下一个循环,改变地址信号~A1、~A2...~A7以便选择每个点火组202a-202f中的另一个行子组。这样一直延续到地址信号~A1、~A2...~A7选择点火组202a-202f中的最后一个行子组。在最后的行子组后,地址信号~A1、~A2...~A7选择第一个行子组,再次开始地址循环。 在操作中的另一个方面,通过在一个点火组202a-202f的预充电线210a-210f上提供一个预充电信号PRE1、PRE2...PRE6,来操作点火组202a-202f中的一个点火组。预充电信号PRE1、PRE2...PRE6定义预充电时间间隔或周期,在这段时间内,点火组202a-202f中每个驱动开关172的结点电容126充电到高电压电平,以便向点火组202a-202f预充电。 地址线206a-206g提供地址信号~A1、~A2...~A7,以寻址每个点火组202a-202f中的一个行子组,其中包括预充电点火组202a-202f的一个行子组。在数据线208a-208h上提供数据信号~D1、~D2...~D8,以便为全部点火组202a-202f提供数据,包括预充电点火组202a-202f指定的行子组。 接着,预充电点火组202a-202f的选择线212a-212f提供选择信号SEL1、SEL2...SEL6,以选择预充电的点火组202a-202f。选择信号SEL1、SEL2...SEL6定义放电时间间隔,用于放电预充电点火单元120中每个驱动开关172的结点电容126,预充电点火单元120要么不在所选择的点火组202a-202f中寻址的行子组中,要么在所选择的点火组202a-202f中被寻址并接收高电平数据信号~D1、~D2...~D8。结点电容126不在选定的点火组202a-202f中寻址并接收低电平数据信号~D1、~D2...~D8的预充电点火单元120中放电。在结点电容126上的高电平接通(导通)驱动开关172。 所选点火组202a-202f中的驱动开关172被设置成导通或非导通以后,在所选点火组202a-202f的点火线214a-214f上提供能量脉冲或电压脉冲。预充电点火单元120有导通的驱动开关172,导通电流经过点火电阻器52加热墨水并从对应的墨滴产生器60喷出墨水。 随着点火组202a-202f连续操作,用于一个点火组202a-202f的选择信号SEL1、SEL2...SEL6可用作为下一个点火组202a-202f的预充电信号PRE1、PRE2...PRE6。用于一个点火组202a-202f的预充电信号PRE1、PRE2...PRE6先于用于一个点火组202a-202f的选择信号SEL1、SEL2...SEL6和能量信号FIRE1、FIRE2...FIRE6。在预充电信号PRE1、PRE2...PRE6之后,数据信号~D1、D2...~D8在时间上被多路复用,并通过选择信号SEL1、SEL2...SEL6保存在一个点火组202a-202f所寻址的行子组中。用于所选点火组202a-202f的选择信号SEL1、SEL2...SEL6也是下一个点火组202a-202f的预充电信号PRE1、PRE2...PRE6。用于所选点火组202a-202f的选择信号SEL1、SEL2...SEL6完成之后,提供下一个点火组202a-202f的选择信号SEL1、SEL2...SEL6。当将包括能量脉冲的能量信号FIRE1、FIRE2...FIRE6提供给选定的点火组202a-202f时,根据所存储的数据信号~D1、~D2...~D8,所选子组中的预充电点火单元120点火或加热墨水。 图8是说明点火单元阵列200的一个具体实施例操作过程的时序图。根据300所表示的数据信号~D1、~D2...~D8,连续选择点火组202a-202f以使预充电点火单元120通电。对于每个行子组地址和点火组202a-202f,300组合,数据信号~D1、~D2...~D8根据在302处喷出流体的喷嘴而变化。把304处的地址信号~A1、~A2...~A7提供到地址线206a-206g上,以寻址每个点火组202a-202f中的一个行子组。对于用于经过点火组202a-202f循环,把304处的地址信号~A1、~A2...~A7设置如306所指的的一个地址。在循环完成之后,在304处的地址信号~A1、~A2...~A7在308发生变化,以寻址每个点火组202a-202f中一个不同的行子组。在304处的地址信号~A1、~A2...~A7通过过行子组得以增加,从而以从1到13再回到1的顺序寻址行子组。在其它具体实施例中,在304处的地址信号~A1、~A2...~A7设置成以任何合适的顺序对行子组进行寻址。 在经过点火组202a-202f的循环期间内,连接到FG6 202f的选择线212f和连接到FG1 202a的预充电线210a接收SEL6/PRE1信号309,包括SEL6/PRE1信号脉冲310。在一个具体实施例中,选择线212f和预充电线210a电连接到一起,从而接收相同的信号。在另一个具体实施例中,选择线212f和预充电线210a并未电连接到一起,但接收类似的信号。 在310处,预充电线210a上的SEL6/PRE1信号脉冲预充电FG1 202a的全部点火单元120。FG1 202a中每个预充电点火单元120的结点电容126充电到高电压电平。311处所指的一个行子组SG1-K中用于预充电的点火单元120的结点电容126,在312处预充电到高电压电平。306处的行子组地址选择子组SG1-K,并且在314处提供数据信号集给全部点火组202a-202f的全部预充电点火单元120中的数据晶体管136,其中包括地址选定的行子组SG1-K。 用于FG1 202a的选择线212a和用于FG2 202b的预充电线210b接收包括SEL1/PRE2信号脉冲316的SEL1/PRE2信号315。选择线212a上的SEL1/PRE2信号脉冲316导通FG1 202a中每个预充电点火单元120的选择晶体管130。在FG1 202a的全部预充电点火单元120中放电结点电容126,这些预充电点火单元不在选定的行子组SG1-K的地址内。在行子组SG1-K中选定的地址中,314处的数据如318所示被储存在行子组SG1-K中驱动开关172的结点电容126中,以便接通(导通)或者关断(非导通)驱动器。 在316处,在预充电线210b上的SEL1/PRE2信号脉冲对FG2 202b的全部点火单元120预充电。FG2 202b中每个预充电点火单元120的结点电容126充电到高电压电平。如319所指,一个行子组SG2-K中用于预充电点火单元120的结点电容126,在320处被预充电到高电压电平。在306处的行子组地址选择子组SG2-K,将328处的数据信号提供给全部点火组202a-202f的全部预充电点火单元120中的数据晶体管136,其中包括地址选定的行子组SG2-K。 如323所示,点火线214a接收包括322所指的能量脉冲的能量信号FIRE1,以使FG1 202a中具有导通驱动开关172的预充电点火单元120的点火电阻器52通电。如324处的能量信号FIRE1 323所示,当SEL1/PRE2信号脉冲在316为高时并且当非导通驱动开关172的结点电容126正被有效地拉低时,FIRE1能量脉冲在322变高。当结点电容126被有效地拉低时,能量脉冲322切换成高,从而防止当能量脉冲322变高时,结点电容126无意中被驱动开关172充电。SEL1/PRE2信号315变低,并且在预定时间将能量脉冲322提供到FG1 202a,从而加热墨水并通过与导通的预充电点火单元120对应的喷嘴34将墨水喷出。 用于FG2 202b的选择线和用于FG3 202c的预充电线210c接收包括SEL2/PRE3信号脉冲326的SEL2/PRE3信号325。在SEL1/PRE2信号脉冲316变低之后,并且能量脉冲322为高时,选择线212b的SEL2/PRE3信号脉冲326接通FG2 202b中的每个预充电点火单元120的选择晶体管130。结点电容126在不在选定地址的行字组SG2-K中的FG2 202b中的全部预充电点火单元120上放电。将用于子组SG2-K的数据信号集328存储在子组SG2-K的预充电点火单元120中,如330所示,以接通(导通)或关断(非导通)驱动开关172。预充电线210c上的SEL2/PRE3信号脉冲预充电FG3 202c中全部预充电点火单元120。 点火线214b接收包括能量脉冲332的能量信号FIRE2,如331所示,以便使具有导通的驱动开关172的FG2 202b中预充电点火单元120的点火电阻器52通电。如334所示,当SEL2/PRE3信号脉冲326为高时,FIRE2能量脉冲332变高。SEL2/PRE3信号脉冲326变低,并且FIRE2能量脉冲332保持为高,从而加热并从对应的墨滴产生器60喷射墨水。 在SEL2/PRE3信号脉冲326变低之后,并且当能量脉冲332为高时,提供SEL3/PRE4信号,以选择FG3 202c并预充电FG4 202d。预充电、选择和提供包括能量脉冲的能量信号的过程,一直持续到并包括FG6 202f为止。 预充电线210f的SEL5/PRE6信号脉冲预充电FG6 202f中的全部点火单元。把FG6 202f中每个预充电点火单元120的结点电容126充电到高电压电平。在一个行字组SG6-K中用于预充电点火单元120的结点电容126,如339所示,在341处被预充电到高电压电平。306处的行字组地址选择SG6-K子组,并且把数据信号集338提供到全部点火组202a-202f中全部预充电点火单元120的数字晶体管136,其中包括地址选定的行字组SG6-K。 用于FG6 202f的选择线212f和用于FG1 202a的预充电线210a在336处接收第二SEL6/PRE1信号脉冲。选择线212f的第二SEL6/PRE1信号脉冲接通FG6 202f中每个预充电点火单元120的选择晶体管130。结点电容126在FG6 202f的全部预充电点火单元120中放电,这些预充电点火单元不在地址选定的行字组SG6-K的地址内。在地址选择行字组SG6-K中,在340处,将数据338存储在每个驱动开关172的结点电容126中,以便接通或者关断该驱动开关。 预充电线210a上的SEL6/PRE1信号预充电FG1 202a中全部点火单元120的结点电容126,其中包括行字组SG1-K中的点火单元120,如342所示,使结点电容126达到高电压电平。当304的地址信号~A1、~A2...~A7选择行子组SG1K、SG2-K等等直到行字组SG6-K时,预充电FG1 202a的点火单元120。 点火线214f接收包括344的能量脉冲的能量信号FIRE6,如343所示,以便使FG6 202f中具有导通的驱动开关172的预充电点火单元120的点火电阻器52通流。当SEL6/PRE1信号脉冲336为高并且非导通驱动开关172的结点电容126正被有效地拉低时,如346所示,能量脉冲344变高。当结点电容126被有效地拉低时,能量脉冲344切换为高,以防止当能量脉冲344变高时,结点电容126无意中被驱动开关172充电。SEL6/PRE1信号脉冲336变低并且能量脉冲344保持为高达到一个预定时间,从而加热墨水并通过与导通的预充电点火单元120对应的喷嘴34喷射墨水。 SEL6/PRE1信号脉冲336变低之后并且当能量脉冲344为高时,304的地址信号~A1、~A2...~A7在308处发生变化,从而选择SG1-K+1、SG2-K+1等等,直到SG6-K+1的另一个子组集合。用于FG1 202a的选择线212a和用于FG2 202b的预充电线210b接收如348所示的SEL1/PRE2信号脉冲。在选择线212a上的SEL1/PRE2信号脉冲348导通FG1 202a中的每个预充电点火单元120中的选择晶体管130。结点电容126在FG1 202a的全部预充电点火单元120中放电,这些预充电点火单元不在地址选定的SG1-K+1子组内。把用于行子组SG1-K+1的数据信号集350保存在SG1-K+1子组的预充电点火单元120中,以接通或者关断驱动开关172。在预充电线210b上的SEL1/PRE2信号脉冲348对FG2 202b中的全部点火单元120预充电。 点火线214a接收能量脉冲352以使点火电阻器52通电,并且使具有导通的驱动开关172的FG1 202a的预充电点火单元120通电。当SEL1/PRE2信号脉冲在348为高时,能量脉冲352变高。SEL1/PRE2信号脉冲348变低,并且能量脉冲352保持为高,从而加热和喷出对应的墨滴产生器60的墨水。这个过程持续到打印结束。 图9是说明打印头冲模40中地址产生器400的一个具体实施例的示意图。地址产生器400包括移位寄存器402、方向电路404和逻辑阵列406。移位寄存器402经过方向控制线408电连接到方向电路404。并且,移位寄存器402经过移位寄存器输出线410a-410m电连接到逻辑阵列406。 在如下所述的具体实施例中,地址产生器400向点火单元120提供地址信号。在一个具体实施例中,地址产生器400接收外部信号,参见图25A和25B,外部信号包括控制信号CSYNC和六定时信号T1-T6,并提供对应的七个地址信号~A1、~A2...~A7。地址信号~A1、~A2...~A7处于低电压电平时有效,在信号名称前出现的符号(~)来表示。在一个具体实施例中,在选择线上(例如,如图7所示的选择线212a-212f)提供定时信号T1-T6。地址产生器400是控制电路的一个具体实施例,该控制电路被配置成响应(例如CSYNC信号)控制信号,以开始一个序列(例如,以正向或反向顺序的地址信号~A1、~A2...~A7的序列)来为激活而使能点火单元120。 地址产生器400包括接收定时信号T2、T4和T6的电阻器划分网络412、414和416。电阻器划分网络412通过定时信号线418接收定时信号T2,并且划分定时信号T2的电压电平以在第一评估信号线420上提供下降的电压电平T2定时信号。电阻器划分网络414通过定时信号线422接收定时信号T4,并且划分定时信号T4的电压电平以在第二评估信号线424上提供下降的电压电平T4定时信号。电阻器划分网络416通过定时信号线426接收定时信号T6,并且划分定时信号T6的电压电平以在第三评估信号线428上提供下降的电压电平T6定时信号。 移位寄存器402通过控制信号线430接收控制信号CSYNC,并且通过方向信号线408接收方向信号。而且,移位寄存器402通过定时信号线432接收定时信号T1,以作为第一预充电信号PRE1。通过第一评估信号线420接收下降的电压电平T2定时信号,以作为第一评估信号EVAL1。通过定时信号线434接收定时信号T3以作为第二预充电信号PRE2,并且通过第二评估信号线424接收下降的电压电平T4定时信号以作为第二评估信号EVAL2。移位寄存器402在移位寄存器输出线410a-410m上提供移位寄存器输出信号SO1-SO13。 移位寄存器402包括十三个移位寄存器单元403a-403m,这些移位寄存器单元提供十三个移位寄存器输出信号SO1-SO13。移位寄存器单元403a-403m中的每个寄存器单元提供移位寄存器输出信号SO1-SO13中的一个输出信号。这十三个移位寄存器单元403a-403m电串联连接,以提供正向和反向的移位。在其它的具体实施例中,移位寄存器402可以包括任意合适数量的寄存器单元403,以提供任意合适数量的移位寄存器输出信号,从而提供任意数量的所需地址信号。 移位寄存器单元403a在移位寄存器输出线410a上提供移位寄存器输出信号SO1。移位寄存器单元403b在移位寄存器输出线410b上提供移位寄存器输出信号SO2。移位寄存器单元403c在移位寄存器输出线410c上提供移位寄存器输出信号SO3。移位寄存器单元403d在移位寄存器输出线410d上提供移位寄存器输出信号SO4。移位寄存器单元403e在移位寄存器输出线410e上提供移位寄存器输出信号SO5。移位寄存器单元403f在移位寄存器输出线410f上提供移位寄存器输出信号SO6。移位寄存器单元403g在移位寄存器输出线410g上提供移位寄存器输出信号SO7。移位寄存器单元403h在移位寄存器输出线410h上提供移位寄存器输出信号SO8。移位寄存器单元403i在移位寄存器输出线410i上提供移位寄存器输出信号SO9。移位寄存器单元403j在移位寄存器输出线410j上提供移位寄存器输出信号SO10。移位寄存器单元403k在移位寄存器输出线410k上提供移位寄存器输出信号SO11。移位寄存器单元4031在移位寄存器输出线4101上提供移位寄存器输出信号SO12,并且移位寄存器单元403m在移位寄存器输出线410m上提供移位寄存器输出信号SO13。 方向电路404在控制信号线430上接收控制信号CSYNC。定时信号线434上接收定时信号T3,以作为第四预充电信号PRE4。在评估信号线424上接收下降的电压电平T4定时信号,以作为第四评估信号EVAL4。定时信号线436上接收定时信号T5,以作为第三预充电信号PRE3,并在评估信号线428上接收下降的电压电平T6定时信号,以作为第三评估信号EVAL3。方向电路404通过方向信号线408向移位寄存器402提供方向信号。 逻辑阵列406包括地址线预充电晶体管438a-438g、地址评估晶体管440a-440m、防止评估晶体管442a和442b,以及逻辑评估预充电晶体管444。而且,逻辑阵列406还包括地址晶体管对446,448...470,这些地址晶体管对解码移位寄存器输出线410a-410m上的移位寄存器输出信号SO1-SO13,从而提供地址信号~A1、~A2...~A7。逻辑阵列406包括地址1晶体管446a和446b,地址2晶体管448a和448b,地址3晶体管450a和450b、地址4晶体管452a和452b、地址5晶体管454a和454b、地址6晶体管456a和456b、地址7晶体管458a和458b、地址8晶体管460a和460b、地址9晶体管462a和462b、地址10晶体管464a和464b、地址11晶体管466a和466b、地址12晶体管468a和468b、以及地址13晶体管470a和470b。 地址线预充电晶体管438a-438g电连接到T3信号线434和地址线472a-472g。地址线预充电晶体管438a的栅极和漏极-源极通路的一侧电连接到T3信号线434。地址线预充电晶体管438a的漏极-源极通路的另一侧电连接到地址线472a。地址线预充电晶体管438b的栅极和漏极-源极通路的一侧电连接到T3信号线434。地址线预充电晶体管438b的漏极-源极通路的另一侧电连接到地址线472b。地址线预充电晶体管438c的栅极和漏极-源极通路的一侧电连接到T3信号线434。地址线预充电晶体管438c的漏极-源极通路的另一侧电连接到地址线472c。地址线预充电晶体管438d的栅极和漏极-源极通路的一侧电连接到T3信号线434。地址线预充电晶体管438d的漏极-源极通路的另一侧电连接到地址线472d。地址线预充电晶体管438e的栅极和漏极-源极通路的一侧电连接到T3信号线434。地址线预充电晶体管438e的漏极-源极通路的另一侧电连接到地址线472e。地址线预充电晶体管438f的栅极和漏极-源极通路的一侧电连接到T3信号线434。地址线预充电晶体管438f的漏极-源极通路的另一侧电连接到地址线472f。地址线预充电晶体管438g的栅极和漏极-源极通路的一侧电连接到T3信号线434。地址线预充电晶体管438g的漏极-源极通路的另一侧电连接到地址线472g。在一个具体实施例中,地址线预充电晶体管438a-438g电连接到T4信号线422,而不是T3信号线434。T4信号线422电连接到地址线预充电晶体管438a-438g中的每个地址线预充电晶体管的栅极和漏极-源极通路的一侧。 440a-440m中每个地址评估晶体管的栅极电连接到逻辑评估信号线474。440a-440m中每个地址评估晶体管的漏极-源极通路的一侧电连接到地线。此外,地址评估晶体管440a的漏极-源极通路电连接到评估线476a。地址评估晶体管440b的漏极-源极通路电连接到评估线476b。地址评估晶体管440c的漏极-源极通路电连接到评估线476c。地址评估晶体管440d的漏极-源极通路电连接到评估线476d。地址评估晶体管440e的漏极-源极通路电连接到评估线476e。地址评估晶体管440f的漏极-源极通路电连接到评估线476f。地址评估晶体管440g的漏极-源极通路电连接到评估线476g。地址评估晶体管440h的漏极-源极通路电连接到评估线476h。地址评估晶体管440i的漏极-源极通路电连接评估线476i。地址评估晶体管440j的漏极-源极通路电连接到评估线476j。地址评估晶体管440k的漏极-源极通路电连接到评估线476k。地址评估晶体管管4401的漏极-源极通路电连接到评估线4761。地址评估晶体管440m的漏极-源极通路电连接到评估线476m。 逻辑评估预充电晶体管444的栅极和漏极-源极通路的一侧电连接到T5信号线436,而漏极-源极通路的另一侧电连接到逻辑评估信号线474。防止评估晶体管442a的栅极电连接到T3信号线434。防止评估晶体管442a的漏极-源极通路的一侧电连接到逻辑评估信号线474,而另一侧连接于478的基准。防止评估晶体管442b的栅极电连接到T4信号线422。防止评估晶体管442b的漏极-源极通路的一侧电连接逻辑评估信号线474,而另一侧连接到478的基准。 地址晶体管对446、448...470的漏极-源极通路电连接在地址线472a-472g和评估线476a-476m之间。地址晶体管对446、448...470的栅极由经过移位寄存器输出信号线410a-410m的移位寄存器输出信号SO1-SO13来驱动。 地址1晶体管446a和446b的栅极电连接到移位寄存器输出信号线410a。地址1晶体管446a的漏极-源极通路的一侧电连接到地址线472a,而另一侧电连接到评估线476a。地址1晶体管446b的漏极-源极通路的一侧电连接到地址线472b,而另一侧电连接到评估线476a。当地址评估晶体管440a被逻辑评估信号线474上的高电压电平评估信号LEVAL接通时,移位寄存器输出信号线410a上的高电平移位寄存器输出信号SO1接通地址1晶体管446a和446b。地址1晶体管446a和地址评估晶体管440a导通,以有效地将地址线472a拉到低电压电平。地址1晶体管446b和地址评估晶体管440a导通,以有效地将地址线472b拉到低电压电平。 地址2晶体管448a和448b的栅极电连接到移位寄存器输出线410b。地址2晶体管448a的漏极-源极通路的一侧电连接地址线472a,而另一侧电连接评估线476b。地址2晶体管的漏极-源极通路448b的一侧电连接地址线472c,而另一侧电连接评估线476b。当地址评估晶体管440b被逻辑评估信号线474上的高电压电平评估信号LEVAL接通时,移位寄存器输出信号线410b上的高电平移位寄存器输出信号SO2接通地址2晶体管448a和448b。地址2晶体管448a和地址评估晶体管440b导通,以有效地将地址线472a拉到低电压电平。地址2晶体管448b和地址评估晶体管440b导通,以有效地将地址线472c拉到低电压电平。 地址3晶体管的栅极450a和450b电连接到移位寄存器输出信号线410c。地址3晶体管的漏极-源极通路450a的一侧电连接地址线472a,而另一侧电连接评估线476c。地址3晶体管的漏极-源极通路450b的一侧电连接地址线472d,而另一侧电连接评估线476c。当地址评估晶体管440c被逻辑评估信号线474上的高电压电平评估信号LEVAL接通时,移位寄存器输出信号410c线上的高电平移位寄存器输出信号SO3接通地址3晶体管450a和450b。地址3晶体管450a和地址评估晶体管440c导通,以有效地将地址线472a拉到低电压电平。地址3晶体管450b和地址评估晶体管440c导通,以有效地将地址线472d拉到低电压电平 地址4晶体管452a和452b的栅极电连接到移位寄存器输出信号线410d。地址4晶体管452a的漏极-源极通路电连接到的一侧电连接地址线472a,而另一侧电连接评估线476d。地址4晶体管452b的漏极-源极通路的一侧电连接地址线472e,而另一侧电连接评估线476d。当地址评估晶体管440d被逻辑评估信号线474上的高电压电平评估信号LEVAL接通时,在移位寄存器输出信号线410d上的高电平移位寄存器输出信号SO4接通地址4晶体管452a和452b。地址4晶体管452a和地址评估晶体管440d导通,以有效地将地址线472a拉到低电压电平。地址4晶体管452b和地址评估晶体管440d导通,以有效地将地址线472e拉到低电压电平。 地址5晶体管454a和454b的栅极电连接到移位寄存器输出信号线410e。地址5晶体管454a的漏极-源极通路的一侧电连接地址线472a,而另一侧电连接评估线476e。地址5晶体管454b的漏极-源极通路的一侧电连接地址线472f,而另一侧电连接评估线476e。当地址评估晶体管440e被高电压电平评估信号LEVAL接通时,在移位寄存器输出信号线410e上的高电平移位寄存器输出信号SO5接通地址5晶体管454a和454b。地址5晶体管454a和地址评估晶体管440e导通,以有效地将地址线472a拉到低电压电平。地址5晶体管454b和地址评估晶体管440e导通,以有效地将地址线472f拉到低电压电平。 地址6晶体管456a和456b的栅极电连接到移位寄存器输出信号线410f。地址6晶体管456a的漏极-源极通路的一侧电连接地址线472a,而另一侧电连接评估线476f。地址6晶体管456b的漏极-源极通路的一侧电连接地址线472g,而另一侧电连接评估线476f。当地址评估晶体管440f被高电压电平评估信号LEVAL接通时,移位寄存器输出信号线410f上的高电平移位寄存器输出信号SO6接通地址6晶体管456a和456b导通。地址6晶体管456a和地址评估晶体管440f导通,以有效地将地址线472a拉到低电压电平。地址6晶体管456b和地址评估晶体管440f导通,以有效地将地址线472g拉到低电压电平。 地址7晶体管458a和458b的栅极电连接到移位寄存器输出信号线410g。地址6晶体管458a的漏极-源极通路的一侧电连接地址线472b,而另一侧电连接评估线476g。地址6晶体管458b的漏极-源极通路的一侧电连接地址线472c,而另一侧电连接评估线476g。当地址评估晶体管440g被高电压电平评估信号LEVAL接通时,移位寄存器输出信号线410g上的高电平移位寄存器输出信号SO7接通地址7晶体管458a和458b。地址7晶体管458a和地址评估晶体管440g导通,以有效地将地址线472b拉到低电压电平。地址7晶体管458b和地址评估晶体管440g导通,以有效地将地址线472c拉到低电压电平。 地址8晶体管460a和460b的栅极电连接到移位寄存器输出信号线410h。地址8晶体管460a的漏极-源极通路的一侧电连接地址线472b而另一侧电连接评估线476h。地址8晶体管460b的漏极-源极通路的一侧电连接地址线472d,而另一侧电连接评估线476h。当地址评估晶体管440h被高电压电平评估信号LEVAL接通时,移位寄存器输出信号线410h上的高电平移位寄存器输出信号SO8接通地址8晶体管460a和460b。地址8晶体管460a和地址评估晶体管440h导通,以有效地将地址线472b拉到低电压电平。地址8晶体管460b和地址评估晶体管440h导通,以有效地将地址线472d拉到低电压电平。 地址9晶体管462a和462b的栅极电连接到移位寄存器输出信号线410i。地址9晶体管462a的漏极-源极通路的一侧电连接地址线472b,而另一侧电连接评估线476i。地址9晶体管462b的漏极-源极通路的一侧电连接地址线472e,而另一侧电连接评估线476i。当地址评估晶体管440i被高电压电平评估信号LEVAL接通时,移位寄存器输出信号线410i上的高电平移位寄存器输出信号SO9接通地址9晶体管462a和462b。地址9晶体管462a和地址评估晶体管440i导通,以有效地将地址线472b拉到低电压电平。地址9晶体管462b和地址评估晶体管440i导通,以有效地将地址线472e拉到低电压电平。 地址10晶体管464a和464b的栅极电连接到移位寄存器输出信号线410j。地址10晶体管464a的漏极-源极通路的一侧电连接地址线472b,而另一侧电连接评估线476j。地址10晶体管464b的漏极-源极通路的一侧电连接地址线472f,而另一侧电连接评估线476j。当地址评估晶体管440j被高电压电平评估信号LEVAL接通时,移位寄存器输出信号线410j上的高电平移位寄存器输出信号SO10接通地址10晶体管464a和464b。地址10晶体管464a和地址评估晶体管440j导通,以有效地将地址线472b拉到低电压电平。地址10晶体管464b和地址评估晶体管440j导通,以有效地将地址线472f拉到低电压电平。 地址11晶体管466a和466b的栅极电连接到移位寄存器输出信号线410k。地址11晶体管466a的漏极-源极通路的一侧电连接地址线472b,而另一侧电连接评估线476k。地址11晶体管466b的漏极-源极通路的一侧电连接地址线472g,而另一侧电连接评估线476k。当地址评估晶体管440k被一个高压评估信号LEVAL接通时,移位寄存器输出信号线410k上的高电平移位寄存器输出信号SO11接通地址11晶体管和466b。地址11晶体管466a和地址评估晶体管440k导通,以有效地将地址线472b拉到低电压电平。地址11晶体管466b和地址评估晶体管440k导通,以有效地将地址线472g拉到低电压电平。 地址12晶体管468a和468b的栅极电连接到移位寄存器输出信号线4101。地址12晶体管468a的漏极-源极通路的一侧电连接地址线472c而另一侧电连接评估线4761。地址12晶体管468b的漏极-源极通路的一侧电连接地址线472d,而另一侧电连接评估线4761。当地址评估晶体管4401被高电压电平评估信号LEVAL接通时,移位寄存器输出信号线4101上的高电平移位寄存器输出信号SO12接通地址12晶体管468a和468b。地址12晶体管468a和地址评估晶体管4401导通,以有效地将地址线472c拉到低电压电平。地址12晶体管468b和地址评估晶体管4401导通,以有效地将地址线472d拉到低电压电平。 地址13晶体管470a和470b的栅极电连接到移位寄存器输出信号线410m。地址13晶体管470a的漏极-源极通路的一侧电连接地址线472c,而另一侧电连接评估线476m。地址13晶体管470b的漏极-源极通路的一侧电连接地址线472e,而另一侧电连接评估线476m。当地址评估晶体管440m被高电压电平评估信号LEVAL接通时,移位寄存器输出信号线410m上的高电平移位寄存器输出信号SO13接通地址13晶体管470a和470b。地址13晶体管470a和地址评估晶体管440m导通,以有效地将地址线472c拉到低电压电平。地址13晶体管470b和地址评估晶体管440m导通,以有效地将地址线472e拉到低电压电平。 移位寄存器402从一条移位寄存器输出信号线410a-410m向下一条信号线移动单个高电平电压输出信号。移位寄存器402接收控制线430上的控制信号CSYNC中的控制脉冲和来自定时信号T1-T4的定时脉冲序列,从而将接收的控制脉冲移入移位寄存器402。相应地,移位寄存器402提供单个高电压电平移位寄存器输出信号SO1或SO13。全部其它的移位寄存器输出信号SO1-SO13都以低电压电平提供。移位寄存器402接收来自定时信号T1-T4的另一定时脉冲序列,并且从一个移位寄存器输出信号SO1-SO13向下一个移位寄存器输出信号SO1-SO13信号移入单个高电平电压输出信号,其它全部的移位寄存器输出信号SO1-SO13都以低电压电平提供。移位寄存器402接收重复的定时脉冲序列,并响应每个定时脉冲序列,移位寄存器402移位该单个高电平电压输出信号,从而提供有十三个高电压电平移位寄存器输出信号SO1-SO13的序列。每个高电压电平移位寄存器输出信号SO1-SO13接通两个地址晶体管对446,448...470,从而向点火单元120提供地址信号~A1、~A2...~A7。在对应于13个移位寄存器输出信号SO1-SO13的13个地址时隙中提供地址信号~A1、~A2...~A7。在另一个具体实施例中,移位寄存器402可以包括比如14个的任意合适数量的移位寄存器输出信号,从而在比如14个地址时隙的任意合适数量的地址时隙中提供地址信号~A1、~A2...~A7。 移位寄存器402通过方向信号线408从方向电路404接收方向信号。方向信号设置移位寄存器402的移位方向。移位寄存器402可以被设置为正向移位高电平电压输出信号,即从移位寄存器输出信号SO1移位到移位寄存器输出信号SO13,或设成反向移位高电平电压输出信号,即从移位寄存器输出信号SO13移位到移位寄存器输出信号SO1。 在正向移位中,移位寄存器402接收控制信号CSYNC中的控制脉冲,并提供高电压电平移位寄存器输出信号SO1。全部其它的移位寄存器输出信号SO2-SO13都以低电压电平提供。移位寄存器402接收下一个定时脉冲序列,并且提供高电压电平移位寄存器输出信号SO2,全部其它的移位寄存器输出信号SO1和SO3-SO13都以低电压电平提供。移位寄存器402接收下一个定时脉冲序列,并且提供高电压电平移位寄存器输出信号,全部其它移位寄存器输出信号SO1、SO2和SO4-SO13都以低电压电平提供。移位寄存器402继续移位高电平电压输出信号,以响应每个定时脉冲序列,直到并包括提供高电压电平移位寄存器输出信号SO13,全部其它移位寄存器输出信号SO1-SO12都以低电压电平提供。在提供高电压电平移位寄存器输出信号SO13之后,移位寄存器402接收下一个定时脉冲序列,并且为全部移位寄存器输出信号SO1-SO13提供低电压电平信号。控制信号CSYNC中的另一个控制脉冲开始或启动移位寄存器402按照从移位寄存器输出信号SO1到SO13的正向方向移位高电平电压输出信号序列。 在反向中,移位寄存器402接收控制信号CSYNC中的控制脉冲并且提供高电压电平移位寄存器输出信号SO13。全部其它的移位寄存器输出信号SO1-SO12都以低电压电平提供。移位寄存器402接收下一个定时脉冲序列并且提供高电压电平移位寄存器输出信号SO12,全部其它移位寄存器输出信号SO1-SO11和SO13都以低电压电平提供。移位寄存器402接收下一个定时脉冲序列并且提供高电压电平移位寄存器输出信号SO11,全部其它移位寄存器输出信号SO1-SO10、SO12和SO13都以低电压电平提供。移位寄存器402继续移位高电平电压输出信号以响应每个定时脉冲序列,直到和包括提供高电压电平移位寄存器输出信号SO1,全部其它移位寄存器输出信号SO2-SO13都以低电压电平提供。在提供该高电压电平移位寄存器输出信号SO1之后,移位寄存器402接收下一个定时脉冲序列并对全部移位寄存器输出信号SO1-SO13提供低电压电平信号。控制信号CSYNC中的另一个控制脉冲开始或启动移位寄存器402按照从移位寄存器输出信号S13到SO1的反向方向移位高电平电压输出信号序列。 方向电路404通过方向信号线408提供两个方向信号。方向信号在移位寄存器402中设置正向/方向移位方向。此外,方向信号可用于从移位寄存器402中清除高电平电压输出信号。 方向电路404从定时信号T3-T6接收重复的定时脉冲序列。另外,方向电路404在控制线430上接收控制信号CSYNC中的控制脉冲。方向电路404响应于接收与来自定时信号T4的定时脉冲一致的控制脉冲而提供正向信号。正向信号设置移位寄存器402,以按照从移位寄存器输出信号SO1到SO13的正向方向进行移位。方向电路404响应于接收来自定时信号T6的定时脉冲一致的控制脉冲而提供反向信号。反向信号设置移位寄存器402,用于按照从移位寄存器输出信号SO13到SO1的反向进行移位。响应于方向电路404接收与来自定时信号T4的定时脉冲和来自定时信号T6的定时脉冲相一致的控制脉冲,方向电路404提供方向信号以清除移位寄存器402。 逻辑阵列406接收在移位寄存器输出信号线410a-410m上的移位寄存器输出信号SO1-SO13,以及定时信号线434、422和436的定时信号T3-T5的定时脉冲。响应于移位寄存器输出信号SO1-SO13中的单个高电平电压输出信号和定时信号T3-T5中的定时脉冲,逻辑阵列406提供~A1、~A2...~A7这7个地址信号中的两个低电压电平地址信号。 逻辑阵列406接收来自定时信号T3的定时脉冲,它接通防止评估晶体管442a以将评估信号线474拉到低电压电平并且关断地址评估晶体管440。此外,通过地址线预充电晶体管438,来自定时信号T3的定时脉冲将地址线472a-472g充电到高电压电平。在一个具体实施例中,来自定时信号T3的定时脉冲被来自定时信号T4的定时脉冲所替代,从而通过地址线预充电晶体管438将地址线472a-472g充电到高电压电平。 来自定时信号T4的定时脉冲接通防止评估晶体管442b,从而将评估信号线474拉到低电压电平,并且关断地址评估晶体管440。在来自定时信号T4的定时脉冲的期间,移位寄存器输出信号SO1-SO13处于有效的输出信号。移位寄存器输出信号SO1-SO13中的单个高电平电压输出信号被提供到逻辑阵列406中的地址晶体管对446、448...470的栅极。来自定时信号T5的定时脉冲将评估信号线474充电到高电压电平,从而接通地址评估晶体管440。当地址评估晶体管440接通时,接收高电压电平移位寄存器输出信号SO1-SO13的逻辑阵列406中的地址晶体管对446,448...或470导通,从而放电对应的地址线472。通过导通的地址晶体管对446,448...470和导通的评估晶体管440,对应的地址线472被有效地拉低。另一个地址线472仍然充电到高电压电平。 逻辑阵列406提供每个地址时隙中从~A1、~A2...~A7这7个地址信号中的两个低电压电平地址信号。如果移位寄存器输出信号SO1处于高电压电平,那么地址1晶体管446a和446b导通,以将地址线472a和472b拉到低电压电平并提供低电平有效地址信号~A1和~A2。如果移位寄存器输出信号SO2处于高电压电平,那么地址2晶体管448a和448b导通,以将地址线472a和472c拉到低电压电平并提供低电平有效地址信号~A1和~A3。如果移位寄存器输出信号SO3处于高电压电平,那么地址3晶体管450a和450b导通,以将地址线472a和472d拉到低电压电平并提供低电平有效地址信号~A1和~A4,依此类推,对每个移位寄存器输出信号SO4-SO13进行同样的处理。与移位寄存器输出信号SO1-SO13相关联的用于13个地址时隙中每个地址时隙的地址信号~A1、~A2...~A7,如下表所示: 地址时隙 有效地址信号 1 ~A1和~A2 2 ~A1和~A3 3 ~A1和~A4 4 ~A1和~A5 5 ~A1和~A6 6 ~A1和~A7 7 ~A2和~A3 8 ~A2和~A4 9 ~A2和~A5 10 ~A2和~A6 11 ~A2和~A7 12 ~A3和~A4 13 ~A3和~A5在另一个具体实施例中,逻辑阵列406可以为13个地址时隙中的每个时隙提供有效地址信号~A1、~A2...~A7,如下表所示: 地址时隙 有效地址信号 1 ~A1和~A3 2 ~A1和~A4 3 ~A1和~A5 4 ~A1和~A6 5 ~A2和~A4 6 ~A2和~A5 7 ~A2和~A6 8 ~A2和~A7 9 ~A3和~A5 10 ~A3和~A6 11 ~A3和~A7 12 ~A4和~A6 13 ~A4和~A7并且,在其它的具体实施例中,逻辑阵列406可以包括地址晶体管,该地址晶体管为高电平电压输出信号SO1-SO13中的每个信号提供任意合适数量的低电压电平地址信号~A1、~A2...~A7,并以低电压电平地址信号~A1、~A2...~A7的任意合适顺序提供。这可以通过比如适当地设置每个晶体管对446、448...470来对地址线672a-g中任意两条所需地址线进行放电来完成。 另外,在其它的具体实施例中,逻辑阵列406可以包括任意合适数量的地址线,以在任意合适数量地址时隙中提供任意合适数量的地址信号。 在操作中,定时信号T1-T6提供六定时脉冲的重复序列。每个定时信号T1-T6在每个六定时脉冲的序列中提供一个定时脉冲。来自定时信号T1的定时脉冲后面继之有来自定时信号T2的定时脉冲,继之来自定时信号T3的定时脉冲,继之以来自定时信号T4的定时脉冲、继之以来自定时信号T5的定时脉冲,其后有来自定时信号T6的定时脉冲。六定时脉冲的重复序列中反复六定时脉冲的序列。 在六定时脉冲的一个序列中,方向电路404接收第四预充电信号PRE4中来自定时信号T3的定时脉冲。第四预充电信号PRE4中的定时脉冲将方向线408的第一方向线充电到高电压电平。方向电路404接收第四评估信号EVAL4中来自定时信号T4的下降的电压电平定时脉冲。如果方向电路404接收与第四评估信号EVAL4(与之同时)一致的控制信号CSYNC中的控制脉冲,那么方向电路404将第一方向线408放电。如果方向404接收与第四评估信号EVAL4中的定时脉冲一致的低电压电平控制信号CSYNC,第一方向线408仍然是充电成高电压电平。 接着,方向电路404接收第三预充电信号PRE3中来自定时信号T5的定时脉冲。第三预充电信号PRE3的定时脉冲充电方向线408的第二方向线。方向电路404接收第三评估信号EVAL3中来自定时信号T6的下降的电压电平定时脉冲。如果方向电路404接收与第三评估信号EVAL3中的定时脉冲一致的控制信号CSYNC的控制脉冲,那么方向电路404将第二方向线408放电到低电压电平。如果方向电路404接收与第三评估信号EVAL3中的定时脉冲一致的低电压电平控制信号CSYNC,第二方向线408仍然充电成高电压电平。 如果第一方向线408放电到低电压电平,而第二方向线408仍然保持为高电压电平,那么第一个和第二方向线408上的信号电平将移位寄存器402设成按照正向方向移位。如果第一方向线408保持为高电压电平,并且第二方向线408放电到低电压电平,那么方向线408的信号电平将移位寄存器402设成按照反向方法进行移位。如果第一和第二方向线408都放电到低电压电平,那么移位寄存器402禁止提供高电压电平移位寄存器输出信号SO1-SO13。在每个六定时脉冲的序列期间,在方向线408上设置方向信号。 首先,在六定时脉冲的一个序列中设置方向,并且在六定时脉冲的下一个序列中初始化移位寄存器402。为了启动移位寄存器402,移位寄存器402接收第一预充电信号PRE1中来自定时信号T1的定时脉冲。第一预充电信号PRE1的定时脉冲预充电13个移位寄存器单元中的每个移位寄存器单元的一个内部节点,如403a-403m所示。移位寄存器402接收第一评估信号EVAL1中来自定时信号T2的下降的电压电平定时脉冲。如果移位寄存器402接收与第一评估信号EVAL1中定时脉冲一致的控制信号CSYNC的控制脉冲,移位寄存器402放电13个移位寄存器单元中的一个移位寄存器单元的内部节点,从而在内部节点提供低电压电平。如果控制信号CSYNC仍然保持与第一评估信号EVAL1中定时脉冲一致的低电压电平,那么13个移位寄存器单元的每个移位寄存器单元的内部节点保持为高电压电平。 移位寄存器402接收第二预充电信号PRE2中来自定时信号T3的定时脉冲。第二预充电信号PRE2的定时脉冲预充电13条移位寄存器输出线410a-410m中的每条移位寄存器输出线,从而提供高电压电平移位寄存器输出信号SO1-SO13。移位寄存器402接收第二评估信号EVAL2中来自定时信号T4的下降的电压电平定时脉冲。如果移位寄存器单元403的内部节点处于低电压电平,比如在接收与第一评估信号EVAL1中定时脉冲一致的控制信号CSYNC的控制脉冲之后,移位寄存器402保持移位寄存器输出信号SO1-SO13为高电压电平。如果移位寄存器单元403的内部节点为高电压电平,比如在全部其它的移位寄存器单元403中,移位寄存器402放电移位寄存器输出线410a-410m,从而提供低电压电平移位寄存器输出信号SO1-SO13。在六定时脉冲的一个序列中启动移位寄存器402。在第二评估信号EVAL2中来自定时信号T4的定时脉冲期间,移位寄存器输出信号SO1-SO13变为有效,并且直到下一个六定时脉冲序列中的来自定时信号T3的定时脉冲期间仍然保持有效。在每个后续的六定时脉冲序列中,移位寄存器402从一个移位寄存器单元403向下一个移位寄存器单元403移位高电压电平移位寄存器输出信号SO1-SO13。 逻辑阵列406接收移位寄存器输出信号SO1-SO13。在一个具体实施例中,逻辑阵列406接收来自定时信号T3的定时脉冲以预充电地址线472并关断地址评估晶体管440。在一个具体实施例中,逻辑阵列406接收用于关断地址评估晶体管440的来自定时信号T3的定时脉冲,并且接收用于预充电地址线472的来自定时信号T4的定时脉冲。 当移位寄存器输出信号SO1-SO13处于有效的移位寄存器输出信号SO1-SO13时,逻辑阵列406接收用于关断地址评估晶体管440的来自定时信号T4的定时脉冲。如果移位寄存器402被启动,在来自定时信号T4的定时脉冲之后,一个移位寄存器输出信号SO1-SO13仍然保持为高电压电平。逻辑阵列406接收来自定时信号T5的定时脉冲,以充电评估信号线474,并且接通地址评估晶体管440。用于接收高电压电平移位寄存器输出信号SO1-SO13的地址晶体管对446,448...470接通,从而将7条地址线472a-472g中的两条拉到低电压电平。地址信号~A1、~A2...~A7中的两个低电压电平地址信号用来为激活而使能点火单元120和点火单元子组。地址信号~A1、~A2...~A7在来自定时信号T5的定时脉冲期间变为有效,并且一直保持有效直到下一个六定时脉冲序列中来自定时信号T3的定时脉冲。 如果移位寄存器402不被启动,全部移位寄存器输出线410放电,以提供低电压电平移位寄存器输出信号SO1-SO13。低电压电平移位寄存器输出信号SO1-SO13关断地址晶体管对446、448...470,并且地址线472仍然充电以提供高电压电平地址信号~A1、~A2...~A7。高电压电平地址信号~A1、~A2...~A7禁止为激活而使能点火单元120和点火单元子组。 尽管图9描绘了地址电路的一个具体实施例,但其它的具体实施例可以利用不同的逻辑元件和组件。例如:一个控制器,接收比如信号T1-T6的上述输入信号,并且提供可用的地址信号~A1、~A2...~A7。 图10A是说明移位寄存器402中一个移位寄存器单元403a的示意图。移位寄存器402包括13个移位寄存器单元403a-403m,以提供13个移位寄存器输出信号SO1-SO13。403a-403m的每个移位寄存器单元提供移位寄存器输出信号SO1-SO13中的一个移位寄存器输出信号,并且403a-403m的每个移位寄存器单元类似于移位寄存器单元403a。13个移位寄存器单元403都电串联连接,以提供正向和反向的移位。在其它的具体实施例中,移位寄存器402可以包括任意合适数量的移位寄存器单元403,以提供任意合适数量的移位寄存器输出信号。 移位寄存器单元403a包括第一级和第二级,第一级是输入级,在500处以虚线表示,第二级是输出级,在502处以虚线表示。第一级500包括第一预充电晶体管504、第一评估晶体管506、正向输入晶体管508、反向输入晶体管510、正向晶体管512和反向晶体管514。第二级502包括第二预充电晶体管516、第二评估晶体管518和内部节点晶体管520。 在第一级500,第一预充电晶体管504的栅极及漏极-源极通路的一侧电连接到定时信号线432。定时信号线432提供定时信号T1到移位寄存器402以作为第一预充电信号PRE1。第一预充电晶体管504的漏极-源极通路的另一侧通过内部节点522电连接到第一评估晶体管506的漏极-源极通路的一侧和内部节点晶体管520的栅极。内部节点522将500和502两级之间的移位寄存器内部节点信号SN1提供到内部节点晶体管520的栅极。 第一评估晶体管506的栅极电连接到第一评估信号线420。第一评估信号线420将降低的电压电平T2定时信号提供到移位寄存器402以作为第一评估信号EVAL1。第一评估晶体管506的漏极-源极通路的另一侧通过内部通路524电连接到正向输入晶体管508的漏极-源极通路的一侧和反向输入晶体管510的漏极-源极通路的一侧。 在526处,正向输入晶体管508的漏极-源极通路的另一侧电连接到正向晶体管512的漏极-源极通路的一侧,并且在528处,反向输入晶体管510的漏极-源极通路的另一侧电连接到反向晶体管514的漏极-源极通路的一侧。在530处,正向晶体管512和反向晶体管514的漏极-源极通路都电连接到比如地线的基准。 正向晶体管512的栅极电连接到方向线408a,方向线408a接收从方向电路404的正向信号DIRF。反向晶体管514的栅极电连接到方向线408b,方向线408b从方向电路404接收反向信号DIRR。 在第二级502中,第二预充电晶体管516的栅极及漏极-源极通路的一侧电连接到定时信号线434。定时信号线434提供定时信号T3到移位寄存器402以作为第二预充电信号PRE2。第二预充电晶体管516的漏极-源极通路的另一侧电连接到第二评估晶体管518的漏极-源极通路的一侧和移位寄存器输出线410a。在532处,第二评估晶体管518的漏极-源极通路的另一侧电连接到内部节点晶体管520的漏极-源极通路的一侧。第二评估晶体管518的栅极电连接到第二评估信号线424,以提供降低的电压电平T4定时信号到移位寄存器402以作为第二评估信号EVAL2。内部节点晶体管520的栅极电连接到内部节点522,并且在534处,内部节点晶体管520的漏极-源极通路的另一侧电连接到比如地线的基准。内部节点晶体管520的栅极包括536处的电容,用于存储移位寄存器单元内部节点信号SN1。移位寄存器输出信号线410a包括538处的电容,用于存储移位寄存器输出信号SO1。 13个移位寄存器单元403序列中每个移位寄存器单元403a-403m类似于移位寄存器单元403a。每个移位寄存器单元403a-403m中的正向晶体管508的栅极电连接到控制线430或移位寄存器输出线410a-4101中的一条,从而按照正向方向进行移位。每个移位寄存器单元403a-403m的反向晶体管510的栅极电连接到控制线430或移位寄存器输出线410b-410m中的一条,从而按照反向方向进行移位。移位寄存器输出信号线410电连接到除了用于移位寄存器输出信号线410a和410m之外的一个正向晶体管508和一个反向晶体管510。移位寄存器输出信号线410a电连接到移位寄存器单元403b的正向晶体管508,而不是反向晶体管510。移位寄存器输出信号线410m电连接到移位寄存器单元4031中的反向晶体管510,而不是正向晶体管508。 当移位寄存器402进行正向移位时,移位寄存器单元403a是13个移位寄存器403序列中的第一个移位寄存器403。移位寄存器单元403a的正向输入晶体管508的栅极电连接到控制信号线430,以接收控制信号CSYNC。第二移位寄存器单元403b包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410a,以接收移位寄存器输出信号SO1。第三移位寄存器单元403c包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410b,以接收移位寄存器输出信号SO2。第四移位寄存器单元403d包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410c,以接收移位寄存器输出信号SO3。第五移位寄存器单元403e包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410d,以接收移位寄存器输出信号SO4。第六移位寄存器单元403f包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410e,以接收移位寄存器输出信号SO5。第七移位寄存器单元403g包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410f,以接收移位寄存器输出信号SO6。第八移位寄存器单元403h包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410g,以接收移位寄存器输出信号SO7。第九移位寄存器单元403i包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410h,以接收移位寄存器输出信号SO8。第十移位寄存器单元403j包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410i,以接收移位寄存器输出信号SO9。第十一移位寄存器单元403k包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410j,以接收移位寄存器输出信号SO10。第十二移位寄存器单元4031包括正向输入晶体管的栅极,其电连接到移位寄存器输出线410k,以接收移位寄存器输出信号SO11。第十三移位寄存器单元403m包括正向输入晶体管的栅极,其电连接到移位寄存器输出线4101,以接收移位寄存器输出信号SO12。 当移位寄存器402以反向移位时,移位寄存器单元403a是13个移位寄存器单元403序列中的最后一个。移位寄存器单元403a中的反向输入晶体管510的栅极电连接到之前的移位寄存器输出线410b,从而接收移位寄存器输出信号SO2。移位寄存器单元403b包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线410c,从而接收移位寄存器输出信号SO3。移位寄存器单元403c包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线410d,以接收移位寄存器输出信号SO4。移位寄存器单元403d包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线410e,以接收移位寄存器输出信号SO5。移位寄存器单元403e包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线410f,以接收移位寄存器输出信号SO6。移位寄存器单元403f包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线410g,以接收移位寄存器输出信号SO7。移位寄存器单元403g包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线410h,以接收移位寄存器输出信号SO8。移位寄存器单元403h包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线410i,以接收移位寄存器输出信号SO9。移位寄存器单元403i包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线410j,以接收移位寄存器输出信号SO10。移位寄存器单元403j包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线410k,以接收移位寄存器输出信号SO11。移位寄存器单元403k包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线4101,以接收移位寄存器输出信号SO12。移位寄存器单元4031包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到移位寄存器输出线410m,以接收移位寄存器输出信号SO13。移位寄存器单元403m包括反向输入晶体管的栅极,反向输入晶体管的栅极电连接到控制信号线430,以接收控制信号CSYNC。移位寄存器输出线410a-410m还电连接到逻辑阵列406。 移位寄存器402接收控制信号CSYNC中的控制脉冲,并提供单个的高电平电压输出信号。如上文所述并如下文那样详细描述的,设置移位寄存器402的移位方向,以响应方向信号DIRF和DIRR,这两个方向信号是基于控制信号线430上的控制信号CSYNC而在来自定时信号T3的定时脉冲期间产生的。如果移位寄存器402正向移位,移位寄存器402设置移位寄存器输出线410a和移位寄存器输出信号SO1到高电压电平,以响应定时信号T1-T4上的控制脉冲和定时脉冲。如果移位寄存器402反向移位,移位寄存器402设置移位寄存器输出线410m和移位寄存器输出信号SO13到高电压电平,以响应定时信号T1-T4中的控制脉冲和定时脉冲。高电平电压输出信号SO1或SO13经过移位寄存器402,从一个移位寄存器单元403移到下一个移位寄存器单元403,以响应在定时信号T1-T4中的定时脉冲。 利用两个预充电操作和两个评估操作,移位寄存器402移入控制脉冲并且将单个高电平电压输出信号从一个移位寄存器单元403移到下一个移位寄存器单元403。每个移位寄存器单元403的第一级500接收正向信号DIRF和反向信号DIRR。而且,每个移位寄存器403的第一级500接收正向移位寄存器输入信号SIF和反向移位寄存器输入信号SIR。将移位寄存器402的全部移位寄存器单元403设成与定时信号T1-T4接收到定时脉冲的同时并以相同的方向进行移位。 每个移位寄存器单元403的第一级500移入正向移位寄存器输入信号SIF或者反向移位寄存器输入信号SIR。将选定的移位寄存器输入信号SIF或SIR的高或低电压电平作为移位寄存器输出信号SO1-SO13来提供。在来自定时信号T1的定时脉冲期间,每个移位寄存器单元403的第一级500预充电内部节点522,并且在来自定时信号T1的定时脉冲期间,每个移位寄存器单元403的第一级500评估所选择的移位寄存器输入信号SIF或SIR。在来自定时信号T3的定时脉冲期间,每个移位寄存器单元403的第二级502预充电移位寄存器输出线410a-410m,并且在来自定时信号T4的定时脉冲期间,每个移位寄存器单元403的第二级502评估内部节点信号SN(例如SN1)。 方向信号DIRF和DIRR设置在移位寄存器单元403a以及移位寄存器402的其它全部移位寄存器单元403中移位的正/反向。如果正向信号DIRF处于高电压电平而反向信号DIRR处于低电压电平,移位寄存器402正向移位。如果反向信号DIRR处于高电压电平而正向信号DIRF处于低电压电平,移位寄存器402反向移位。如果信号DIRF和DIRR都处于低电压电平,移位寄存器402不在任何方向移位,并且全部移位寄存器输出信号SO1-SO13都清零,使低电压电平无效。 在移位寄存器单元403a正向移位操作中,正向信号DIRF设成高电压电平,并且反向信号DIRR设成低电压电平。高电压电平正向信号DIRF接通正向晶体管512,并且低电压电平反向信号DIRR关断反向晶体管514。将第一预充电信号PRE1中来自定时信号T1的定时脉冲提供到移位寄存器402,以经过第一预充电晶体管504将内部节点522充电到高电压电平。接着,来自定时信号T2的定时脉冲被提供到电阻器划分网络412,并且第一评估信号EVAL1中降低的电压电平T2定时脉冲被提供到移位寄存器402。第一评估信号EVAL1中的定时脉冲接通第一评估晶体管506。如果正向移位寄存器输入信号SIF处于高电压电平,那么正向输入晶体管508接通,并且随着正向晶体管512已被接通,内部节点522放电,以提供低电压电平内部节点信号SN1。内部节点522经过第一评估晶体管506、正向输入晶体管508和正向晶体管512放电。如果正向移位寄存器输入信号SIF处于低电压电平,那么正向输入晶体管508关断,而内部节点522仍然充电,以提供高电压电平内部节点信号SN1。反向移位寄存器输入信号SIR控制反向输入晶体管510。然而,反向晶体管514关断,因此内部节点522不能经过反向输入晶体管510放电。 内部节点522的内部节点信号SN1控制内部节点晶体管520。低电压电平内部节点信号SN1关断内部节点晶体管520,并且高电压电平内部节点信号SN1接通内部节点晶体管520。 把来自定时信号T3的定时脉冲提供到移位寄存器402,以作为第二预充电信号PRE2。第二预充电信号PRE2中的定时脉冲经过第二预充电晶体管516将移位寄存器输出线410a充电到高电压电平。接着,把来自定时信号T4的定时脉冲提供到电阻器划分网络414,并且把降低的电压电平T4定时脉冲提供到移位寄存器402以作为第二评估信号EVAL2。第二评估信号EVAL2中的定时脉冲接通第二评估晶体管518。如果内部节点晶体管520关断,移位寄存器输出线410a仍然充电到高电压电平。如果内部节点晶体管520接通,移位寄存器输出线410a放电到低电压电平。移位寄存器输出信号SO1与内部节点信号SN1的高/低相反,并且内部节点信号SN1与正向移位寄存器输入信号SIF的高/低相反。正向移位寄存器输入信号SIF的电平向移位寄存器输出信号SO1移位。 在移位寄存器单元403a中,正向移位寄存器输入信号SIF是控制线430的控制信号CSYNC。为了内部节点522放电到低电压电平,同时提供控制信号CSYNC的控制脉冲以作为第一评估信号EVAL1中的定时脉冲。与来自定时信号T2的定时脉冲相一致的控制信号CSYNC的控制脉冲启动移位寄存器402正向移位。 移位移位寄存器单元403a反向移位操作中,正向信号DIRF被设置成低电压电平而反向信号DIRR被设置成高电压电平。低电压电平正向信号DIRF关断正向晶体管512而高电压电平反向信号DIRR接通反向晶体管514。在第一预充电信号PRE1中提供来自定时信号T1的定时脉冲,以经过第一预充电晶体管504将内部节点522充电到高电压电平。接着,把来自定时信号T2的定时脉冲提供到电阻器划分网络412,并且在第一评估信号EVAL1中提供降低的电压电平T2定时脉冲。第一评估信号EVAL1的定时脉冲接通第一评估晶体管506。如果反向移位寄存器输入信号SIR处于高电压电平,那么反向输入晶体管510接通,并且随着反向晶体管514已被接通,内部节点522放电,以提供低电压电平内部节点信号SN1。内部节点522经过第一评估晶体管506、反向输入晶体管510和反向晶体管514放电。如果反向移位寄存器输入信号SIR处于低电压电平,那么反向输入晶体管510关断,而内部节点522仍然充电,以提供高电压电平内部节点信号SN1。正向移位寄存器输入信号SIF控制正向输入晶体管508。然而,正向晶体管512关断,使得内部节点522不能经过正向输入晶体管508放电。 在第二预充电信号PRE2中提供来自定时信号T3的定时脉冲。第二预充电信号PRE2的定时脉冲经过第二预充电电阻器516将移位寄存器输出线410a充电到高电压电平。接着,把来自定时信号T4的定时脉冲提供到电阻器划分网络414,并且在第二评估信号EVAL2中提供降低的电压电平T4定时脉冲。第二评估信号EVAL2中的定时脉冲接通第二评估晶体管518。如果内部节点晶体管520关断,移位寄存器输出线410a仍然充电到高电压电平。如果内部节点晶体管520接通,移位寄存器输出线410a放电到低电压电平。移位寄存器输出信号SO1与内部节点信号SN1高/低相反,内部节点信号SN1与反向移位寄存器输入信号SIR高/低相反。反向移位寄存器输入信号SIR的电平移入移位寄存器输出信号SO1。 在移位寄存器单元403a中,反向移位寄存器输入信号SIR是在移位寄存器输出线410b上的移位寄存器输出信号。在移位寄存器单元403m中,反向移位寄存器输入信号SIR是在控制线430上的控制信号CSYNC。为了将移位寄存器单元403m中的内部节点522放电到低电压电平,同时提供控制信号CSYNC中的控制脉冲,以作为第一评估信号EVAL1中的定时脉冲。控与来自定时信号T2的定时脉冲一致的制信号CSYNC内的控制脉冲启动移位寄存器402从移位寄存器单元403m向移位寄存器单元403a进行反向移位。 在清零移位寄存器402中的移位寄存器单元403a和全部移位寄存器单元403的操作中,把方向信号DIRF和DIRR设置成低电压电平。低电压电平正向信号DIRF关断正向晶体管512,并且低电压电平反向信号DIRR关断反向晶体管514。在第一预充电信号PRE1提供来自定时信号T1的定时脉冲,以充电内部节点522,并且提供高电压电平内部节点信号SN1。提供来自定时信号T2的定时脉冲,以作为第一评估信号EVAL1中降低的电压电平T2定时脉冲,从而导通第一评估晶体管506。正向晶体管512和反向晶体管514都关断,以便内部节点522不通过正向输入晶体管508或者反向输入晶体管510放电。 高电压电平内部节点信号SN1导通内部节点晶体管520。在第二预充电信号PRE2中提供来自定时信号T3的定时脉冲,以对移位寄存器输出信号线410a和其它全部移位寄存器输出信号线410充电。接着,提供来自定时信号T4的定时脉冲,以作为第二评估信号EVAL2中的降低的电压电平T4定时脉冲,从而导通第二评估晶体管518。移位寄存器输出线410a通过第二评估晶体管518和内部节点晶体管520放电,以提供低电压电平移位寄存器输出信号SO1。另外,全部其它移位寄存器输出线410放电,以提供无效的低电压电平移位寄存器输出信号SO2-SO13。 图10B是说明方向电路404的一个示意图。方向电路404包括正向信号电路550和反向信号电路552。正向信号电路550包括第三预充电晶体管554、第三评估晶体管556和第一控制晶体管558。反向信号电路552包括第四预充电晶体管560、第四评估晶体管562和第二控制晶体管564。 第三预充电晶体管554的栅极和漏极-源极通路的一侧电连接到定时信号线436。定时信号线436提供定时信号T5到方向电路404以作为第三预充电信号PRE3。第三预充电晶体管554的漏极-源极通路的另一侧通过方向信号线408a电连接到第三评估晶体管556的漏极-源极通路的一侧。方向信号线408a提供正向信号DIRF到移位寄存器402的每个移位寄存器单元403的正向晶体管的栅极,比如移位寄存器单元403a的正向晶体管512的栅极。第三评估晶体管556的栅极电连接到第三评估信号线428,第三评估信号线428提供降低的电压电平T6定时信号到方向电路404。在566处,第三评估晶体管556的漏极-源极通路的另一侧电连接到控制晶体管558的漏极-源极通路。在568处,控制晶体管558漏极-源极通路电连接到比如地线的基准。控制晶体管558的栅极电连接到控制线430,以接收控制信号CSYNC。 第四预充电晶体管560的栅极和漏极-源极通路的一侧电连接到定时信号线434。定时信号线434提供定时信号T3到方向电路404以作为第四预充电信号PRE4。第四预充电晶体管560的漏极-源极通路的另一侧通过方向信号线408b电连接到第四评估晶体管562的漏极-源极通路的一侧。方向信号线408b提供反向信号DIRR到移位寄存器402的每个移位寄存器单元403的反向晶体管的栅极,比如移位寄存器单元403a的反向晶体管514的栅极。第四评估晶体管562的栅极电连接到第四评估信号线424,第四评估信号线424提供降低的电压电平T4定时信号到方向电路404。在570处,第四评估晶体管562的漏极-源极通路的另一侧电连接到控制晶体管564的漏极-源极通路。在572处,控制晶体管564漏极-源极通路电连接到比如地线的基准。控制晶体管564的栅极电连接到控制线430,以接收控制信号CSYNC。 方向信号DIRF和DIRR设置移位寄存器402的移位方向。如果正向信号DIRF被设置为高电压电平并且反向信号DIRR被设置为低电压电平,比如正向晶体管512的正向晶体管导通,并且比如反向晶体管514的反向关断。移位寄存器402正向移位。如果正向信号DIRF被设置为低电压电平而反向信号DIRR被设置为高电压电平,那么如正向晶体管512的正向晶体管关断,并且如反向晶体管514的反向晶体管导通。移位寄存器402反向移位。当移位寄存器402有效地正向或反向移位时,在定时信号T3-T6的每个定时脉冲序列期间,设置方向信号DIRF和DIRR。为了终止或防止移位寄存器402移位,方向信号DIRF和DIRR被设置为低电压电平。清零移位寄存器输出信号SO1-SO13的单个高电压电平信号,使得全部移位寄存器输出信号SO1-SO13处于低电压电平。低电压电平移位寄存器输出信号SO1-SO13关断全部地址晶体管对446、448...470,并且地址信号~A1、~A2...~A7仍然保持为高电压电平以禁止使能点火单元120。 在操作中,定时信号线434将第四预充电信号PRE4中来自定时信号T3的定时脉冲提供到方向电路404。在第四预充电信号PRE4中的定时脉冲充电反向信号线408b到高电压电平。把来自定时信号T4的定时脉冲提供到电阻器划分网络414,后者在第四评估信号EVAL4中提供降低的电压电平T4定时脉冲到方向电路404。第四评估信号EVAL4的定时脉冲导通第四评估晶体管562。如果当把第四评估信号EVAL4定时脉冲提供到第四评估晶体管562的同时,把控制信号CSYNC的控制脉冲提供到控制晶体管564的栅极,那么反向信号线408b放电到低电压电平。如果当把第四评估信号EVAL4定时脉冲提供到第四评估晶体管562时控制信号CSYNC仍然保持低电压电平,那么反向信号线408b仍然充电到高电压电平。 定时信号线436将第三预充电信号PRE3中来自定时信号T5的定时脉冲提供到方向电路404。在第三预充电信号PRE3中的定时脉冲充电正向信号线408a到高电压电平。把来自定时信号T6的定时脉冲提供到电阻器划分网络416,后者在第三评估电路EVAL3中提供降低的电压电平T6定时脉冲到方向电路404。第三评估信号EVAL3的定时脉冲导通第三评估晶体管562。如果当把第三评估信号EVAL3中的定时脉冲提供到第三评估晶体管562时,把控制信号CSYNC的控制脉冲同时提供到控制晶体管558的栅极,那么正向信号线408a放电到低电压电平。如果当把第三评估信号EVAL3中的定时脉冲提供到第三评估晶体管556时,控制信号CSYNC仍然保持低电压电平,那么正向信号线408a仍然充电到高电压电平。 图11是说明地址产生器400正向操作的一个时序图。定时信号T1-T6提供具有六重复脉冲的脉冲序列。每个定时信号T1-T6提供具有六脉冲的脉冲序列中的一个脉冲。 在具有六脉冲的脉冲序列中,在600处的定时信号T1包括定时脉冲602,在604处的定时信号T2包括定时脉冲606,在608处的定时信号T3包括定时脉冲610,在612处的定时信号T4包括定时脉冲614,在616处的定时信号T5包括定时脉冲618,在620处的定时信号T6包括定时脉冲622。624处的控制信号CSYNC包括多个控制脉冲,这些脉冲设置移位寄存器402移入方向,并且启动用于产生如625处所示的地址信号~A1、~A2...~A7的移位寄存器402。 第一预充电信号PRE1中的来自在600处的定时信号T1的定时脉冲602被提供到移位寄存器402。在定时脉冲602期间,403a-403m的每个移位寄存器单元中的内部节点522充电,以提供高电压电平内部节点信号SN1-SN13。如626处所示的全部移位寄存器内部节点信号SN在628处被设置为高电压电平。高电压电平内部节点信号SN 626导通每个移位寄存器单元403a-403m中的内部节点晶体管520。在这个例子中,在定时脉冲602之前已经提供了六定时脉冲的序列,而移位寄存器402还没有被启动,以便在630处的全部移位寄存器输出信号SO在632处放电到低电压电平,并且625处的地址信号~A1、~A2...~A7在633处仍然保持为高电压电平。 在604处,第一评估信号EVAL1中来自定时信号T2的定时脉冲606被提供到移位寄存器402。定时脉冲606导通每个移位寄存器单元403a-403m的第一评估晶体管506。当控制信号CSYNC 624在634处仍然保持低电压电平,而全部移位寄存器输出信号SO 630在636处仍然保持低电压电平时,每个移位寄存器单元403a-403m的正向输入晶体管508和反向输入晶体管510都是关断的。非导通的正向输入晶体管508和非导通的反向输入晶体管510禁止每个移位寄存器单元403a-403m的内部节点522放电到低电压电平。全部移位寄存器内部节点信号SN626在638仍然保持为高电压电平。 在608处,第二预充电信号PRE2中来自定时信号T3的定时脉冲610被提供到移位寄存器402、到第四预充电信号PRE4中的定时脉冲610、以及到到逻辑阵列406中的地址线预充电晶体管438和防止评估晶体管422a。在第二预充电信号PRE2中的定时脉冲610期间,全部移位寄存器输出信号SO 630在640处充电到高电压电平。并且,在第四预充电信号PRE4的定时脉冲610期间,反向信号DIRR 642在644处充电到高电压电平。另外,定时脉冲610在646处充电全部地址信号625到高电压电平,并且导通防止评估晶体管422a,以将逻辑评估信号LEVAL 648在650处拉到低电压电平。 在612处,第二评估信号EVAL2中来自定时信号T4的定时脉冲614被提供到移位寄存器402、到第四评估信号EVAL4中的定时脉冲614、到逻辑阵列406中的防止评估晶体管422b。第二评估信号EVAL2中的定时脉冲614导通每个移位寄存器单元403a-403m的第二评估晶体管518。随着高电压电平的内部节点信号SN 626已经导通每个移位寄存器单元403a-403m的内部节点晶体管520,全部移位寄存器输出信号SO 630在652放电到低电压电平。并且,第四评估信号EVAL4中的定时脉冲614导通第四评估晶体管562。控制信号CSYNC624的在654的控制脉冲导通控制晶体管564。随着第四评估晶体管562和控制晶体管564导通,方向信号DIRR 642在656放电到低电压电平。另外,定时脉冲614导通防止评估晶体管442b以在658保持逻辑评估信号LEVAL648为低电压电平。低电压电平逻辑评估信号LEVAL 648关断地址评估晶体管440。 在616处,第三预充电信号PRE3中来自定时信号T5的定时脉冲618被提供到方向电路404,还被提供到逻辑阵列406的评估预充电晶体管444。在第三预充电信号PRE3的定时脉冲618期间,正向信号DIRF658在660充电到高电压电平。高电压电平正向信号DIRF 658导通每个移位寄存器单元403a-403m的正向晶体管512,从而设置移位寄存器402正向移位。并且,在定时脉冲618期间,逻辑评估信号LEVAL 648在662充电到高电压电平,从而导通全部逻辑评估晶体管440。随着全部移位寄存器输出信号SO 630处于低电压电平,全部地址晶体管对446、448...470关断,而625处的地址信号~A1、~A2...~A7仍然保持为高电压电平。 在620处,来自定时信号T6的定时脉冲622被提供到方向电路404以作为第三评估信号EVAL3。定时脉冲622导通第三评估晶体管556。因为控制信号CSYNC 624在664仍然保持低电压电平,控制晶体管558关断,而正向信号DIRF 658仍然保持为高电压电平。高电压电平正向信号DIRF 658和低电压电平反向信号DIRR 642设置每个移位寄存器单元403a-403m进行正向移位。 在下一个六定时脉冲序列中,定时脉冲666充电全部内部节点信号SN 626到高电压电平。定时脉冲668导通每个移位寄存器单元403a-403m的第一评估晶体管506。在670处,控制信号CSYNC 624提供控制脉冲到移位寄存器单元403a的正向输入晶体管508。随着正向晶体管512已经导通,如672所示,移位寄存器单元403a的内部节点信号SN1放电到低电压电平。移位寄存器输出信号SO 630在674处于低电压电平,从而关断移位寄存器单元403b-403m的正向输入晶体管。随着正向输入晶体管关断,移位寄存器单元403b-403m的每个其它内部节点信号SN2-SN13仍然保持为高电压电平,如676所示。 在定时脉冲678期间,全部移位寄存器输出信号SO 630在680充电到高电压电平,并且反向信号DIRR 642在682充电到高电压电平。另外,在定时脉冲678期间,全部地址信号~A1、~A2...~A7625在684充电到高电压电平,并且逻辑评估信号LEVAL648在686放电到低电压电平。低电压电平逻辑评估信号LEVAL 648关断地址评估晶体管440,从而防止地址晶体管对446、448...470将地址信号~A1、~A2...~A7 625拉到低电压电平。 在定时脉冲688期间,移位寄存器输出信号SO2-SO13在690放电到低电压电平。由于672的内部节点信号SN1关断移位寄存器单元403a的内部节点晶体管520,移位寄存器输出信号SO1仍然保持为高电压电平,如692所示。并且,定时脉冲688导通第二评估晶体管562而控制脉冲694导通控制晶体管564,从而在696将反向信号DIRR 642放电到低电压电平。另外,定时脉冲688导通防止评估晶体管442b,以便在698将逻辑评估信号LEVAL 648拉到低电压电平,并且保持评估晶体管440关断。 在定时脉冲700期间,正向信号DIRF 658保持在高电压电平,并且逻辑评估信号LEVAL 648在702充电到高电压电平。高电压电平逻辑评估信号LEVAL 648在702导通评估晶体管440。高电压电平移位寄存器输出信号SO1在692导通地址晶体管对446a和446b,并且625的地址信号~A1和~A2在704处有效地被拉到低电压电平。其它移位寄存器输出信号SO2-SO13在690被拉到低电压电平,使得地址晶体管448、450...470关断,而地址信号~A3-~A7仍然保持为高电压电平,如706所示。在616的定时信号T5中的定时脉冲700期间,地址信号~A1、~A2...~A7在625有效。定时脉冲708导通第三评估晶体管556。然而,控制信号CSYNC 624在710处于低电压电平,而正向信号DIRF658在712仍然保持为高电压电平。 在下一个六定时脉冲序列中,定时脉冲714在716将全部内部节点信号SN 626充电到高电压电平。如果每个移位寄存器单元403a-403m的正向输入信号SIF位于高电压电平,那么为了允许放电节点522,定时脉冲718导通每个移位寄存器单元403a-403m的第一评估晶体管506。移位寄存器单元403a的正向输入信号SIF是控制信号CSYNC624,其在720保持低电压电平。403b-403m的每个移位寄存器单元的正向输入信号SIF是前一个移位寄存器单元403的移位寄存器输出信号SO 630。移位寄存器输出信号SO1在692保持为高电压电平,并且且是第二移位寄存器单元403b的正向输入信号SIF。移位寄存器输出信号SO2-SO13在690全部都处于低电平。 移位寄存器单元403a和403c-403m接收低电压电平正向输入信号SIF,从而关断每个移位寄存器单元403a和403c-403m的正向输入晶体管508,以便内部节点信号SN1和SN3-SN13在722保持为高电压电平。移位寄存器单元403b接收高电压电平移位寄存器输出信号SO1以作为正向输入信号SIF,从而导通正向输入晶体管,以在724放电内部节点信号SN2。 在定时脉冲726期间,全部移位寄存器输出信号SO 630在728充电到高电压电平,并且反向信号DIRR 642在730充电到高电压电平。并且,定时脉冲726将全部地址信号~A1、~A2...~A7625在732充电到高电压电平,定时脉冲726导通防止评估晶体管442a,以将逻辑评估信号LEVAL 648在734处拉到低电压电平。 从时间地址信号~A1和~A2在704被拉到低电压电平,直到全部地址信号~A1、~A2...~A7 625在732被拉到高电压电平为止,地址信号~A1、~A2...~A7625有效。地址信号~A1、~A2...~A7 625在定时脉冲708和定时脉冲714、718期间有效,定时脉冲708来自先前的六定时脉冲序列的620处的定时信号T6,定时脉冲714和718来自当前的六定时脉冲序列的600处的定时信号T1和604处的定时信号T2。 定时脉冲736导通每个移位寄存器单元403a-403m的第二评估晶体管518,以评估内部节点信号SN626。内部节点信号SN1和SN3-SN13在722位于高电压电平,在738将移位寄存器输出信号SO1和SO3-SO13放电到低电压电平。在724,内部节点信号SN2处于低电压电平,从而关断移位寄存器单元的内部节点晶体管403b,并且在740保持移位寄存器输出信号SO2处于高电压电平。 当通过定时脉冲736导通第四评估晶体管562,以及CSYNC 624的控制脉冲742导通控制晶体管564时,反向信号DIRR 642在744放电到低电压电平。在每个六定时脉冲序列期间设置方向信号DIRR 642和DIRF 658。另外,定时脉冲736导通防止评估晶体管442b,以在746保持LEVAL 648为低电压电平。 在定时脉冲748期间,正向信号DIRF 658在750保持在高电压电平,并且LEVAL 648在752充电到高电压电平。高电压电平逻辑评估信号LEVAL 678在752导通评估晶体管440。在740,高电压电平移位寄存器输出信号SO2导通地址晶体管448a和448b,在754将地址信号~A1和~A3拉到低电压电平。其它的地址信号~A2和~A4-~A7在756保持为高电压电平。 定时脉冲758导通第三评估晶体管556。控制信号CSYNC 624在760仍然保持低电压电平,以关断控制晶体管558并且保持正向信号DIRF642处于高电压电平。 下一个六定时脉冲序列将高电压电平移位寄存器输出信号SO2移入下一个移位寄存器单元403c,从而提供高电压电平移位寄存器输出信号SO3。继续移位每个六定时脉冲序列直到每个移位寄存器输出信号SO1-SO13都达到过一次高电平。在移位寄存器输出信号SO13已经变高以后,高电压电平移位寄存器输出信号SO630停止。通过提供控制信号CSYNC的控制脉冲,比如控制脉冲670,该控制脉冲与在604的来自定时信号T2的定时脉冲一致,移位寄存器402可以被再次启动。 在正向移位操作中,提供与在612的来自定时信号T4的定时脉冲一致的控制信号CSYNC的控制脉冲624,从而设置正向移位的方向。而且,提供与在604的来自定时信号T2的定时脉冲一致的控制信号CSYNC的控制脉冲624,从而开始或启动移位寄存器402通过移位寄存器输出信号SO1-SO13来移位高电压信号。 图12是说明地址产生器400反向操作的一个时序图。每个定时信号T1-T6提供六脉冲的重复脉冲序列。在六脉冲的脉冲序列中,在800处的定时信号T1包括定时脉冲802,在804处的定时信号T2包括定时脉冲806,在808处的定时信号T3包括定时脉冲810,在812处的定时信号T4包括定时脉冲814,在816处的定时信号T5包括定时脉冲818,在820处的定时信号T6包括定时脉冲822。如625处所示,824处的控制信号CSYNC包括多个控制脉冲,这些控制脉冲设置移位寄存器402的移入方向并启动用于产生如825所示的地址信号~A1、~A2...~A7的移位寄存器402。 把第一预充电信号PRE1中的定时脉冲802提供到移位寄存器402。在定时脉冲802期间,每个移位寄存器单元403a-403m的内部节点522充电,以提供对应的高电压电平内部节点信号SN1-SN13。移位寄存器内部节点信号SN 826在828被设置为高电压电平。高电压电平内部节点信号SN 826导通移位寄存器单元403中的内部节点晶体管520。在这个实例中,先于定时脉冲802之前已经提供六定时脉冲的序列,而不用启动移位寄存器402,使得832处的全部移位寄存器输出信号SO 830放电到低电压电平,而825处的地址信号~A1、~A2...~A7在833处仍然保持为高电压电平。 把第一评估信号LEVAL1中的定时脉冲806提供到移位寄存器402。定时脉冲806导通每个移位寄存器单元403a-403m的第一评估晶体管506。控制信号CSYNC 824在834仍然保持低电压电平,而全部移位寄存器输出信号SO830在836处仍然保持低电压电平,从而关断每个移位寄存器单元403a-403m中的正向输入晶体管508和反向输入晶体管510。非导通的正反向输入晶体管508和510防止每个移位寄存器单元403a-403m的内部节点522放电到低电压电平。全部移位寄存器内部节点信号SN 826在838仍然保持为高电压电平。 把第二预充电信号PRE2中的定时脉冲810提供到移位寄存器402、到第四预充电信号PRE4中的定时脉冲810、并且到逻辑阵列406中的地址线预充电晶体管438和防止评估晶体管422a。在定时脉冲810期间,全部移位寄存器输出信号SO 830在840充电到高电压电平。并且,在定时脉冲810期间,反向信号DIRR 842在844处充电到高电压电平。另外,定时脉冲810保持全部地址信号825处于高电压电平,并且导通防止评估晶体管422a,以在850处将逻辑评估信号LEVAL 848拉到低电压电平。 把第二评估信号EVAL2中的定时脉冲814提供到移位寄存器402、到第四评估信号EVAL4中的定时脉冲814、并且到逻辑阵列406中的防止评估晶体管422b。定时脉冲814导通每个移位寄存器单元403a-403m的第二评估晶体管518。随着高电压电平的内部节点信号SN 826导通每个移位寄存器单元403a-403m的内部节点晶体管520,全部移位寄存器输出信号SO 830在852放电到低电压电平。并且,定时脉冲814导通第四评估晶体管562,并且控制信号CSYNC 824提供低电压电平,以关断控制晶体管564。随着控制晶体管564关断,方向信号DIRR842仍然充电到高电压电平。另外,定时脉冲814导通防止评估晶体管442b,以在858处保持逻辑评估信号LEVAL 848为低电压电平。低电压电平逻辑评估信号LEVAL 848关断地址评估晶体管440。 把第三预充电信号PRE3中的定时脉冲818提供到方向电路404,还提供到逻辑阵列406中的评估预充电晶体管444。在定时脉冲818期间,正向信号DIRF 858在860充电到高电压电平。并且,在定时脉冲818期间,逻辑评估信号LEVAL 848在862充电到高电压电平,从而导通全部逻辑评估晶体管440。随着全部移位寄存器输出信号SO 830处于低电压电平,全部地址晶体管对446、448...470关断,而825处的地址信号~A1、~A2...~A7仍然保持为高电压电平。 定时脉冲822被提供到方向电路404以作为第三评估信号EVAL3。定时脉冲822导通第三评估晶体管556。控制信号CSYNC 824提供控制脉冲864,以导通控制晶体管558,并且正向信号DIRF 858在865放电到低电压电平。低电压电平正向信号DIRF 858和高电压电平反向信号DIRR 842设置每个移位寄存器单元403a-403m进行反向移位。 在下一个六定时脉冲序列中,在定时脉冲866期间,全部内部节点信号SN 826充电到高电压电平。定时脉冲868导通每个移位寄存器单元403a-403m中的第一评估晶体管506。可作为在控制信号CSYNC中的控制脉冲870导通移位寄存器单元403m的反向输入晶体管,并且随着反向晶体管的导通,内部节点信号SN 13在872放电到低电压电平。移位寄存器输出信号SO 830在874处于低电压电平,从而关断移位寄存器单元403a-4031的反向输入晶体管。随着反向输入晶体管关断,每个其它内部节点信号SN1-SN12仍然在876保持为高电压电平。 在定时脉冲878期间,全部移位寄存器输出信号SO 830在880充电到高电压电平,并且反向信号DIRR 842在882保持在高电压电平。另外,定时脉冲878在884保持全部地址信号~A1、~A2...~A7 825处于高电压电平,并且在886将逻辑评估信号LEVAL 848拉到低电压电平。低电压电平逻辑评估信号LEVAL 848关断地址评估晶体管440,从而防止地址晶体管对446、448...470把地址信号~A1、~A2...~A7825拉到低电压电平。 在定时脉冲888期间,移位寄存器输出信号SO1-SO12在890放电到低电压电平。根据在872的低电压电平内部节点信号SN13,移位寄存器输出信号SO13在892仍然保持为高电压电平,该低电压电平内部节点信号SN13关断移位寄存器单元403m的内部节点晶体管520。并且,定时脉冲888导通第二评估晶体管,并且控制信号CSYNC 824关断控制晶体管564以在896将反向信号DIRR 842保持在高电压电平。另外,定时脉冲888导通防止评估晶体管442b以保持逻辑评估信号LEVAL848在898处为低电压电平,并且保持评估晶体管440关断。在定时脉冲888期间设定移位寄存器输出信号SO 830,使得移位寄存器输出信号SO13处于高电压电平,并且其它全部移位寄存器输出信号SO1-SO12处于低电压电平。 在定时脉冲900期间,正向信号DIRF 858在901充电到高电压电平,并且逻辑评估信号LEVAL 848在902充电到高电压电平。高电压电平逻辑评估信号LEVAL 848在902导通评估晶体管440。高电压电平移位寄存器输出信号SO13在892导通地址晶体管470a和470b,并且地址信号~A3和~A5在904被有效地拉到低电压电平。其它移位寄存器输出信号SO2-SO13在890被拉到低电压电平,使得地址晶体管对448、450...468关断,而地址信号~A1、~A2、~A4、~A6和~A7仍然在906保持为高电压电平。地址信号~A1、~A2...~A7 825在定时脉冲900期间变为有效。定时脉冲908导通第三评估晶体管556,并且控制信号CSYNC 824的控制脉冲910导通控制晶体管558,在912将正向信号DIRF 858放电到低电压电平。 在下一个六定时脉冲序列中,在定时脉冲914期间,全部内部节点信号SN 826在916充电到高电压电平。如果每个移位寄存器单元403a-403m的反向输入信号SIF位于高电压电平,那么定时脉冲918导通每个移位寄存器单元403a-403m中的第一评估晶体管506,以允许放电节点522。移位寄存器单元403m的反向输入信号SIR是控制信号CSYNC 824,其在920保持低电压电平。每个其它移位寄存器单元403a-4031的反向输入信号SIR是后续移位寄存器单元403的移位寄存器输出信号SO 830。移位寄存器输出信号SO13在892处于高电压电平,并且是移位寄存器单元4031的反向输入信号SIR。移位寄存器输出信号SO1-SO12在890全部都以低电压电平提供。移位寄存器单元403a-403k和403m具有关断反向输入晶体管510的低电压电平反向输入信号SIR,以便内部节点信号SN1-SN11和SN13在922仍然保持为高电压电平。移位寄存器单元4031接收高电压电平移位寄存器输出信号SO1以作为正向输入信号SIF,从而导通反向输入晶体管,在924放电内部节点信号SN12。 在定时脉冲926期间,全部移位寄存器输出信号SO 830在928保持为高电压电平,并且反向信号DIRR 842在930保持为高电压电平。并且,在定时脉冲926期间,全部地址信号~A1、~A2...~A7 825在932充电到高电压电平,并且导通防止评估晶体管442a,将逻辑评估信号LEVAL 848在934处拉到低电压电平。从地址信号~A3和~A5在904被拉到低电压电平的时候直到全部地址信号~A1、~A2...~A7825在932被拉到高电压电平为止,全部地址信号~A1、~A2...~A7 825有效。地址信号~A1、~A2...~A7825在定时脉冲908、914和918期间有效。 定时脉冲936导通每个移位寄存器单元403a-403m的第二评估晶体管518,以评估内部节点信号SN 826。内部节点信号SN1-SN11和SN13在922位于高电压电平,在938将移位寄存器输出信号SO1-SO11和SO13放电到低电压电平。在924,内部节点信号SN12处于低电压电平,从而关断移位寄存器单元4031的内部节点晶体管,并且在940保持移位寄存器输出信号SO12处于高电压电平。 并且,定时脉冲936导通第四评估晶体管562,并且控制信号CSYNC824处于低电压电平,以关断控制晶体管564,从而在944将反向信号DIRR 842保持在高电压电平。另外,定时脉冲936导通防止评估晶体管442b,以便在946保持LEVAL 848为低电压电平。 在定时脉冲948期间,正向信号DIRF 858在950充电到高电压电平,并且LEVAL 848在930充电到高电压电平。高电压电平逻辑评估信号LEVAL 848在952导通评估晶体管440。在940,高电压电平移位寄存器输出信号SO12导通地址晶体管468a和468b,以便在954将地址信号~A3和~A4拉到低电压电平。其它地址信号~A1、~A2和~A5-~A7在956保持为高电压电平。 定时脉冲958导通第三评估晶体管556。控制信号CSYNC 824中的控制脉冲960导通控制晶体管558,并且正向信号DIRF 842在962放电到低电压电平。 下一个六定时脉冲序列将高电压电平移位寄存器输出信号SO12移位到下一个移位寄存器单元403k,从而提供高电压电平移位寄存器输出信号SO11。继续移位六定时脉冲序列,直到每个移位寄存器输出信号SO1-SO13已经成为过一次高电平。在移位寄存器输出信号SO1成为高电平以后,高电压电平移位寄存器输出信号SO 830序列停止。通过提供控制信号CSYNC中的控制脉冲,比如与804处的来自定时信号T2的定时脉冲一致的控制脉冲670,可以再次启动移位寄存器402。 在反向操作中,提供来自CSYNC 824的控制脉冲,该控制脉冲与820处的来自定时信号T6的定时脉冲一致,从而设置反向移位方向。并且,提来自CSYNC 824的控制脉冲,其与804处的来自定时信号T2的定时脉冲一致,从而通过移位寄存器输出信号SO1-SO13来开始或启动移位寄存器402移位高电压电平信号。 图13是说明两个地址产生器1000和1002以及六点火组1004a-1004f的一个具体实施例的方框图。每个地址产生器1000和1002类似于图9的地址产生器400,并且点火组1004a-1004f类似于图7所示的点火组202a-202f。地址产生器1000通过第一地址线1006电连接到点火组1004a-1004c。地址线1006从地址产生器1000提供地址信号~A1、~A2...~A7到每个点火组1004a-1004c。并且,地址产生器1000电连接到控制线1010。控制线1010接收发向地址产生器1000的导通控制信号CSYNC。在一个具体实施例中,通过外部控制器向打印头冲模提供CSYNC信号,打印头冲模上制造了两个地址产生器1000和1002以及六点火组1004a-1004f。另外,地址产生器1000电连接到选择线1008a-1008f。选择线1008a-1008f类似于图7所示的选择线212a-212f。选择线1008a-1008f导通选择信号SEL1、SEL2...SEL6到地址产生器1000,而且导通对应的点火组1004a-1004f(未示出)。 选择线1008a导通选择信号SEL1到地址产生器1000,在一个具体实施例中选择信号是定时信号T3、定时信号T6。选择线1008b导通选择信号SEL2到地址产生器1000,在一个具体实施例中选择信号是定时信号T3、定时信号T1。选择线1008c导通选择信号SEL3到地址产生器1000,在一个具体实施例中选择信号是定时信号T3、定时信号T2。选择线1008d导通选择信号SEL4到地址产生器1000,在一个具体实施例中是选择信号定时信号T3、定时信号T3。选择线1008e导通选择信号SEL5到地址产生器1000,在一个具体实施例中选择信号是定时信号T3、定时信号T4,并且选择线1008f导通选择信号SEL6到地址产生器1000,在一个具体实施例中选择信号是定时信号T3、定时信号T5。 地址产生器1002通过第二地址线1012电连接到点火组1004d-1004f。地址线1012从地址产生器1002向每个点火组1004d-1004f提供地址信号~B1、~B2...~B7。并且,地址产生器1002电连接到控制线1010,将控制信号CSYNC导通到地址产生器1002。另外,地址产生器1002电连接到选择线1008a-1008f。选择线1008a-1008f导通选择信号SEL1、SEL2...SEL6到地址产生器1002,以及到对应的点火组1004a-1004f(未示出)。 选择线1008a导通选择信号SEL1到地址产生器1002,在一个具体实施例中选择信号是定时信号T3。选择线1008b导通选择信号SEL2到地址产生器1002,在一个具体实施例中是选择信号定时信号T4。选择线1008c导通选择信号SEL3到地址产生器1002,在一个具体实施例中选择信号是定时信号T5。选择线1008d导通选择信号SEL4到地址产生器1002,在一个具体实施例中选择信号是定时信号T6。选择线1008e导通选择信号SEL5到地址产生器1002,在一个具体实施例中选择信号是定时信号T1,并且选择线1008f导通选择信号SEL6到地址产生器1002,在一个具体实施例中选择信号是定时信号T2。 选择信号SEL1、SEL2...SEL6包括六脉冲序列,在六脉冲的重复序列中重复出现。每个选择信号SEL1、SEL2...SEL6包括六脉冲的脉冲序列中的一个脉冲。在一个具体实施例中,选择信号SEL1的脉冲继之以选择信号SEL2的脉冲,其后继之以选择信号SEL3的脉冲,其后继之以选择信号SEL4的脉冲,其后继之以选择信号SEL5的脉冲,其后继之以选择信号SEL6的脉冲。选择信号SEL6的脉冲之后,该序列从选择信号SEL1的脉冲开始重复。控制信号CSYNC包括与选择信号SEL1、SEL2...SEL6一致的脉冲SEL6,启动地址产生器1000和1002并设置移位的方向,或者根据图11和12所述的例子,在地址产生器1000和1002产生地址。为了使地址产生器1000开始启动地址产生,控制信号CSYNC包括与来自定时信号T2的定时脉冲相一致的控制脉冲,定时信号T2对应于选择信号SEL3的定时脉冲。 地址产生器1000产生地址信号~A1、~A2...~A7,以响应选择信号SEL1、SEL2...SEL6和控制信号CSYNC。地址信号~A1、~A2...~A7通过第一地址线1006被提供到点火组1004a-1004c。 在地址产生器1000,地址信号~A1、~A2...~A7在对应于选择信号SEL1、SEL2和SEL3的定时信号T6、T1和T2的定时脉冲期间有效。控制信号CSYNC包括与来自定时信号T4的定时脉冲相一致的控制脉冲,定时信号T4对应于选择信号SEL5的定时脉冲,以设置地址产生器1000的正向移位。控制信号CSYNC包括与来自定时信号T6的定时脉冲相一致的一个控制脉冲,定时信号T6对应于选择信号SEL1的定时脉冲,以设置地址产生器1000进行反向移位。 点火组1004a...1004c接收在选择信号SEL1、SEL2和SEL3的脉冲期间有效的地址信号~A1、~A2...~A7。当点火组1(FG1)在1004a接收地址信号~A1、~A2...~A7和选择信号SEL1中的脉冲时,为激活而通过点火信号FIRE1使能所选行子组SG1的点火单元120。当点火组2(FG2)在1004b接收地址信号~A1、~A2...~A7和选择信号SEL2中的脉冲,为激活而通过点火信号FIRE2使能所选行子组SG2的点火单元120。当点火组3(FG3)在1004c接收地址信号~A1、~A2...~A7和选择信号SEL3中的脉冲时,为激活而通过点火信号FIRE3使能所选行子组SG3的点火单元120。 地址产生器1002响应于选择信号SEL1、SEL2...SEL6和控制信号CSYNC而产生地址信号~B1、~B2...~B7。地址信号~B1、~B2...~B7通过第二地址线1012被提供到点火组1004d-1004f。在对应于选择信号SEL4、SEL5和SEL6的定时信号T6、T1和T2定时脉冲期间,在地址产生器1002中产生的地址信号~B1、~B2...~B7有效。控制信号CSYNC包括与来自定时信号T4的定时脉冲相一致的控制脉冲,定时信号T4对应于选择信号SEL2的定时脉冲,以设定地址产生器1002进行正向移位。控制信号CSYNC包括与来自定时信号T6的定时脉冲相一致的控制脉冲,定时信号T6对应于选择信号SEL4的定时脉冲,以设定地址产生器1002进行反向移位。为了从地址产生器1002启动地址产生,控制信号CSYNC包括与来自定时信号T2的定时脉冲相一致的控制脉冲,定时信号T2对应于选择信号SEL6的定时脉冲。 在选择信号SEL4、SEL5和SEL6的脉冲期间,点火组1004d-1004f接收有效的地址信号~B1、~B2...~B7。点火组4(FG4)在1004d接收地址信号~B1、~B2...~B7和选择信号SEL4中的脉冲,为激活而通过点火信号FIRE4使能所选行子组SG4的点火单元120。点火组5(FG5)在1004e接收地址信号~B1、~B2...~B7和选择信号SEL5中的脉冲,为激活而通过点火信号FIRE5使能所选行子组SG5的点火单元120。点火组6(FG6)在1004f接收地址信号~B1、~B2...~B7和选择信号SEL6中的脉冲,为激活而通过点火信号FIRE6使能所选行子组SG6的点火单元120。 在一个示例的操作中,在一个六脉冲序列期间,控制信号CSYNC包括与选择信号SEL2和SEL5中的定时脉冲一致的控制脉冲,从而设定地址产生器1000和1002正向移位。与选择信号SEL2中的定时脉冲一致的控制脉冲设定地址产生器1002正向移位。与选择信号SEL5中的定时脉冲一致的控制脉冲设定地址产生器1000正向移位。 在下一个六脉冲序列中,控制信号CSYNC包括与选择信号SEL2、SEL3、SEL5和SEL6中的定时脉冲一致的控制脉冲。与选择信号SEL2和SEL5中的定时脉冲一致的控制脉冲设定地址产生器1000和1002正向移位。与选择信号SEL3和SEL6中的定时脉冲一致的控制脉冲启动地址产生器1000和1002,以产生地址信号~A1、~A2...~A7和~B1、~B2...~B7。与选择信号SEL3中的定时脉冲一致的控制脉冲启动地址产生器1000,并且与选择信号SEL6中的定时脉冲一致的控制脉冲启动地址产生器1002。 在第三个定时脉冲序列期间,地址产生器1000产生地址信号~A1、~A2...~A7,其在选择信号SEL1、SEL2和SEL3的定时脉冲期间内有效。有效地址信号~A1、~A2...~A7用于为激活使能1004a-1004c处的点火组FG1、FG2和FG3的行子组SG1、SG2和SG3的点火单元120。在第三定时脉冲序列期间,地址产生器1002产生地址信号~B1、~B2...~B7,其在选择信号SEL4、SEL5和SEL6的定时脉冲期间内有效。有效地址信号~B1、~B2...~B7用于为激活而使能1004d-1004f的点火组FG4、FG5和FG6的行子组SG4、SG5和SG6的点火单元120。 在选择信号SEL1、SEL2、SEL6的第三定时脉冲序列期间,地址信号~A1、~A2...~A7包括对应于13个地址中的一个地址的低电压电平信号,并且地址信号~B1、~B2...~B7包括对应于13个地址中同一个地址的低电压电平信号。在来自每个随后的选择信号SEL1、SEL2...SEL6的定时脉冲序列期间,地址信号~A1、~A2...~A7和地址信号~B1、~B2...~B7包括对应于13个地址中同一个地址的低电压电平信号。每个定时脉冲序列是地址时隙,使得在每个定时脉冲序列期间提供13个地址中的一个地址。 在正向操作中,首先通过地址产生器1000和1002提供地址1,继之以地址2等等,直到地址13。在地址13以后,地址产生器1000和1002提供全部高电压电平地址信号~A1、~A2...~A7和~B1、~B2...~B7。并且,在选择信号SEL1、SEL2、SEL6的每个定时脉冲序列中,提供与选择信号SEL2和SEL5定时脉冲一致的控制脉冲,从而继续进行正向移位。 在另一个实例操作中,在另一个六脉冲序列期间,控制信号CSYNC包括与选择信号SEL1和SEL4中的定时脉冲一致的控制脉冲,从而设定地址产生器1000和1002反向移位。与选择信号SEL1中的定时脉冲一致的控制脉冲设定地址产生器1000反向移位。与选择信号SEL4中的定时脉冲一致的控制脉冲设定地址产生器1002反向移位。 在下一个六脉冲序列中,控制信号CSYNC包括与选择信号SEL1、SEL3、SEL4和SEL6中的定时脉冲一致的控制脉冲。与选择信号SEL1和SEL4中的定时脉冲一致的控制脉冲设定地址产生器1000和1002反向移位。与选择信号SEL3和SEL6中的定时脉冲一致的控制脉冲启动地址产生器1000和1002,以产生地址信号~A1、~A2...~A7和~B1、~B2...~B7。与选择信号SEL 3中的定时脉冲一致的控制脉冲启动地址产生器1000,与选择信号SEL6中的定时脉冲一致的控制脉冲启动地址产生器1002。 在第三个定时脉冲序列期间,地址产生器1000产生地址信号~A1、~A2...~A7,其在选择信号SEL1、SEL2和SEL3的定时脉冲期间内有效。有效地址信号~A1、~A2...~A7用于为激活而使能1004a-1004c的点火组FG1、FG2和FG3的行子组SG1、SG2和SG3的点火单元120。地址产生器1002产生地址信号~B1、~B2...~B7,其在第三个定时脉冲序列期间的选择信号SEL4、SEL5和SEL6中的定时脉冲内有效。有效地址信号~B1、~B2...~B7用于为激活而使能1004d-1004f的点火组FG4、FG5和FG6的行子组SG4、SG5和SG6的点火单元120。 在反向操作的选择信号SEL1、SEL2、SEL6中的第三个定时脉冲序列期间,地址信号~A1、~A2...~A7包括对应于13个地址中的一个地址的低电压电平信号,并且地址信号~B1、~B2...~B7包括对应于13个地址中同一个地址的低电压电平信号。在来自每个随后的选择信号SEL1、SEL2...SEL6的定时脉冲序列期间,地址信号~A1、~A2...~A7和~B1、~B2...~B7包括对应于13个地址中同一个地址的低电压电平信号。每个定时脉冲序列是地址时隙,以便在每个定时脉冲序列期间提供13个地址中的一个地址。 在反向操作中,首先通过地址产生器1000和1002提供地址13,继之以地址12等等,直到地址1。在地址1以后,地址产生器1000和1002提供全部高电压电平地址信号~A1、~A2...~A7和~B1、~B2...~B7。并且,在来自每个随后的选择信号SEL1、SEL2...SEL6的定时脉冲序列期间,提供与选择信号SEL1和SEL4中的定时脉冲一致的控制脉冲,以继续进行反向移位。 为了终止或防止地址产生,控制信号CSYNC包括与选择信号SEL1、SEL2、SEL4和SEL5中的定时脉冲一致的控制脉冲。这样清零了地址产生器1000和1002中的比如移位寄存器402的移位寄存器。控制信号CSYNC中的恒定高电压电平或高电压脉冲序列同样可以终止或防止地址产生,并且控制信号CSYNC中的恒定低电压电平不会启动地址产生器1000和1002。 图14是说明地址产生器1000和1002正反向操作的一个时序图。用于正向移位的控制信号是1124处的CSYNC(FWD),并且用于反向移位的控制信号是1126处的CSYNC(REV)。通过地址产生器1000提供在1128处的地址信号~A1、~A2...~A7,这些地址信号还包括两个正反向的操作地址基准。通过地址产生器1002在1130处提供地址信号~B1、~B2...~B7,这些地址信号还包括两个正反向的操作地址基准。 选择信号SEL1、SEL2...SEL6提供重复的六脉冲序列。每个选择信号SEL1、SEL2、SEL6包括六脉冲序列中的一个脉冲。在重复的六脉冲序列的一个序列中,在1100的选择信号SEL1包括定时脉冲1102、在1104的选择信号SEL2包括定时脉冲1106、在1108的选择信号SEL3包括定时脉冲1110、在1112的选择信号SEL4包括定时脉冲1114、在1116的选择信号SEL5包括定时脉冲1118、以及在1120选择信号SEL6包括定时脉冲1122。 在正向操作中,控制信号CSYNC(FWD)包括与在1104的选择信号SEL2中的定时脉冲1106一致的控制脉冲1132。控制脉冲1132设定地址产生器1002进行正向移位。同样,控制信号CSYNC(FWD)包括与在1116中的选择信号SEL5的定时脉冲1118一致的控制脉冲1134。控制脉冲1134设定地址产生器1000进行正向移位。 在下一个六脉冲重复序列中,1100处的选择信号SEL1包括定时脉冲1136,1104的选择信号SEL2包括定时脉冲1138,1108的选择信号SEL3包括定时脉冲1140,1112的选择信号SEL4包括定时脉冲1142,1116的选择信号SEL5包括定时脉冲1144,以及1120选择信号SEL6包括定时脉冲1146。 控制信号CSYNC(FWD)1124包括与定时脉冲1138一致的控制脉冲1148,以继续设定地址产生器1002正向移位,并且包括与定时脉冲1144一致的控制脉冲1152,以继续设定地址产生器1002正向移位。并且,控制信号CSYNC(FWD)1124包括与1108的选择信号SEL3的定时脉冲1140一致的控制脉冲1150。控制脉冲1150启动地址产生器1000,从而在1128产生地址信号~A1、~A2...~A7。另外,控制信号CSYNC(FWD)1124包括与1120的选择信号SEL6的定时脉冲1146一致的控制脉冲1154。控制脉冲1154启动地址产生器1002,从而在1130产生地址信号~B1、~B2...~B7。 在下一个或者第三个六脉冲序列中,1100处的选择信号SEL1包括定时脉冲1156,1104的选择信号SEL2包括定时脉冲1158,1108的选择信号SEL3包括定时脉冲1160,1112的选择信号SEL4包括定时脉冲1162,1116的选择信号SEL5包括定时脉冲1164,以及1120选择信号SEL6包括定时脉冲1166。控制信号CSYNC(FWD)1124包括与定时脉冲1158一致的控制脉冲1168,以继续设定地址产生器1002正向移位,并且包括与定时脉冲1164一致的控制脉冲1170,以继续设定地址产生器1002正向移位。 地址产生器1000在1128提供地址信号~A1、~A2...~A7。在启动正向操作之后,地址产生器1000和1128的地址信号~A1~A7在1172提供地址1。在1120处的选择信号SEL6的定时脉冲1146期间,1172处的地址1有效,并且直到1112处的选择信号SEL4的定时脉冲1162都保持有效。在1100,1104和1108处的选择信号SEL1、SEL2和SEL3中的定时脉冲1156,1158和1160内,1172处的地址1有效。 地址产生器1002在1130提供地址信号~B1、~B2...~B7。在启动正向操作之后,地址产生器1002和在1130处的地址信号~B1、~B2...~B7在1174提供地址1。在1108处的选择信号SEL3的定时脉冲1160的期间,1174处的地址1有效,并且直到1100处的选择信号SEL1的定时脉冲1176都保持有效。在1112,1116和1120处的选择信号SEL4、SEL5和SEL6中的定时脉冲1162,1164和1166期间,1174处的地址1有效。 1128处的地址信号~A1、~A2...~A7和1130处的地址信号~B1、~B2...~B7在1172和1174提供相同的地址1。从定时脉冲1156开始到定时脉冲1166结束的六定时脉冲序列期间是地址1的地址时隙,这期间提供地址1。在下一个6个脉冲序列期间,从定时脉冲1176起,1128处的地址信号~A1、~A2...~A7在1178提供地址2,并且1130处的地址信号~B1、~B2...~B7也提供同样的地址2。以如此方式,地址产生器1000和1002以正向提供从地址1到地址13的地址。在地址13以后,地址产生器1000和1002再次启动,按照同样的方式再循环经过有效地址。 在反向操作中,控制信号CSYNC(REV)1126包括与1100处的选择信号SEL1中的定时脉冲1102一致的控制脉冲1180。控制脉冲1180设定地址产生器1000反向移位。并且,控制信号CSYNC(REV)1126包括与1112处的选择信号SEL4中的定时脉冲1114一致的控制脉冲1182。控制脉冲1182设定地址产生器1002反向移位。 控制信号CSYNC(REV)1126包括与定时脉冲1136一致的控制脉冲1184,以继续设定地址产生器1002反向移位,并且包括与定时脉冲1142一致的控制脉冲1188,以继续设定地址产生器1002反向移位。并且,控制信号CSYNC(REV)1126包括与1108处的选择信号SEL3中的定时脉冲1140一致的控制脉冲1186。控制脉冲1186启动地址产生器1000,从而在1128产生地址信号~A1、~A2...~A7。另外,控制信号CSYNC(REV)1126包括与1120处的选择信号SEL6中的定时脉冲1146一致的控制脉冲1190。控制脉冲1190启动地址产生器1002,从而在1130产生地址信号~B1、~B2...~B7。 控制信号CSYNC(REV)1126包括与定时脉冲1156一致的控制脉冲1192,以继续设定地址产生器1000反向移位,并且包括与定时脉冲1162一致的控制脉冲1194,继续设定地址产生器1002反向移位。 地址产生器1000在1128提供地址信号~A1、~A2...~A7。在启动反向操作之后,地址产生器1000和在1128处的地址信号~A1、~A2...~A7在1172提供地址13。1172处的地址13在定时脉冲1146期间有效,并且保持有效直到定时脉冲1162。在1100、1104和1108处的选择信号SEL1、SEL2和SEL3中的定时脉冲1156、1158和1160期间,1172的地址13有效。 地址产生器1002在1130提供地址信号~B1、~B2...~B7。在启动反向操作之后,地址产生器1002和在1130处的地址信号~B1、~B2...~B7在1174提供地址13。在1174处的地址13在定时脉冲1160期间有效,并且保持有效直到定时脉冲1176。在1112,1116和1120处的选择信号SEL4、SEL 5和SEL6中的定时脉冲1162,1164和1166期间,1174的地址13有效。 1128处的地址信号~A1、~A2...~A7和1130的~B1、~B2...~B7在1172和1174提供相同的地址13。从定时脉冲1156开始直到定时脉冲1166结束的六定时脉冲的序列是地址133的地址时隙,这期间提供地址133。在下一个六脉冲序列期间,从定时脉冲1176起,1128的地址信号~A1、~A2...~A7在1178提供地址12,并且1130处的地址信号~B1、~B2...~B7也提供地址12。地址产生器1000和1002提供反向的从地址13到地址1的地址。在地址1以后,地址产生器1000和1002再次启动,按照同样的方式再循环经过有效地址。 图15是说明打印头冲模40的地址产生器1200、锁存电路1202和六点火组1204a-1204f的一个具体实施例的方框图。地址产生器1200类似于图9的地址产生器400,并且点火组1204a-1204f类似于图7所示的点火组202a-202f。 地址产生器1200通过地址线1206电连接点火组1204a-1204c和锁存电路1202。并且,地址产生器1200电连接到控制线1210,将控制信号CSYNC导通到地址产生器1200。另外,地址产生器1200电连接到选择线1208a-1208f。选择线1208a-1208f类似于图7所示的选择线212a-212f。选择线1208a-1208f导通选择信号SEL1、SEL2...SEL6到地址产生器1200,而且导通到对应的点火组1204a-1204f(未示出)。 选择线1208a导通选择信号SEL1到地址产生器1200,在一个具体实施例中选择信号是定时信号T6。选择线1208b导通选择信号SEL2到地址产生器1200,在一个具体实施例中选择信号是定时信号T1。选择线1208c导通选择信号SEL3到地址产生器1200,在一个具体实施例中选择信号是定时信号T2。选择线1208d导通选择信号SEL4到地址产生器1200,在一个具体实施例中选择信号是定时信号T3。选择线1208e导通选择信号SEL5到地址产生器1200,在一个具体实施例中选择信号是定时信号T4,并且选择线1208f导通选择信号SEL6到地址产生器1200,在一个具体实施例中选择信号是定时信号T5。 锁存电路1202通过地址线1212电连接点火组1204a-1204c。同样,锁存电路1202电连接到选择线1208a和1208f和评估信号线1214。选择线1208a和1208f接收选择信号SEL1和SEL6,并且向锁存电路1202提供收到的选择信号SEL1和SEL6。评估线1214导通类似于反向选择信号SEL1的评估信号EVAL到锁存电路1202。另外,锁存电路1202电连接到地址线1206,以导通地址信号~A1、~A2...~A7到锁存电路1202。在一个具体实施例中,根据选择信号SEL1、SEL2...SEL6在打印头冲模40上产生评估信号EVAL。 选择信号SEL1、SEL2...SEL6提供六脉冲序列,该序列以重复的六脉冲序列重复,如图13和14所示。控制信号CSYNC包括与选择信号SEL1、SEL2...SEL6中脉冲一致的脉冲,启动地址产生器1200,并且设定地址产生器1200的移位方向和地址产生。 地址产生器1200响应于选择信号SEL1、SEL2...SEL6和控制信号CSYNC而产生地址信号~A1、~A2...~A7。地址信号~A1、~A2...~A7通过地址线1206被提供到点火组1204a-1204c。在地址产生器1200中,地址信号~A1、~A2...~A7在对应于选择信号SEL1、SEL2和SEL3中的定时信号T6、T1和T2定时脉冲期间有效。控制信号CSYNC包括与来自定时信号T4的定时脉冲相一致的控制脉冲,该控制脉冲对应于选择信号SEL5的定时脉冲,从而设定地址产生器1200正向移位。控制信号CSYNC包括与来自定时信号T6的定时脉冲相一致的一个控制脉冲,该控制脉冲对应于选择信号SEL1的定时脉冲,从而设定地址产生器1200反向移位。为了从地址产生器1200启动进行地址产生,控制信号CSYNC包括与来自定时信号T2的定时脉冲相一致的控制脉冲,该控制脉冲对应于选择信号SEL3的定时脉冲。 锁存电路1202响应于接收地址信号~A1、~A2...~A7、选择信号SEL1和SEL6以及评估信号EVAL而提供地址信号~B1、~B2...~B7。地址锁存1202在选择信号SEL1中的定时脉冲期间接收有效地址信号~A1、~A2...~A7,并且锁存有效地址信号~A1、~A2...~A7,从而提供地址信号~B1、~B2...~B7。地址信号~A1、~A2...~A7和~B1、~B2...~B7在一个地址时隙期间,向点火组1204a-1204f提供相同的地址。通过地址线1212把地址信号~B1、~B2...~B7提供到点火组1204c-1204f。在选择信号SEL3、SEL4、SEL5和SEL6中的定时脉冲期间内,地址信号~B1、~B2...~B7有效。 在一个示例操作中,在一个六脉冲的序列期间,控制信号CSYNC包括与选择信号SEL5中的定时脉冲一致的控制脉冲,以设定地址产生器1200正向移位,或者包括与选择信号SEL1中的定时脉冲一致的控制脉冲,以设定地址产生器1200反向移位。地址产生器1200在该序列的六脉冲期间不启动,并且在这个例子中,地址产生器1200提供全部高电压电平地址信号~A1、~A2...~A7。该锁存电路1202锁存高电压电平地址信号~A1、~A2...~A7,从而提供地址信号~B1、~B2...~B7。 在下一个6定时脉冲的序列中,控制信号CSYNC包括与选择信号SEL5或选择信号SEL1中的定时脉冲一致的控制脉冲,以设定地址产生器1200以所选的方向移位。同样,控制信号CSYNC包括与选择信号SEL3中的定时脉冲一致的控制脉冲,以启动地址产生器1200,从而产生有效地址信号~A1、~A2...~A7。在第二个六脉冲的序列期间,地址产生器1200提供全部高电压电平地址信号~A1、~A2...~A7,并且锁存电路1202锁存地址信号~A1、~A2...~A7,以提供全部高电压电平地址信号~B1、~B2...~B7。 在下一个6定时脉冲的序列中,控制信号CSYNC包括与选择信号SEL5或选择信号SEL1中的定时脉冲一致的控制脉冲,以设定地址产生器1200以所选的方向移位。在第三个六脉冲序列中,在来自选择信号SEL1、SEL2和SEL3的定时脉冲期间,地址产生器1200提供包括低电压电平信号的有效地址信号~A1、~A2...~A7。有效地址信号~A1、~A2...~A7用于为激活而使能1204a-1204c处的点火组FG1、FG2和FG3的行子组SG1、SG2和SG3的点火单元120。地址锁存1202锁存有效地址信号~A1、~A2...~A7并提供有效地址信号~B1、~B2...~B7。锁存电路1202在来自选择信号SEL3、SEL4、SEL5和SEL6的定时脉冲期间,提供有效地址信号~B1、~B2...~B7。有效地址信号~B1、~B2...~B7为激活而使能1204c-1204f处的点火组FG4、FG5和FG6的行子组SG4、SG5和SG6的点火单元120。 在来自选择信号SEL1、SEL2...SEL6的第三个定时脉冲序列期间,地址信号~A1、~A2...~A7包括对应于13个地址中的一个地址的低电压电平信号,并且地址信号~B1、~B2...~B7包括对应于13个地址中同一个地址的低电压电平信号。在来自每个随后的选择信号SEL1、SEL2...SEL6的六脉冲序列期间,地址信号~A1、~A2...~A7和~B1、~B2...~B7包括对应于13个地址中同一个地址的低电压电平信号。每个六脉冲序列是地址时隙,使得在每个六脉冲的序列期间提供13个地址中的一个地址。 在正向操作中,首先通过地址产生器1200和锁存电路1202提供地址1,继之以地址2等等,直到地址13。在地址13以后,地址产生器1200和锁存电路1202提供全部高电压电平地址信号~A1、~A2...~A7和~B1、~B2...~B7。 在反向操作中,首先通过地址产生器1200和锁存电路1202提供地址13,继之以地址12等等,直到地址1。在地址1以后,地址产生器1200和锁存电路1202提供全部高电压电平地址信号~A1、~A2...~A7和~B1、~B2...~B7。并且,在来自每个随后的选择信号SEL1、SEL2...SEL6的六脉冲序列期间,提供与选择信号SEL5或选择信号SEL1中的定时脉冲一致的控制脉冲,以继续按照所选的方向进行移位。 图16是说明锁存寄存器1220的一个具体实施例的示意图。锁存电路1202包括7个比如锁存寄存器1220的锁存寄存器。每个锁存寄存器1220锁存7个地址信号~A1、~A2...~A7中的一个信号,并提供对应的锁存地址信号~B1、~B2~B7。锁存寄存器1220包括第一锁存级1222、第二锁存级1224和锁存晶体管1226。第一锁存级1222在1228处电连接到锁存晶体管1226的漏极-源极通路的一侧,并且第二锁存级1224在1230电连接到锁存晶体管1226的漏极-源极通路的另一侧。锁存晶体管1226的栅极电连接到信号线1208a,从而导通选择信号SEL1到锁存晶体管1226,以作为锁存信号LATCH。 第一锁存级1222包括第一预充电晶体管1234、选择晶体管1236、地址晶体管1238和地址节点电容1240。第一预充电晶体管1234的栅极电连接到第一预充电晶体管1234的漏极,还电连接到信号线1208f,以导通选择信号SEL6到第一预充电晶体管1234,从而作为第一预充电信号PRE1。第一预充电晶体管1234的源极在1228处电连接到锁存晶体管1226的漏极-源极通路的一侧和地址节点电容1240的一侧。地址节点电容1240的另一侧电连接到比如地线的基准电压。另外,第一预充电晶体管1234的源极电连接到选择晶体管1236的漏极-源极通路的一侧。选择晶体管1236的栅极电连接到选择线1208a,从而导通选择信号SEL1到选择晶体管1236。选择晶体管1236的漏极-源极通路的另一侧电连接到地址晶体管1238的漏极-源极通路的一侧。地址晶体管1238的漏极-源极通路的另一侧电连接到比如地线的基准电压。地址晶体管1238的栅极电连接到地址线1206的一条地址线。 第二锁存级1224包括第二预充电晶体管1246、评估晶体管1248、锁存地址晶体管1250和锁存地址节点电容1252。第二预充电晶体管1246的栅极电连接到第二预充电晶体管1246的漏极,还电连接到信号线1208a,以导通选择信号SEL1第二预充电晶体管1246,以作为第二预充电信号PRE2。第二预充电晶体管1246的源极电连接到评估晶体管1248的漏极-源极通路的一侧,还电连接到锁存地址线1212的一条锁存地址线。评估晶体管1248的栅极电连接到评估信号线1214。评估晶体管1248的漏极-源极通路的另一侧电连接到锁存地址晶体管1250的漏极-源极通路。锁存地址晶体管1250的漏极-源极通路的另一侧电连接到比如地线的基准电压。评估晶体管1248的栅极在1230电连接到锁存晶体管1226的漏极-源极通路。另外,锁存地址晶体管1250的栅极在1230电连接到锁存地址节点电容1252的一侧。锁存地址节点电容1252的另一侧电连接到比如地线的基准电压。 第一预充电晶体管1234通过信号线1208f接收预充电信号PRE1,并且选择晶体管1236通过信号线1208a接收选择信号SEL1。如果选择信号SEL1被设置为低电压电平,并且预充电信号PRE1被设置为高电压电平,那么选择晶体管1236关断(非导通),并且地址节点电容1240通过预充电晶体管1234充电到高电压电平。 地址晶体管1238通过地址线1206接收地址信号~A1、~A2...~A7中的一个地址信号。如果接收到的地址信号~A1、~A2...~A7被设置为高电压电平,那么地址晶体管1238接通(导通),并且如果接收到的地址信号~A1、~A2...~A7被设置为低电压电平,那么地址晶体管1238关断(非导通)。当选择信号SEL1....SEL6转换到高电压电平时,选择晶体管1236导通。如果地址晶体管1238导通,那么地址节点电容1240放电到低电压电平。如果地址晶体管1238关断并且地址节点电容1240充电到高电压电平,那么地址节点电容1240不放电而仍然保持为高电压电平。 锁存晶体管1226通过信号线1208a接收锁存信号LATCH。如果锁存信号LATCH被设置为高电压电平,那么锁存晶体管1226导通,如果锁存信号LATCH被设置为低电压电平,那么锁存晶体管1226关断。锁存晶体管1226导通,从而将地址节点电容1240的电平传到锁存地址节点电容1252。地址节点电容1240的电容量大约是锁存地址节点电容1252的3倍,以便当电荷在地址节点电容1240和锁存地址节点电容1252之间运动时,电容1240和1252仍然保持足够高的或低的电压。 如果当地址节点电容1240通过第一预充电晶体管1234充电到高电压电平时锁存晶体管1226关断,那么锁存地址节点电容1252上的电压保持不变。地址节点电容1240被预充电,而不会影响包括锁存地址线1212的锁存地址信号在内的锁存寄存器1220的第二锁存级1224。如果当地址节点电容1240通过第一预充电晶体管1234充电到高电压电平时锁存晶体管1226导通,那么锁存地址节点电容1252充电到高电压电平,并且锁存地址晶体管1250导通。当地址节点电容1240和锁存地址节点电容1252通过第一预充电晶体管1234充电到高电压电平时,包括锁存地址线1212的锁存地址信号在内的第二锁存级1224受到影响。在一个具体实施例中,从第一锁存级1222和第二锁存级1224之间移除锁存晶体管1226。另外,当地址节点电容1240不再需要充电或放电锁存地址节点电容1252时,可以移除锁存地址节点电容1252并降低地址节点电容1240的电容值。在该具体实施例中,地址节点电容1240通过第一预充电晶体管1234预充电,以导通第二锁存级1224的锁存地址晶体管1250,而预充电的地址节点电容1240不与第二锁存级1224分离。 第二预充电晶体管1246通过信号线1208a接收预充电信号PRE2,并且评估晶体管1248通过评估信号线1246接收评估信号EVAL。如果评估信号EVAL被设置为低电压电平,并且预充电信号PRE2被设置为高电压电平,那么评估晶体管1248关断,并且锁存地址线1212通过预充电晶体管1246充电到高电压电平。 锁存晶体管1226导通,从而将地址节点电容1240的电压电平传递到锁存地址节点电容1252。高电压电平导通锁存地址晶体管1250,低电压电平关断锁存地址晶体管1250。如果锁存地址晶体管1250导通,那么评估信号EVAL被设置为高电压电平以导通评估晶体管1248,并且将锁存地址信号放电到低电压电平。如果当评估晶体管1248导通时,锁存地址晶体管1250关断,那么锁存地址线1212仍然保持高电压电平。锁存晶体管1226关断,以将锁存地址节点电容1252的电压和锁存地址晶体管1250的状态锁存。 在锁存寄存器1220的一个具体实施例的示例操作中,第一预充电信号PRE1、选择信号SEL1和锁存信号LATCH被设置为低电压电平。另外,第二预充电信号PRE2被设置为低电压电平,并且评估信号EVAL被设置为高电压电平。随着锁存信号LATCH处于低电压电平,锁存晶体管1226关断,以将锁存地址节点电容1252上的电压锁存,从而设定锁存地址晶体管1250的开/关状态。如果锁存地址晶体管1250导通,那么随着评估信号EVAL被设置为高电压电平,评估晶体管1248导通,以放电锁存地址信号。随着预充电信号PRE2被设置为低电压电平,锁存地址线1212的电平对应于锁存地址晶体管1250的状态。如果锁存地址晶体管1250导通,锁存地址线1212的锁存地址信号~B1、~B2...~B7有效地驱动低电压电平。如果锁存地址晶体管1250关断,锁存地址线1212的锁存地址信号~B1、~B2...~B7仍然保持预充电高电压电平。 第一预充电信号PRE1被设置为高电压电平,以预充电地址节点电容1240到高电压电平。当地址节点电容1240充电到高电压电平,把地址线1206上的有效地址信号~A1、~A2...~A7提供到地址晶体管1238。有效地址信号~A1、~A2...~A7设定地址晶体管1238的开/关状态,预充电信号PRE1在第一预充电时间周期末尾转变到低电压电平。 接着,选择信号SEL1、锁存信号LATCH和预充电信号PRE2被设置为高电压电平,评估信号EVAL被设置为低电压电平。选择信号SEL1导通选择晶体管1236,锁存信号LATCH导通锁存晶体管1226。如果信号线1206上的有效地址信号~A1、~A2...~A7处于高电压电平,地址晶体管1238导通,并且地址节点电容1240和锁存地址节点电容1252放电到低电压电平。如果信号线1206上的有效地址信号~A1、~A2...~A7处于低电压电平,地址晶体管1238关断,并且地址节点电容1240将锁存地址节点电容1252充电到高电压电平。将在信号线1206上接收的反向有效地址信号~A1、~A2...~A7存储在电容1240和1252中。 锁存电容1252的电压电平设置锁存地址晶体管1250的开/关状态。随着评估信号EVAL被设置为低电压电平并且预充电信号PRE2被设置为高电压电平,评估晶体管1248关断并且锁存地址线1212充电到高电压电平。选择信号SEL1、锁存信号LATCH和预充电信号PRE2在选定时间周期的末尾被设置为低电压电平。随着锁存信号LATCH处于低电压电平,锁存晶体管1226关断,以将锁存地址晶体管1250的开关状态锁存。 接着,评估信号EVAL被设置为高电压电平以导通评估晶体管1248。如果锁存地址节点电容1252充电到高电压电平以导通锁存地址晶体管1250,那么锁存地址线1212放电到低电压电平。如果锁存地址节点电容1252处于低电压电平以关断锁存地址晶体管1250,那么锁存地址线1212仍然充电到高电压电平。因此,在锁存地址节点电容1252上出现反向地址信号~A1、~A2...~A7,并且在锁存地址线1212上出现锁存地址节点电容1252的反向电压电平,以作为锁存地址信号~B1、~B2...~B7。将地址信号~A1、~A2...~A7锁存在锁存寄存器1220中,并作为锁存地址线1212上的锁存地址信号~B1、~B2...~B7来提供。当预充电信号PRE1用关断的锁存晶体管1226来切换到高电压电平以充电地址节点电容1240时,锁存地址信号~B1、~B2...~B7保持有效。当选择信号SEL1、锁存信号LATCH和预充电信号PRE2被设置为高电压电平并且评估信号EVAL被设置为低电压电平时,锁存地址信号~B1、~B2...~B7无效。 图17是说明锁存寄存器1220的一个具体实施例的示例操作过程的时序图。1300处的地址信号~A1、~A2...~A7在1302转变。1304处的预充电信号PRE1在1306被设置为高电压电平达如1308所示的一个时间段。在时间段1308期间,1310处的选择信号SEL1和1312处的锁存信号LATCH被设置为低电压电平,以分别关断选择晶体管1236和锁存晶体管1226。1306处的高电压电平预充电信号PRE1通过预充电晶体管1234充电地址节点电容1240。随着锁存晶体管1226关断,锁存地址节点电容1252的电平保持不变。另外,在时间段1308期间,1314处的预充电信号PRE2处于低电压电平,并且1316处的评估信号EVAL处于高电压电平,从而导通评估晶体管1248。1318处的锁存地址信号~B1、~B2...~B7保持不变。 通过地址产生器1200提供1300处的地址信号~A1、~A2...~A7,并在1320变成有效地址信号~A1、~A2...~A7。在信号线1206上提供1320的有效地址信号~A1、~A2...~A7中的一个信号,从而设定地址晶体管1238的开/关状态。1304处的预充电信号PRE1在时间段1308结束的1322处转变到低电压电平。 在如1326所示的下一个时间段期间,1300处的地址信号~A1、~A2...~A7在1324保持有效。在1326时间段期间,1304处的预充电信号PRE1仍然保持低电压电平,而1310处的选择信号SEL1转变到1328的高电压电平,1312处的锁存信号LATCH转变到1330的高电压电平,1314处的预充电信号PRE2在1332转变到高电压电平,以及1316处的评估信号EVAL在1334转变到低电压电平。1324处的有效地址信号~A1、~A2...~A7设置地址晶体管1238的开/关状态。随着1310处的选择信号SEL1被设置为高电压电平,并且1312的锁存信号LATCH被设置为高电压电平,地址节点电容1240和锁存地址节点电容1252的电压电平基于地址晶体管1238的状态。如果通过1324处的有效地址信号~A1、~A2...~A7导通地址晶体管1238,那么地址节点电容1240和锁存地址节点电容1252放电到低电压电平。如果通过1324处的有效地址信号~A1、~A2...~A7关断地址晶体管1238,那么地址节点电容1240和锁存地址节点电容1252仍然保持为高电压电平。 随着1314处的预充电信号PRE2在1332被设置为高电压电平,并且1316处的评估信号EVAL在1334被设置为低电压电平,评估晶体管1248关断,并且锁存地址线1212通过第二预充电晶体管1246充电到高电压电平。当1316处的评估信号EVAL在1334转变到低电压电平,并且1314处的预充电信号PRE2在1332转变到高电压电平时,1318处的锁存地址信号~B1、~B2...~B7在1336转变到无效的锁存地址信号。在时间段1326结束处,1310处的选择信号SEL1在1338转变到低电压电平,以关断选择晶体管1236,1312处的锁存信号LATCH在1340转变到低电压电平,以关断锁存晶体管1226,并且1314处的预充电信号PRE2在1342转变到低电压电平,以停止通过预充电晶体管1246对锁存地址线1212充电。关断锁存晶体管1226,锁存地址节点电容1252的电平,从而导通或关断锁存地址晶体管1250。 在如1346所示的下一个时间段期间,1316处的评估信号EVAL在1344转变到高电压电平。当1316的评估信号EVAL在1344转变到高电压电平,1318处的包括锁存地址线1212的信号的锁存地址信号~B1、~B2...~B7在1348变为有效。由地址产生器1200提供的地址信号~A1、~A2...~A7在时间段1346期间保持有效。另外,1300处的地址信号~A1、~A2...~A7和1318处的锁存地址信号~B1、~B2...~B7在1350所示的后续时间段内保持有效。 在1354所示的时间段的开始处,1300处的地址信号~A1、~A2...~A7在1352变成无效地址信号。锁存地址信号~B1、~B2...~B7在时间段1354和1356期间保持有效。 在如1360所示的时间段期间,1300处的地址信号~A1、~A2...~A7在1358转变,并变为1362处的有效地址信号~A1、~A2...~A7。1304处的预充电信号PRE1在1364转变到高电压电平,并且锁存地址信号~B1、~B2...~B7在时间段1360期间有效。时间段1360类似于时间段1308,并且经过时间段1326、1346、1350,1354和1356来重复循环。 在该具体实施例中,该循环包括6个时间段,比如时间段1326,1346、1350,1354、1356和1360。1300处的地址信号~A1、~A2...~A7对于1326,1346和1350三个时间段有效,并且1318处的锁存地址信号~B1、~B2...~B7对于四个时间段1350、1354、1356和1360有效。1300处的地址信号~A1、~A2...~A7和1318处的锁存地址信号~B1、~B2...~B7在时间段1350期间都有效。当1318处的锁存地址信号~B1、~B2...~B7对于比如1326和1346的两个时间段无效时,锁存寄存器1220锁存1300处的高电压电平地址信号~A1、~A2...~A7。在其它具体实施例中,一个循环中的时间段数目被设置为可以被设置为任何合适的时间段数目,而且锁存电路1202可以在两个或更多时间段中锁存1300处的地址信号~A1、~A2...~A7。 图18是说明一个单向移位寄存器单元1400的一个具体实施例的示意图,单向移位寄存器单元1400用于提供正反向地址的其它地址产生器的具体实施例。移位寄存器单元1400包括第一级,也就是输入级,在1402以虚线表示,还包括第二级,也就是输出级,在1404以虚线表示。第一级1402包括第一预充电晶体管1406、第一评估晶体管1408和输入晶体管1410。第二级1404包括第二预充电晶体管1412、第二评估晶体管1414和内部节点晶体管1416。 在第一级1402中,第一预充电晶体管1406的栅极和漏极-源极通路的一侧电连接到第一预充电线1418。第一预充电线1418导通第一预充电信号PRE1的定时脉冲到移位寄存器单元1400。第一预充电晶体管1406的漏极-源极通路的另一侧通过内部节点1420电连接到第一评估晶体管1408的漏极的一侧和内部节点晶体管1416的栅极。内部节点1420将第一级1402和第二级1404之间的内部节点信号SN提供到内部节点晶体管1416的栅极。 第一评估晶体管1408的栅极电连接到第一评估信号线1422,第一评估信号线1422导通第一评估信号EVAL1的定时脉冲到移位寄存器单元1400。第一评估晶体管1408的漏极-源极通路的另一侧在1424处电连接到输入晶体管1410的漏极-源极通路的一侧。输入晶体管1410的栅极电连接到输入线1411。输入晶体管1410漏极-源极通路的另一侧在1426处电连接到比如地线的基准。 在第二级1404中,第二预充电晶体管1412的栅极和漏极-源极通路的一侧电连接到第二预充电线1428。第二预充电线1428导通第二预充电信号PRE2的定时脉冲到移位寄存器单元1400。第二预充电晶体管1412的漏极-源极通路的另一侧电连接到第二评估晶体管1414的漏极-源极通路的一侧和移位寄存器输出线1430。第二评估晶体管1414的栅极电连接到第二评估信号线1432,第二评估信号线1432导通第二评估信号EVAL2到移位寄存器单元1400。第二评估晶体管1414的漏极-源极通路的另一侧在1434电连接到内部节点晶体管1416的漏极-源极通路的一侧。内部节点晶体管1416的漏极-源极通路的另一侧在1436处电连接到比如地线的基准。内部节点晶体管1416的栅极包括用于存储内部节点信号SN的电容1438。1430处的移位寄存器单元输出线包括存储移位寄存器单元输出信号SO的电容1440。 移位寄存器单元1400接收输入信号标准SI,并且通过一系列预充电和评估操作,存储输入信号标准SI的值以作为输出信号SO。第一级1402接收输入信号标准SI并存储与输入信号SI相反的信号以作为内部节点信号SN。第二级1404接收内部节点信号SN并存储与内部节点信号SN相反的信号以作为输出信号SO。 在操作中,移位寄存器单元1400接收第一预充电信号PRE1中的定时脉冲,从而通过第一预充电晶体管1406将预充电内部节点1420和内部节点信号SN充电到高电压电平。接着,移位寄存器单元1400接收第一评估信号EVAL1中的定时脉冲,从而导通第一评估晶体管1408。如果输入信号标准SI处于低电压电平,从而关断输入晶体管1410,那么内部节点1420和内部节点信号SN保持充电到高电压电平。如果输入信号标准SI处于高电压电平,从而导通输入晶体管1410,那么内部节点1420和内部节点信号SN放电到低电压电平。 移位寄存器单元1400接收第二预充电信号PRE2的定时脉冲,从而预充电输出信号线1430和输出信号SO到高电压电平。在第二预充电信号PRE2中的定时脉冲之前,输出线1430可以存储有效的输出信号SO。然后,移位寄存器单元1400接收第二评估信号EVAL2中的定时脉冲,从而导通第二评估晶体管1414。如果内部节点信号SN处于低电压电平,从而关断内部节点晶体管1416,那么输出线1430和输出信号SO保持充电到高电压电平。如果内部节点信号SN处于高电压电平,从而导通内部节点晶体管1416,那么输出线1430和输出信号SO保持放电到低电压电平。 图19是说明地址产生器1500的示意图,地址产生器1500使用移位寄存器单元1400来提供正反向地址。地址产生器1500包括第一移位寄存器1502、第二移位寄存器1504、第一逻辑电路1506、第二逻辑电路1508和方向电路1510。 第一移位寄存器1502通过移位寄存器输出线1512a-1512m电连接到第一逻辑电路1506。移位寄存器输出线1512a-1512m分别提供移位寄存器输出信号SO1-SO13到逻辑电路1506以作为逻辑电路输入信号A11-A113。并且,第一移位寄存器1502电连接到控制线1514,将控制信号CSYNC导通到第一移位寄存器1502。另外,第一移位寄存器1502接收来自定时信号T1-T4的定时脉冲。 第一移位寄存器1502电连接到定时信号线1516,将定时信号T1导通到第一移位寄存器1502以作为第一预充电信号PRE1。第一移位寄存器1502通过第一评估信号线1520电连接到第一电阻器划分网络1518。第一电阻器划分网络1518电连接到第二定时信号线1522,从而将定时信号T2导通到第一电阻器划分网络1518。第一电阻器划分网络1518通过第一评估信号线1520提供降低的电压电平T2定时信号到第一移位寄存器1502以作为第一评估信号EVAL1。并且,第一移位寄存器1502电连接到第三信号线1524,将定时信号T3导通到第一移位寄存器1502以作为第二预充电信号PRE2。第一移位寄存器1502通过第二评估信号线1528电连接到第二电阻器划分网络1526。第二电阻器划分网络1526电连接到第四定时信号线1530,从而提供定时信号T4到第二电阻器划分网络1526。第二电阻器划分网络1526通过第二评估信号线1528提供降低的电压电平T4定时信号到第一移位寄存器1502以作为第二评估信号EVAL2。 第二移位寄存器1504通过移位寄存器输出线1532a-1532m电连接到第二逻辑电路1508。移位寄存器输出线1532a-1532m分别导通移位寄存器输出信号SO1-SO13到逻辑电路1508以作为逻辑电路输入信号A113-A11。并且,第二移位寄存器1504电连接到控制线1514,从而将控制信号CSYNC导通到第二移位寄存器1504。另外,第二移位寄存器1504接收定时信号T1-T4的定时脉冲。 第二移位寄存器1504电连接到定时信号线1516,将定时信号T1导通到第二移位寄存器1504以作为第一预充电信号PRE1。第二移位寄存器1504电连接到第一评估信号线1520,将降低的电压电平T2定时信号导通到第二移位寄存器1504以作为第一评估信号EVAL1。并且,第二移位寄存器1504电连接到第三定时信号1524,从而将定时信号T3导通到第二移位寄存器1504以作为第二预充电信号PRE2。第二移位寄存器1504电连接到第二评估信号线1528,从而将降低的电压电平T4定时信号导通到第二移位寄存器1504以作为第二评估信号EVAL2。 方向电路1510通过正向信号线1540电连接到第一移位寄存器1502,并且通过反向信号线1542电连接第二移位寄存器1504。正向信号线1540将正向信号DIRF从方向电路1510导通到第一移位寄存器1502。反向信号线1542将反向信号DIRR从方向电路1510导通到第二移位寄存器1504。并且,方向电路1510电连接到控制线1514,从而将控制信号CSYNC导通到方向电路1510。另外,方向电路1510接收来自定时信号T3-T6的定时脉冲。 方向电路1510电连接到第三定时信号1524,从而将定时信号T3导通到方向电路1510以作为第四预充电信号PRE4。方向电路1510电连接到第二评估信号线1528,从将将下降的电压T4定时信号导通到方向电路1510以作为第四评估信号EVAL4。并且,方向电路1510电连接到第五定时信号1544,从而将定时信号T5导通到方向电路1510以作为第三预充电信号PRE3。另外,方向电路1510通过第三评估信号线1548电连接到电阻器划分网络1546。第三电阻器划分网络1546电连接到第六定时信号线1550,从而将定时信号T6传导到第三电阻器划分网络1546。第三电阻器划分网络1546提供下降的电压T6定时信号到方向电路1510以作为第三评估信号EVAL3。 第一逻辑电路1506电连接到移位寄存器输出线1512a-1512m,从而分别接收移位寄存器输出信号SO1-SO13以作为输入信号A11-A113。同样,第一逻辑电路1506电连接地址线1552a-1552g,以分别提供地址信号~A1、~A2...~A7。第二逻辑电路1508电连接到移位寄存器输出线1532a-1532m,从而分别接收移位寄存器输出信号SO1-SO13以作为逻辑电路输入信号A11-A113。同样,第二逻辑电路1508电连接地址线1552a-1552g,以分别提供地址信号~A1、~A2...~A7。 第一移位寄存器1502和第一逻辑电路1506在地址信号~A1、~A2...~A7中提供低电压电平信号,从而提供前述的13个地址。第一移位寄存器1502和第一逻辑电路1506按照从地址1到地址13的正向方向提供13个地址输入。第二移位寄存器1504和第二逻辑电路1508在地址信号~A1、~A2...~A7中提供低电压电平信号,从而按照从地址13到地址1的反向方向提供13个地址输入。方向电路1510传导方向信号DIRF和DIRR,从而使能正向操作的第一移位寄存器1502或者反向操作的第二移位寄存器1504。 定时信号T1-T6提供重复的六脉冲序列中的一个六脉冲序列。每个定时信号T1-T6包括六脉冲的序列中的一个脉冲,定时信号T1-T6按照从定时信号T1到定时信号T6顺序的提供脉冲。 第一移位寄存器1502包括13个比如移位寄存器单元1400的移位寄存器单元。13个移位寄存器单元1400串联电连接输出线1430,输出线1430电连接到下一在同一直线上的移位寄存器单元1400的输入线1411。串联的第一移位寄存器单元1400接收控制信号CSYNC以作为输入信号标准SI,并且提供输出信号SO1。下一个移位寄存器单元1400接收输出信号SO1以作为输入信号标准SI,并且提供输出信号SO2,依此类推,直到并包括最后的移位寄存器单元1400接收上述的输出信号SO12以作为输入信号标准SI,并且提供输出信号SO13。 通过接收与来自定时信号T2的定时脉冲相一致的控制信号CSYNC中的控制脉冲,启动第一移位寄存器1502。作为响应,在SO1提供单个高电压电平信号。在每个随后六定时脉冲序列期间,第一移位寄存器1502将该单个高电压电平信号移位到下一个移位寄存器单元1400和移位寄存器输出信号SO2-SO13。该单个高电压电平信号从移位寄存器输出信号SO1传递到移位寄存器输出信号SO2,依此类推,直到并包括移位寄存器输出信号SO13。在移位寄存器输出信号SO13已经被设置为高电压电平以后,全部移位寄存器输出信号SO1-SO13被设置为低电压电平。 第一逻辑电路1506类似于逻辑电路406(如图9所示)。第一逻辑电路1506接收单个高电压电平信号以作为一个输入信号A11-A113,并在地址信号~A1、~A2...~A7中提供相应的低电压电平地址信号。响应于高电压电平输入信号A11,第一逻辑电路1506为地址1提供低电压电平的地址信号~A1和~A2。响应于高电压电平输入信号A12,第一逻辑电路1506为地址2提供地低电压电平址信号~A1和~A3,依此类推,直到并包括高电压电平输入信号A113,并且第一逻辑电路1506为地址13提供低电压电平地址信号~A3和~A5。 第二移位寄存器1504类似于第一移位寄存器1502。第二移位寄存器1502提供单个高电压电平移位寄存器输出信号SO1以作为移位寄存器输出信号SO1,以响应于由与来自定时信号T2的定时脉冲一致的控制脉冲所进行的启动。响应于每个随后的六脉冲序列,高电压电平信号移位到下一个移位寄存器单元1400和移位寄存器输出信号SO2-SO13。高电压电平信号从移位寄存器输出信号SO1移位到移位寄存器输出信号SO2,依此类推,直到并包括移位寄存器输出信号SO13。在移位寄存器输出信号SO13已经被设置为高电压电平以后,全部移位寄存器输出信号SO1-SO13处于低电压电平。 第二逻辑电路1508类似于逻辑电路406(图9所示),并且接收高电平电压输出信号SO1-SO13以作为输入信号A113~A11。第二逻辑电路1508按照从地址13到地址1的反向顺序提供13个地址输入。响应于作为输入信号A113接收的高电压电平信号SO1,第二逻辑电路1508提供地址13的低电压电平地址信号~A3和~A5。接着,响应于作为输入信号A112接收的高电压电平信号SO2,第二逻辑电路1508提供地址12低电压电平地址信号~A3和~A4,依此类推,直到作为输入信号A11接收的高电压电平信号SO13,第二逻辑电路1508为地址1提供低电压电平地址信号~A1和~A2。 方向电路1510类似于图10B的方向电路404。如果方向电路1510接收与来自定时信号T4的定时脉冲相一致的控制信号CSYNC中的控制脉冲,那么方向电路1510从地址1到地址13提供低电压电平方向信号DIRR和高电压电平方向信号DIRF,从而进行正向移位。如果方向电路1510接收与来自定时信号T6的定时脉冲相一致的控制信号CSYNC中的控制脉冲,那么方向电路1510从地址13到地址1提供低电压电平方向信号DIRR和高电压电平方向信号DIRF,从而进行反向移位。 每个移位寄存器1502和1504包括方向晶体管(未示出),该方向晶体管位于一系列移位寄存器单元1400的第一移位寄存器单元1400中。方向晶体管与输入晶体管1410串联,类似图10A所示的移位寄存器单元403a中的方向晶体管512和514串联。方向晶体管电连接在输入晶体管1410的漏极-源极通路和基准1426之间。移位寄存器单元1400的第一移位寄存器单元1400的方向晶体管类似于图10A所示移位寄存器单元403a的方向晶体管512和514进行操作。高电压电平方向信号DIRF或DIRR导通方向晶体管,以通过与来自定时信号T2的定时脉冲一致的控制信号CSYNC中的控制脉冲,而使移位寄存器1502或1504启动。低电压电平方向信号DIRF或DIRR关断方向晶体管,禁止移位寄存器1502或1504。 在正向操作中,在六脉冲序列中,方向电路1510接收与来自定时信号T4的定时脉冲一致的控制信号CSYNC中的控制脉冲,从而正向提供地址信号~A1、~A2...~A7。高电压电平方向信号DIRF使能第一移位寄存器1502,低电压电平方向信号DIRR禁止第二移位寄存器1504。 在下一个六脉冲序列中,提供与来自定时信号T2的定时脉冲一致的控制信号CSYNC中的控制脉冲。通过第一评估晶体管1408、输入晶体管1410和方向晶体管(未示出)使内部节点1420放电,与来自定时信号T2的定时脉冲一致的控制脉冲启动第一移位寄存器1502。由于第二移位寄存器1504被禁止,因而不能被启动。 第一移位寄存器1502提供单个高电平电压输出信号SO1到第一逻辑电路1506,从而向地址1提供地址信号~A1、~A2...~A7。每个随后的六脉冲序列期间,将高电压电平信号移位到下一个移位寄存器输出信号SO2-SO13。第一逻辑电路1506接收每个高电平电压输出信号SO1-SO13,还按照地址1到地址13的顺序提供地址信号~A1、~A2...~A7的对应地址。在移位寄存器输出信号SO13已经处于高电压电平后,全部移位寄存器输出信号SO1-SO13被设置为低电压电平,并且全部地址信号~A1、~A2...~A7被设置为高电压电平。 在反向操作中,在一个六脉冲序列中,方向电路1510接收与来自定时信号T6的定时脉冲一致的控制信号CSYNC中的控制脉冲,从而反向提供地址信号~A1、~A2...~A7。低电压电平方向信号DIRF禁止第一移位寄存器1502,并且诶高电压电平方向信号DIRR使能第二移位寄存器1504。 在下一个六脉冲序列中,提供与来自定时信号T2的定时脉冲一致的控制信号CSYNC中的控制脉冲。通过第一评估晶体管1408、输入晶体管1410和方向晶体管(未示出)使内部节点1420放电,与来自定时信号T2的定时脉冲一致的控制脉冲启动第二移位寄存器1504。由于第一移位寄存器1502被禁止,因而不能被启动。 第二移位寄存器1504提供单个高电平电压输出信号SO1到第二逻辑电路1508,从而向地址13提供地址信号~A1、~A2...~A7。每个随后的六脉冲序列期间,将高电压电平信号移位到后续移位寄存器输出信号SO2-SO13。第二逻辑电路1508接收每个高电平电压输出信号SO1-SO13,并按照地址13到地址1的顺序提供地址信号~A1、~A2...~A7的对应地址。在移位寄存器输出信号SO1已经成高电压电平后,全部移位寄存器输出信号SO1~SO13被设置为低电压电平,并且全部地址信号~A1、~A2...~A7被设置为高电压电平。 图20是说明地址产生器1600的示意图,地址产生器1600使用移位寄存器1602中的移位寄存器单元1400,以正向和反向提供地址。地址产生器1600包括移位寄存器1602、正向逻辑电路1604、反向逻辑电路1606和方向电路1608。 移位寄存器1602通过移位寄存器输出线1610a-1610m电连接到正向逻辑电路1604和反向逻辑电路1606。移位寄存器输出线1610a-1610m分别提供移位寄存器输出信号SO1-SO13到正向逻辑电路1604以作为输入信号A11~A113。移位寄存器输出线1610a-1610m分别提供移位寄存器输出信号SO1-SO13到反向逻辑电路1606,以作为输入信号A113~A11。并且,移位寄存器1602电连接到控制信号线1612,控制信号线1612提供控制信号CSYNC到移位寄存器1602。另外,第二移位寄存器1602接收来自定时信号T1-T4的定时脉冲。 移位寄存器1602电连接到第一定时信号线1614,第一定时信号线1614提供定时信号T1到移位寄存器1602以作为第一预充电信号PRE1。第一移位寄存器1602通过第一评估信号线1618电连接到第一电阻器划分网络1616。第一电阻器划分网络1616电连接到第二定时信号线1620,从而将定时信号T2导通到第一电阻器划分网络1616。第一电阻器划分网络1616通过第一评估信号线1618提供降低的电压电平T2定时信号到移位寄存器1602,以作为第一评估信号EVAL1。移位寄存器1602电连接到第三定时信号线1622,第三定时信号线1622提供定时信号T3到移位寄存器1602以作为第二预充电信号PRE2。移位寄存器1602通过第二评估信号线1626电连接到第二电阻器划分网络1624。第二电阻器划分网络1624电连接到第四定时信号线1628,从而传导定时信号T4到第二电阻器划分网络1624。第二电阻器划分网络1624通过第二评估信号线1626提供减低电压电平T4定时信号到移位寄存器1602以作为第二评估信号EVAL2。 方向电路1608通过正向信号线1630电连接到正向逻辑电路1604,通过反向信号线1632电连接到反向逻辑电路1606。正向信号线1630从方向电路1608提供正向信号DIRF到正向逻辑电路1604。反向信号线1632从方向电路1608提供反向信号DIRR到反向逻辑电路1604。并且,方向电路1608电连接到控制信号线1612,控制信号线1612提供控制信号CSYNC到方向电路1608。另外,方向电路1608接收定时信号T3-T6的定时脉冲。 方向电路1608电连接到第三定时信号线1622,以接收定时信号T3以作为第四预充电信号PRE4,还电连接到第二评估信号线1626,以接收下降的电压T4定时信号以作为第四评估信号EVAL4。并且,方向电路1608电连接到第五定时信号线1634,第五定时信号线1634将定时信号T5提供到方向电路1608以作为第三预充电信号PRE3。另外,方向电路1608通过第三评估信号线1638电连接到第三电阻器划分网络1636。第三电阻器划分网络1636电连接到第六定时信号线1640,第六定时信号线1640提供定时信号T6到第三电阻器划分网络1636。第三电阻器划分网络1636提供下降的电压T6定时信号到方向电路1608以作为第三评估信号EVAL3。 正向逻辑电路1604电连接到移位寄存器输出线1610a-1610m,以接收移位寄存器输出信号SO1-SO13,以分别作为输入信号A11-A113。并且,正向逻辑电路1604电连接地址线1642a-1642g,以分别提供地址信号~A1、~A2...~A7。反向逻辑电路1606电连接到移位寄存器输出线1610a-1610m,以接收移位寄存器输出信号SO1-SO13,以分别作为输入信号A113-A11。并且,反向逻辑电路1606电连接到地址线1642a-1642g,以分别提供地址信号~A1、~A2...~A7。 移位寄存器1602和正反向逻辑电路1604和1606提供地址信号~A1、~A2...~A7中的低电压电平信号,从而提供上述的13个地址。移位寄存器1602和正向逻辑电路1604按照从地址1到地址13的正向顺序提供13个地址输入。移位寄存器1602和反向逻辑电路1606按照从地址13到地址1的反向顺序提供13个地址输入。方向电路1608提供方向信号DIRF和DIRR,使能正向操作的正向逻辑电路1604或者反向操作的反向逻辑电路1606。 定时信号T1-T6提供六脉冲的序列。每个定时信号T1-T6提供六脉冲序列中的一个脉冲,并且定时信号T1-T6按照从定时信号T1到定时信号T6的顺序提供脉冲。 移位寄存器1602包括13个比如移位寄存器单元1400的移位寄存器单元。13个移位寄存器单元1400串联电连接一条输出线1430,输出线1430电连接到下一在同一直线上的移位寄存器单元1400的输入线1411。串联的第一移位寄存器单元1400接收控制信号CSYNC以作为输入信号标准SI,并且提供输出信号SO1。下一个移位寄存器单元1400接收输出信号SO1以作为输入信号SI,并且提供输出信号SO2,依此类推,直到并包括最后的移位寄存器单元1400接收上述的输出信号SO12以作为输入信号SI并且提供输出信号SO13。 通过与来自定时信号T2的定时脉冲一致的CSYNC中的控制脉冲启动移位寄存器1602。作为响应,在SO1提供单个高电压电平信号。在每个随后的六定时脉冲的序列期间,移位寄存器1602将该单个高电压电平信号移位到下一个移位寄存器单元1400和移位寄存器输出信号SO2-SO13。该单个高电压电平信号从移位寄存器输出信号SO1移位到移位寄存器输出信号SO2,依此类推,直到并包括移位寄存器输出信号SO13。在移位寄存器输出信号SO13已经被设置为高电压电平以后,全部移位寄存器输出信号SO1-SO13被设置为低电压电平。 正向逻辑电路1604类似于逻辑电路406(图9所示)。正向逻辑电路1604接收单个高电压电平信号以作为输入信号A11-A113,并且在地址信号~A1、~A2...~A7中提供对应的低电压电平地址信号。响应于高电压电平输入信号A11,正向逻辑电路1604向地址1提供低电压电平地址信号~A1和~A2。响应于高电压电平输入信号A12,第一逻辑电路1604向地址2提供低电压电平地址信号~A2和~A3,依此类推,直到并包括高电压电平输入信号A113和正向逻辑电路1604向地址13提供低电压电平地址信号~A3和~A5。 反向逻辑电路1606类似于逻辑电路406(图9所示),并且分别接收高电平电压输出信号SO1-SO13以作为输入信号A113-A11。反向逻辑电路1606按照从地址13到地址1的反向顺序提供13个地址输入。响应于作为输入信号A113接收到的高电压电平信号SO1,反向逻辑电路1606向地址13提供低电压电平地址信号~A3和~A5。接着,响应于作为输入信号A112接收到的高电压电平信号SO2,反向逻辑电路1606向地址12提供低电压电平地址信号~A3和~A4,依此类推,直到并包括响应于作为输入信号A11接收的高电压电平信号S13,反向逻辑电路1606向地址1提供低电压电平地址信号~A1和~A2。 方向电路1608类似于图10B的方向电路404。如果方向电路1608接收与来自定时信号T4的定时脉冲一致的控制信号CSYNC中的控制脉冲,那么方向电路1608按照从地址1到地址13的正向移位顺序提供低电压电平方向信号DIRR和高电压电平方向信号DIRF。如果方向电路1608接收与来自定时信号T6的定时脉冲一致的控制信号CSYNC中的控制脉冲,那么方向电路1608按照从地址13到地址1的反向顺序提供低电压电平方向信号DIRF和高电压电平方向信号DIRR。 在一个具体实施例中,每个逻辑电路1604和1606包括与逻辑评估线预充电晶体管444串联的方向晶体管。在每个逻辑电路1604和1606中,方向晶体管的漏极-源极通路电连接在逻辑评估线预充电晶体管444的漏极-源极通路和逻辑评估信号线474之间。正向逻辑电路1604的方向晶体管的栅极电连接到正向线1630,以接收正向信号DIRF。反向逻辑电路1604的方向晶体管的栅极电连接到反向线1632,以接收反向信号DIRR。在另一个具体实施例中,每个逻辑电路1604和1606包括与逻辑评估晶体管440串联的方向晶体管。在每个逻辑电路1604和1606中,方向晶体管的漏极-源极通路电连接在每个逻辑评估晶体管440的漏极-源极通路和基准478之间。 在一个具体实施例中,高电压电平方向信号DIRF导通正向逻辑电路1604的方向晶体管,以使得定时信号T5中的定时脉冲能充电逻辑评估信号线474,从而导通正向逻辑电路1604的逻辑评估晶体管440,以正向提供地址信号~A1、~A2...~A7。低电压电平方向信号DIRF关断方向晶体管,以禁止正向逻辑电路1604。高电压电平方向信号DIRR导通反向逻辑电路1606的方向晶体管,以使得定时信号T5中的定时脉冲能充电逻辑评估信号线474,从而导通反向逻辑电路1606的逻辑评估晶体管440,以反向提供地址信号~A1、~A2...~A7。低电压电平方向信号DI RR关断反向逻辑电路1606的方向晶体管,以禁止反向逻辑电路1606。 在正向操作中,在一个六脉冲序列里,方向电路1608接收与定时信号T4中的定时脉冲相一致的控制信号CSYNC中的控制脉冲,从而以正向提供地址信号~A1、~A2...~A7。高电压电平方向信号DIRF使能正向逻辑电路1604,低电压电平方向信号DIRR禁止反向逻辑电路1606。 在下一个六脉冲序列中,提供控制信号CSYNC中的控制脉冲,它与定时信号T2中的定时脉冲一致。该与定时信号T2中的定时脉冲一致的控制脉冲启动移位寄存器1602。移位寄存器1602提供单个高电平电压输出信号SO1信号到正向逻辑电路1604,从而向地址1提供地址信号~A1、~A2...~A7。提供与定时信号T4中的定时脉冲一致的在控制信号CSYNC中的控制脉冲,从而继续以正向提供地址信号~A1、~A2...~A7。 在每个随后的六脉冲序列期间,提供与定时信号T4中的定时脉冲一致的在控制信号CSYNC中的控制脉冲,从而继续以正向提供地址信号~A1、~A2...~A7。并且,在每个随后的六脉冲序列期间,移位寄存器1602将一个移位寄存器输出信号SO1-SO13移位到下一个移位寄存器输出信号SO1-SO13。正向逻辑电路1604接收每个高电平电压输出信号SO1-SO13,并按照地址1到地址13的顺序提供地址信号~A1、~A2...~A7对应的地址。在移位寄存器输出信号SO13已经变高后,全部移位寄存器输出信号SO1-SO13被设置为低电压电平,并且全部地址信号~A1、~A2...~A7被设置为高电压电平。 在反向操作中,在一个六脉冲序列中,方向电路1608接收与定时信号T6中的定时脉冲一致的控制信号CSYNC中的控制脉冲,从而以反向提供地址信号~A1、~A2...~A7。低电压电平方向信号DIRF禁止正向逻辑电路1604,高电压电平方向信号DIRR使能反向逻辑电路1606。 在下一个六脉冲序列中,提供与定时信号T2中的定时脉冲一致的控制信号CSYNC中的控制脉冲。该与定时信号T2中的定时脉冲一致的控制脉冲启动移位寄存器1602。移位寄存器1602提供单个高电平电压输出信号SO1到反向逻辑电路1606以作为输入信号A113。反向逻辑电路1606向地址13提供地址信号~A1、~A2...~A7。并且,提供与定时信号T6中的定时脉冲一致的在控制信号CSYNC中的控制脉冲,从而继续以反向提供地址信号~A1、~A2...~A7。 在每个随后的六脉冲序列中,提供与定时信号T6中的定时脉冲一致的在控制信号CSYNC中的控制脉冲,从而继续以反向提供地址信号~A1、~A2...~A7。并且,在每个随后的六脉冲序列中,移位寄存器1602将一个移位寄存器输出信号SO1-SO13移位到下一个移位寄存器输出信号SO1-SO13。反向逻辑电路1606接收每个高电平电压输出信号SO1-SO13,并按照地址13到地址1的顺序提供地址信号~A1、~A2...~A7对应的地址。在移位寄存器输出信号SO1已经变高后,全部移位寄存器输出信号SO1-SO13被设置为低电压电平,并且全部地址信号~A1~A7被设置为高电平。 图21是说明打印头冲模1700的一个具体实施例的实例设计示意图。打印头冲模1700包括沿着三个墨水供应源布置的6个点火组1702a-1702f,以供墨槽1704、1706和1708表示。点火组1702a和1702d沿着供墨槽1704布置,点火组1702b和1702e沿着供墨槽1706布置,并且点火组1702c和1702f沿着供墨槽1708布置。供墨槽1704,1706和1708彼此平行设置,每个供墨槽1704,1706和1708包括沿着打印头冲模1700的y方向伸展的长度。在一个具体实施例中,每个供墨槽1704,1706和1708向点火组1702a-1702f的墨滴产生器60提供不同颜色的墨水。在该具体实施例中,供墨槽1704提供黄色墨水,供墨槽1706提供品红色墨水,供墨槽170 8提供青色墨水。在其它具体实施例中,供墨槽1704、1706和1708可以提供任何适合的同色或不同色的墨水。 点火组1702a-1702f分成8个数据线组,如D1-D8所示。每个数据线组D1-D8包括点火组1702a-1702f的预充电点火单元120。数据线组D1-D8中的每个预充电点火单元120电连接到数据线208a-208h中的一条数据线。数据线组D1,如1710a-1710f所示,包括电连接到数据线208a的预充电点火单元120。数据线组D2,如1712a-1712f所示,包括电连接到数据线208b的预充电点火单元120。数据线组D3,如1714a-1714f所示,包括电连接到数据线208c的预充电点火单元120。数据线组D4,如1716a-1716f所示,包括电连接到数据线208d的预充电点火单元120。数据线组D5,如1718a-1718f所示,包括电连接到数据线208e的预充电点火单元120。数据线组D6,如1720a-1720f所示,包括电连接到数据线208f的预充电点火单元120。数据线组D7,如1722a-1722f所示,包括电连接到数据线208g的预充电点火单元120,以及数据线组D8,如1724a-1724f所示,包括电连接到数据线208h的预充电点火单元120。打印头冲模1700中的每个预充电点火单元120电连接到208a-208h中的一条数据线。208a-208h的每条数据线电连接到对应数据线组D1-D8中的预充电点火单元120的全部数据晶体管136的栅极。 点火组1(FG1)1702a沿着供墨槽1704长度的一半布置。供墨槽1704包括沿着打印头冲模1700的y方向延伸的相对侧1704a和1704b。打印头冲模1700中的预充电点火单元120包括作为墨滴产生器60一部分的点火电阻器52。FG1 1702a的墨滴产生器60沿着供墨槽1704的相对侧1704a和1704b的每一侧布置。FG1 1702a的墨滴产生器60可流通液体地连接到供墨槽1704,以接收供墨槽的墨水。 数据线组D1、D3、D5和D7的墨滴产生器60,如1710a、1714a、1718a和1722a所示,沿着供墨槽1704的一侧1704a布置,并且数据线组D2、D4、D6和D8的墨滴产生器60,如1712a、1716a、1720a和1724a所示,沿着供墨槽1704的相对一侧1704b布置。1710a、1714a、1718a和1722a处的数据线组D1、D3、D5和D7的墨滴产生器60,布置在打印头冲模1700的1700a一侧和供墨槽1704之间,并且1712a、1716a、1720a和1724a出的数据线组D2、D4、D6和D8的墨滴产生器60,沿着供墨槽1704和供墨槽1706之间的打印头冲模1700的内侧选路通道布置。在一个具体实施例中,1710a、1714a、1718a和1722a处的数据线组D1、D3、D5和D7中的墨滴产生器60沿着供墨槽1704的一侧1704a的长度布置,并且用于1712a、1716a、1720a和1724a处的数据线组D2、D4、D6和D8的墨滴产生器60沿着供墨槽1704的相对一侧1704b布置。1710a处的数据线组D1中的墨滴产生器60与1712a处的数据线组D2中的墨滴产生器60相对。1714a处的数据线组D3中的墨滴产生器60与1716a处的数据线组D4中的墨滴产生器60相对。1718a处的数据线组D5中的墨滴产生器60与1720a处的数据线组D6中的墨滴产生器60相对,并且1722a处的数据线组D7中的墨滴产生器60与1724a处的数据线组D8中的墨滴产生器60相对。 点火组4(FG4)1702d沿着供墨槽1704的另一半的长度布置。FG41702d中的墨滴产生器60沿着供墨槽1704的相对侧1704a和1704b布置,并且可流通液体地连接到供墨槽1704,以接收来自供墨槽1704的墨水。数据线组D1、D3、D5和D7中的墨滴产生器60,如1710d、1714d、1718d和1722d所示,沿着供墨槽1704的一侧1704a布置,并且数据线组D2、D4、D6和D8中的墨滴产生器60,如1712d、1716d、1720d和1724d所示,沿着供墨槽1704的相对一侧1704b布置。1710d、1714d、1718d和1722d处的数据线组D1、D3、D5和D7中的墨滴产生器60,布置在打印头冲模1700的一侧1700a和供墨槽1704之间,并且1712d、1716d、1720d和1724d处的数据线组D2、D4、D6和D8中的墨滴产生器60,沿着供墨槽1704和供墨槽1706之间的打印头冲模1700中的内侧选路通道布置。在一个具体实施例中,1710d、1714d、1718d和1722d处的数据线组D1、D3、D5和D7中的墨滴产生器60沿着供墨槽1704的一侧1704a的长度布置,并且用于1712d、1716d、1720d和1724d处的数据线组D2、D4、D6和D8中的墨滴产生器60沿着供墨槽1704的相对一侧1704b布置。1710d处的数据线组D1中的墨滴产生器60与1712d处的数据线组D2中的墨滴产生器60相对。1714d处的数据线组D3中的墨滴产生器60与1716d处的数据线组D4中的墨滴产生器60相对。1718d处的数据线组D5中的墨滴产生器60与1720d处的数据线组D6中的墨滴产生器60相对,并且1722d处的数据线组D7中的墨滴产生器60与1724d处的数据线组D8中的墨滴产生器60相对。 点火组2(FG2)1702b沿着供墨槽1706一半的长度布置。供墨槽1706包括沿着打印头冲模1700的y方向延伸的相对侧1706a和1706b。FG2 1702b中的墨滴产生器60沿着供墨槽1706的相对侧1706a和1706b的每一侧布置。FG2 1702b中的墨滴产生器60可流通液体地连接到供墨槽1706,以接收供来自墨槽1706的墨水。 数据线组D1、D3、D5和D7中的墨滴产生器60,如1710b、1714b、1718b和1722b所示,沿着供墨槽1706的一侧1706b布置,并且数据线组D2、D4、D6和D8中的墨滴产生器60,如1712b 1716b、1720b和1724b所示,沿着供墨槽1706的相对一侧1706a布置。1710b、1714b、1718b和1722b处的数据线组D1、D3、D5和D7中的墨滴产生器60沿着供墨槽1706和供墨槽1708之间的内侧通道布置,并且1712b、1716b、1720b和1724b处的数据线组D2、D4、D6和D8中的墨滴产生器60沿着供墨槽1704和供墨槽1706之间的内侧通道布置。在一个具体实施例中,1710b、1714b、1718b和1722b处的数据线组D1、D3、D5和D7中的墨滴产生器60沿着供墨槽1706的一侧1706b的长度布置,并且用于1712b、1716b、1720b和1724b处的数据线组D2、D4、D6和D8中的墨滴产生器60沿着供墨槽1706的相对一侧1706a布置。1710b处的数据线组D1中的墨滴产生器60与1712b处的数据线组D2中的墨滴产生器60相对。1714b处的数据线组D3中的墨滴产生器60与1716b处的数据线组D4中的墨滴产生器60相对。1718b处的数据线组D5中的墨滴产生器60与1720b处的数据线组D6中的墨滴产生器60相对,并且1722b处的数据线组D7中的墨滴产生器60与1724b处的数据线组D8中的墨滴产生器60相对。 点火组5(FG5)1702e沿着供墨槽长度的另一半布置。FG5 1702e中的墨滴产生器60沿着进墨槽1706的相对侧1706a和1706b布置,并且可流通液体地连接到供墨槽1706,接收进墨槽1706的墨水。数据线组D1、D3、D5和D7中的墨滴产生器60,如1710e、1714e、1718e和1722e所示,沿着供墨槽1706的一侧1706b布置,并且数据线组D2、D4、D6和D8中的墨滴产生器60,如1712e、1716e、1720e和1724e所示,沿着供墨槽1706的相对一侧1706a布置。1710e、1714e、1718e和1722e处的数据线组D1、D3、D5和D7中的墨滴产生器60,沿着供墨槽1706和供墨槽1708之间的内侧通道布置,并且1712e、1716e、1720e和1724e处的数据线组D2、D4、D6和D8中的墨滴产生器60,沿着供墨槽1704和供墨槽1706之间的打印头冲模1700的内侧通道布置。在一个具体实施例中,1710e、1714e、1718e和1722e处的数据线组D1、D3、D5和D7中的墨滴产生器60,沿着供墨槽1706的一侧1706b的长度布置,并且用于1712e、1716e、1720e和1724e处的数据线组D2、D4、D6和D8中的墨滴产生器60沿着供墨槽1706的相对一侧1706a布置。1710e处的数据线组D1中的墨滴产生器60与1712e处的数据线组D2中的墨滴产生器60相对。1714e处的数据线组D3中的墨滴产生器60与1716e处的数据线组D4中的墨滴产生器60相对。1718e处的数据线组D5中的墨滴产生器60与1720e处的数据线组D6中的墨滴产生器60相对,并且1722e处的数据线组D7中的墨滴产生器60与1724e处的数据线组D8中的墨滴产生器60相对。 点火组3(FG3)1702c沿着供墨槽1708长度的一半布置。供墨槽1708包括沿着打印头冲模1700的y方向延伸的相对侧1708a和1708b。FG3 1702c中的墨滴产生器60沿着供墨槽1708的相两侧1708a和1708b布置。FG3 1702c中的墨滴产生器60可流通液体地连接到供墨槽1708,以接收来自供墨槽1708的墨水。 数据线组D1、D3、D5和D7中的墨滴产生器60,如1710c、1714c、1718c和1722c所示,沿着供墨槽1708的一侧1708a布置,并且数据线组D2、D4、D6和D8中的墨滴产生器60,如1712c、1716c、1720c和1724c所示,沿着供墨槽1708的相对一侧1708b布置。1710c、1714c、1718c和1722c的数据线组D1、D3、D5和D7中的墨滴产生器60,沿着进墨槽1706和供墨槽1708之间的内侧通道布置,并且1712c、1716c、1720c和1724c处的数据线组D2、D4、D6和D8中的墨滴产生器60,布置在打印头冲模1700的一侧1700b和供墨槽1708之间。在一个具体实施例中,1710c、1714c、1718c和1722c处的数据线组D1、D3、D5和D7中的墨滴产生器60,沿着供墨槽1708的一侧1708a的长度布置,并且1712c、1716c、1720c和1724c处的数据线组D2、D4、D6和D8中的墨滴产生器60,沿着供墨槽1708的相对一侧1708b布置。1710c处的数据线组D1中的墨滴产生器60与1712c处的数据线组D2中的墨滴产生器60相对。1714c处的数据线组D3中的墨滴产生器60与1716c处的数据线组D4的中墨滴产生器60相对。1718c处的数据线组D5中的墨滴产生器60与1720c处的数据线组D6中的墨滴产生器60相对,并且1722c处的数据线组D7中的墨滴产生器60与1724c处的数据线组D8中的墨滴产生器60相对。 点火组6(FG6)1702f沿着供墨槽1708的另一半长度布置。FG61702f中的墨滴产生器60沿着供墨槽1708的相对侧1708a和1708b布置,并且可流通液体地连接供墨槽1708,以接收来自供墨槽1708的墨水。数据线组D1、D3、D5和D7中的墨滴产生器60,如1710f、1714f、1718f和1722f所示,沿着供墨槽1708的一侧1708a布置,并且数据线组D2、D4、D6和D8中的墨滴产生器60,如1712f、1716f、1720f和1724f所示,沿着供墨槽1708的相对一侧1708b布置。1710f、1714f、1718f和1722f处的数据线组D1、D3、D5和D7中的墨滴产生器60,沿着进墨槽1706和供墨槽1708之间的内侧通道布置,并且1712f、1716f、1720f和1724f处的数据线组D2、D4、D6和D8中的墨滴产生器60,布置在打印头冲模1700的一侧1700b和供墨槽1708之间。在一个具体实施例中,1710f、1714f、1718f和1722f处的数据线组D1、D3、D5和D7中的墨滴产生器60,沿着供墨槽1708的一侧1708a的长度布置,并且1712f、1716f、1720f和1724f处的数据线组D2、D4、D6和D8中的墨滴产生器60,沿着供墨槽1708的相对一侧1708b布置。1710f处的数据线组D1中的墨滴产生器60与1712f处的数据线组D2中的墨滴产生器60相对。1714f处的数据线组D3中的墨滴产生器60与1716f处的数据线组D4中的墨滴产生器60相对。1718f处的数据线组D5中的墨滴产生器60与1720f处的数据线组D6中的墨滴产生器60相对,并且1722f处的数据线组D7中的墨滴产生器60与1724f处的数据线组D8中的墨滴产生器60相对。 供墨槽1704和打印头冲模1700的一侧1700a之间的墨滴产生器60在1710a和1710d处的数据线组D1、在1714a和1714d处的数据线组D3、在1718a和1718d处的数据线组D5、在1722a和1722d处的数据线组D7中。在供墨槽1708和打印头冲模1700的另一侧之间的墨滴产生器60,在1712c和1712f处的数据线组D2、在1716c和1716f处的数据线组D4、在1720c和1720f处的数据线组D6和在1724c和1724f处的数据线组D8中。因此,四条数据线208a、208c、208e和208g在供墨槽1704和打印头冲模1700的一侧1700a之间选路,这与选路全部8条数据线208a-208h相反。并且,四条数据线208b、208f和208g在供墨槽1708和打印头冲模1700的另一侧1700b之间选路,这与选路全部8条数据线208b-208h相反。 另外,在供墨槽1704和1706之间的墨滴产生器60在1712a、1712b、1712d和1712e处的数据线组D2、在1716a、1716b、1716d和1716e处的数据线组D4、在1720a、1720b、1720d和1720e处的数据线组D6,以及在1724a、1724b、1724d和1724e处的数据线组D8中。并且,在供墨槽1706和1708之间的墨滴产生器60在1710b、1710c、1710e和1710f处的数据线组D1、在1714b、1714c、1714e和1714f处的数据线组D3、在1718b、1718c、1718e和1718f处的数据线组D5,并且在1722b、1722c、1722e和1722f处的数据线组D7中。因此,四条数据线208b、208d、208f和208h在供墨槽1704和1706之间选路,并且四条数据线208a、208c、208e和208g在供墨槽1706和1708之间选路,这与在供墨槽1704和1706以及在供墨槽1706和1708之间的全部8条数据线208a-208h相反。通过选路四条数据线而不是8条数据线208a-208h,来减小打印头冲模1700的尺寸。 在一个具体实施例中,打印头冲模1700包括600个墨滴产生器60。6个点火组1702a-1702f的每一个包括100个墨滴产生器60。在点火组1702a-1702f的每一个中的6个数据线组包括13个墨滴产生器60,并且每个点火组1702a-1702f中的两个数据线组包括11个墨滴产生器60。在其它具体实施例中,打印头冲模1700可以包括任何合适数量的墨滴产生器60,比如400个墨滴产生器60或多于600个墨滴产生器60。另外,打印头冲模1700可以在每个点火组和数据线组中包括任何合适数量的点火组、数据线组和墨滴产生器60。更进一步的,打印头冲模可以包括更少或更多数量的液体供应源。 图22是说明打印头冲模1700的一个具体实施例的实例设计的另一个方面的示意图。打印头冲模1700包括数据线208a-208h、点火线214a-214f、例如供墨槽1704、1706和1708的供墨源,以及6个点火组1702a-1702f。另外,打印头冲模1700包括地址产生器1800a和1800b,以及两组地址线1806a-1806g和1808a-1808g。地址产生器1800a电连接到地址线1806a-1806g,并且地址产生器1800b电连接到地址线1808a-1808g。地址线1806a-1806g电连接到点火组1702a-1702c的行子组中的预充电点火单元120,并且地址线1808a-1808g电连接到点火组1702d-1702f的行子组中的预充电点火单元120。地址线1806a-1806g和1808a-1808g分别地电连接到前述地址线206a-206g的行子组中的预充电点火单元120。 地址产生器1800a和1800b类似于图13所示的地址产生器1000和1002。因此,地址产生器1800a和1800b的适当的具体实施例可以如图9-12所示来实现。 地址产生器1800a和1800b通过地址线1806a-1806g和1808a-1808g向点火组1702a-1702f提供地址信号~A1、~A2...~A7和~B1、~B2...~B7。地址产生器1800a通过地址线1806a-1806g向点火组1702a-1702c提供地址信号~A1、~A2...~A7。地址地址产生器1800b通过地址线1808a-1808g向点火组1702d-1702f提供地址信号~B1、~B2...~B7。当在选择线212a-212c上提供选择信号SEL1、SEL2和SEL3时,地址产生器1800a将地址信号~A1、~A2...~A7提供到点火组1702a-1702c。当在选择线212d-212f上提供选择信号SEL4、SEL5和SEL6时,地址产生器1800b将地址信号~B1、~B2...~B7提供到点火组1702d-1702f。在经过1702a-1702f的一个循环中,地址产生器1800a将地址信号~A1...~A7提供到1702a-1702c的一半点火组中,并且地址产生器1800b将地址信号~B1、~B2...~B7提供到1702d-1702f的另一半点火组中。在一个具体实施例中,在经过点火组1702a-1702f的一个循环期间,地址产生器1800a和1800b被同步以在地址线1806a-1806g和1808a-1808g上提供相同的地址。在每个经过点火组1702a-1702f的循环后,地址产生器1800a和1800b改变地址信号~A1、~A2...~A7和~B1、~B2...~B7,从而在13个行子组的序列中宣纸下一后续的行子组。 地址产生器1800a和1800b位于打印头冲模1700的两个对角。地址产生器1800a位于打印头冲模侧边1700b和1700c界定的边角。地址产生器1800b位于打印头冲模侧边1700a和1700d界定的边角。 在供墨槽1708和打印头冲模侧边1700b之间选路7条地址线1806a-1806g,并且沿着打印头冲模侧边1700c选路在供墨槽1704和打印头冲模侧边1700a之间。另外,地址线1806a-1806g在供墨槽1704和1706之间以及供墨槽1706和1708之间选路。地址线1806a-1806g沿着供墨槽1704、1706和1708的一半长度选路,从而电连接到点火组1702a-1702c中的预充电点火单元120。地址产生器1800a和1800b的布局可以变化,并且可以通过缩短预充电点火单元120的信号路线的长度,来提高工作频率。 在供墨槽1708和打印头冲模侧边1700b之间选路7条地址线1808a-1808g,并沿着打印头冲模侧边1700d选路到在供墨槽1708和打印头冲模侧边1700b之间。另外,地址线1808a-1808g在供墨槽1704和1706之间,以及供墨槽1706和1708之间选路。地址线1808a-1808g沿着供墨槽1704,1706和1708的另一半长度选路,从而电连接到点火组1702d-1702f中的预充电点火单元120。 数据线208a、208c、208e和208g在打印头冲模侧边1700a和供墨槽1704之间,以及在供墨槽1706和1708之间选路。每条在打印头冲模侧边1700a和供墨槽1704之间选路的数据线208a、208c、208e和208g都电连接到两个点火组1702a和1702d中的预充电点火单元120。每条在供墨槽1706和1708之间选路的数据线208a、208c、208e和208g都电连接到四个点火组1702b、1702c、1702e和1702f中的预充电点火单元120。数据线208a电连接到1710处的数据线组D1中的预充电点火单元120,以提供数据信号~D1。数据线208c电连接到1714处的数据线组D3中的预充电点火单元120,以提供数据信号~D3。数据线208e电连接到1718处的数据线组D5中的预充电点火单元120,以提供数据信号~D5,并且数据线208g电连接到1722处的数据线组D7中的预充电点火单元120,以提供数据信号~D7。数据线208a、208c、208e和208g接收数据信号~D1、~D3、~D5和~D7,并将数据信号~D1、~D3、~D5和~D7提供到每个点火组1702a-1702f中的预充电点火单元120。在一个具体实施例中,数据线208a、208c、208e和208g不在供墨槽1704、1706和1708整个长度中选路。相反,每条数据线208a、208c、208e和208g从一个焊盘选路到它的各个数据线组,该粘合焊盘沿着最接近点火组1702a-1702f的数据线组中的打印头冲模1700设置。数据线208a和208c电连接到沿着打印头冲模1700侧边1700c的焊盘,并且数据线208e和208f电连接到沿着打印头冲模1700侧边1700d的焊盘。 数据线208b、208d、208f和208h在打印头冲模侧边1700a和供墨槽1704之间选路,并在供墨槽1706和打印头冲模侧边1700b之间选路。每条在供墨槽1704和1706之间选路的数据线208b、208d、208f和208h都电连接到四个点火组1702a、1702b、1702d和1702e中的预充电点火单元120。每条在供墨槽1708和打印头冲模侧边1700b之间选路的数据线208b、208d、208f和208h都电连接到两个点火组1702c和1702f中的预充电点火单元120。数据线208b电连接到1712处的数据线组D2中的预充电点火单元120,以提供数据信号~D2。数据线208d电连接到1716处的数据线组D4中的预充电点火单元120,以提供数据信号~D4。数据线208f电连接到1720处的数据线组D5中的预充电点火单元120,以提供数据信号~D6,并且数据线208h电连接到1724处的数据线组D7中的预充电点火单元120,以提供数据信号~D8。数据线208b、208d、208f和208h接收数据信号~D1、~D3、~D5和~D8,并将数据信号~D1、~D3、~D5和~D8提供到每个点火组1702a-1702f中的预充电点火单元120。在一个具体实施例中,数据线208b、208d、208f和208h不在供墨槽1704、1706和1708的整个长度选路。相反,每条数据线208b、208d、208f和208h从一个焊盘选路到它的各个数据线组,该焊盘沿着最接近点火组1702a-1702f的数据线组中的打印头冲模1700的侧边设置。数据线208b和208d电连接到沿着打印头冲模1700侧边1700c的焊盘,并且数据线208e和208h电连接到沿着打印头冲模1700侧边1700d的焊盘。 导通的点火线214a-214f分别沿着供墨槽1704、1706和1708设置,以将能量信号FIRE1、FIRE2...FIRE6提供到点火组1702a-1702f。点火线214a-214f将能量提供到导通的预充电点火单元120的点火电阻器52,从而加热和喷出墨滴产生器60的墨水。为了从点火组1702a-1702f的每个墨滴产生器60均匀地喷出墨水,对应的点火线214a-214f被配置成均匀地向点火组1702a-1702f的每个点火组提供能量。 能量变化是经过点火组1702a-1702f之一中的任何两个点火电阻器52所耗散的功率的最大百分比差值。当仅有单个点火电阻器52通电时,在点火组1702a-1702f的第一点火电阻器52中得到最高功率,该点火电阻器52最靠近接收能量信号FIRE1、FIRE2...FIRE6的焊盘。当行子组中的全部点火电阻器52通电时,点火组1702a-1702f中最后的点火电阻器52得到最低功率。布局对于能量变化的影响因素包括点火线宽度、地线宽度、金属厚度以及点火线214a-214f的长度。在尚未分配序号、标题为“Fluid Ejection Device”的同时待审专利申请中描述和公开了基线的布局和尺寸定位的一个具体实施例。该同时待审专利申请的申请日与当前申请相同,并转让给本申请的受让人,其内容合并引用与此,以作为参考。优选的是10%到15%的能量变化,并且20%的能量变化可认为是合适的。 点火组1702a-1702f和点火线214a-214f沿着供墨槽1704、1706和1708布置,从而实现合适的能量变化。点火组1702a-1702f中的预充电点火单元120沿着供墨槽1704、1706或1708的相对侧设置。点火组1702a-1702f的全部预充电点火单元120没有沿着供墨槽1704、1706或1708的一侧边的整个长度设置,作为替代,点火组1702a-1702f中的预充电点火单元120沿着供墨槽1704、1706或1708的相对侧的一半长度设置。与供墨槽1704、1706和1708的整个长度相比,相应的点火线214a-214f的长度从供墨槽1704、1706和1708一端减少到供墨槽1704、1706或1708的一半长度。每条点火线214a-214f布置在供墨槽1704、1706或1708的两侧,并且电连接到供墨槽1704、1706或1708的一端,从而形成大体上成U形的点火线214a-214f。大体上成U形的点火线214a-214f实际上是延伸到供墨槽1704、1706和1708的点火线整个长度的一半长度。下表比较大体上成U形的点火线214a-214f与线性点火线的能量变化,线性点火线即延伸到供墨槽1704、1706和1708的一侧的整个长度的点火线。 行点火组形状点火线宽度 地线宽 度 冲模宽 度 金属厚度 能量变化 %A大体成U型250um 115um 4200um 360nm 11%B线性250um 115um 4200um 360nm 52%C线性250um 115 um 4200um 1440nm(4倍厚 度) 36%D线性750um 615um 7200um 360nm 11%E线性515um 380um 5790um 1440nm(4倍厚 度) 11%如该表所示,使用带有相同点火线、基线和模具宽度的线性点火组会导致较大的和不合适的能量变化(11%verses52%)。通过增加到4倍金属厚度减少点火线阻抗,从而略微地改进能量变化差值。然而,这种能量变化仍不适宜(11%verses36%)。另一种可选方案中,在线性点火组布置中要将能量变化减少到11%,需要增加模具宽度。 大体上成U形的点火线214a-214f电连接到沿着供墨槽1704、1706和1708的相对侧的预充电点火单元120。点火线214a电连接到1702a处的FG1的每个预充电点火单元120。点火线214a沿着供墨槽1704的相对侧的每一侧布置,并且从供墨槽1704的一端按照y方向延伸到供墨槽1704的一半长度。点火线214a将能量信号FIRE1和能量脉冲提供给1702a处的FG1。 点火线214b电连接到1702b处的FG2中的每个预充电点火单元120。点火线214b沿着供墨槽1706的相对侧的每一侧布置,并且从供墨槽1706的一端按照y方向延伸到供墨槽1706的一半长度。点火线214b提供能量信号FIRE2和能量脉冲到1702b处的FG2。 点火线214c电连接到1702c处的FG3中的每个预充电点火单元120。点火线214c沿着供墨槽1708的相对侧的每一侧布置,并且从供墨槽1708的一端按照y方向延伸到供墨槽1708的一半长度。点火线214c提供能量信号FIRE3和能量脉冲到1702c处的FG3。 点火线214d电连接到1702d处的FG4中的每个预充电点火单元120。点火线214d沿着供墨槽1704的相对侧的每一侧布置,并且从供墨槽1704的一端按照y方向延伸到供墨槽1704的一半长度。点火线214d提供能量信号FIRE4和能量脉冲到1702d处的FG4。 点火线214e电连接到1702e处的FG5中的每个预充电点火单元120。点火线214e沿着供墨槽1706的相对侧的每一侧布置,并且从供墨槽1706的一端按照y方向延伸到供墨槽1706的一半长度。点火线214e提供能量信号FIRE5和能量脉冲到1702e处的FG5。 点火线214f电连接到1702f处的FG6中的每个预充电点火单元120。点火线214f沿着供墨槽1708的相对侧的每一侧布置,并且从供墨槽1708的一端按照y方向延伸到供墨槽1708的一半长度。点火线214f提供能量信号FIRE6和能量脉冲到1702f处的FG6。 图23是说明打印头冲模1700的一个具体实施例的截面1820的平面图的示意图。截面1820位于供墨槽1704和1706之间的通道,并且相邻于1720a和1720b处的数据线组D6。截面1820包括地址线1806a-1806g、点火线214a和214b,以及数据线208b、208d、208f和208h。另外、截面1820包括交叉连接线1822a-1822c。地址线1806a-1806g、数据线208b、208d、208f和208h、以及点火线214a和214b相互平行,并且与供墨槽1704和1706的长度方向平行。交叉连接线1822a-1822c垂直于供墨槽1704和1706。 地址线1806a-1806g和数据线208b、208d、208f和208h是导线,形成第一层金属的一部分。点火线214a和214b是导线,形成第二层金属的一部分,并且交叉连接线1822a-1822c形成多晶硅的一部分。多晶硅层通过第一绝缘层与第一层金属绝缘。第一层金属通过第二绝缘层与第二层金属分离并绝缘。 地址线1806a-1806g布置在点火线214a和214b之间,使得地址线1806a-1806g和点火线214a和214b不重叠。与重叠的点火线214a和214b和地址线1806a-1806g之间的串扰相比,使沿着供墨槽1704和1706使基本上全部地址线1806a-1806g和点火线214a和214b的重叠最小化,以减少点火线214a和214b和地址线1806a-1806g之间的串扰。数据线208b、208d、208f和208h以及点火线214a和214b沿着供墨槽1704和1706的长度方向重叠。 地址线1806a-1806g从板上的地址产生器1800a接收地址信号~A1、~A2...~A7,并且数据线208b、208d、208f和208h接收外部的电路的数据信号~D2、~D4、~D6和~D8。交叉连接线1822a-1822c通过多晶硅层和第一层金属,电连接到所选的数据线208b、208d、208f和208h或所选的地址线1806a-1806g。交叉连接线1822a-1822c接收和穿过供墨槽1704和1706之间通道的信号,并将这些信号提供给各个预充电点火单元120。点火线214a和214b从外部电路接收点火信号FIRE1和FIRE2。 截面1820的选路方案在供墨槽1704和1706之间、供墨槽1706和1708之间、供墨槽1704和打印头冲模1700的一侧1700a之间、以及供墨槽1708和打印头冲模1700的另一侧1700b之间使用。 图24是说明打印头冲模1900的一个具体实施例的实例布局的示意图。打印头冲模1900包括的元件与打印头冲模1700的元件类似,元件数量也类似。打印头冲模1900包括数据线208a-208h、点火线214a-214f、供墨槽1704、1706和1708、以及如1702a-1702f的6个点火组。另外,打印头冲模1900包括地址产生器1902、地址锁存1904、地址线1908a-1908g和锁存的地址线1910a-1910g。地址产生器1902电连接到地址线1908a-1908g,地址锁存1904电连接到锁存的地址线1910a-1910g。另外,地址产生器1902通过互连线1906a-1906g电连接到地址锁存1904。 地址产生器1902的一个具体实施例类似于如图15所示的地址产生器1200。因此,地址产生器1902的一个合适的具体实施例可用如图9-12所示来实现。 地址锁存1904是地址产生器的一个具体实施例,可以用来代替打印头冲模1900上的第二地址发生器。当地址产生器1902基于全部外部信号产生地址(例如CSYNC和定时信号T1-T6)时,根据接收到的由地址产生器1902提供的内部地址和外部定时信号,地址锁存1904产生地址。地址锁存1904的合适的具体实施例类似于如图15所示的锁存电路1202,其包括如图16和17所示的7个比如锁存寄存器1220的锁存寄存器。 地址线1908a-1908g电连接到点火组1702a、1702b、及点火组1702c的第一部分中的预充电点火单元120。锁存的地址线1910a-1910g电连接到点火组1702a、1702b、及点火组1702c的第二部分中的预充电点火单元120。点火组1702c的第一部分布置在供墨槽1706和供墨槽1708之间,并包括1710c、1714c、1718c和1722c处的数据线组D1、D3、D5和D7。点火组1702c的第二部分布置在供墨槽1708和打印头冲模侧边1900b之间,并包括1712c、1716c、1720c和1724c处的数据线组D2、D4、D6和D8。点火组1702c的第一部分包括点火组1702c的一半预充电点火单元120,点火组1702c的第二部分包括点火组1702c的另一半预充电点火单元120。地址线1908a-1908g和锁存地址线1919a-1910g分别电连接到上述用于地址线206a-206g的行子组。也就是说,当地址线206a连接到行子组时,地址线1908a/1910a电连接到行子组,当地址线206b连接到行子组时,地址线1908b/1910b电连接到行子组,依此类推,直到当地址线206g连接到行子组时,地址线1908g/1910g电连接到行子组。 地址产生器1902提供地址信号~A1、~A2...~A7给地址锁存1904和点火组1702a、1702b以及点火组1702c的第一部分。地址产生器1902通过互连线1906a-1906g将地址信号~A1、~A2...~A7提供给地址锁存1904,以及通过地址线1908a-1908g提供给点火组1702a、1702b以及点火组1702c的第一部分。在互连线1906a和地址线1908a上提供地址信号~A1,在互连线1906b和地址线1908b上提供地址信号A2,依此类推,直到在互连线1906g和地址线1908g上提供地址信号~A7。 地址锁存1904接收信号~A1、~A2...~A7,并且将锁存的地址信号~B1、~B2...~B7提供给点火组1702d-1702f以及点火组1702c的第二部分。地址锁存1904在互连线1906a-1906g上接收信号~A1、~A2...~A7。地址锁存1904锁存接收到的信号~A1、~A2...~A7,它提供锁存的信号~B1、~B2...~B7。通过锁存的地址线1910a-1910g,锁存的地址信号~B1、~B2...~B7被提供给点火组1702d-1702f和点火组1702c的第二部分。 地址锁存1904接收互连线1906a上的地址信号~A1,并锁存地址信号~A1以在锁存地址线1910a上提供锁存器地址信号~B1。地址锁存1904接收互连线1906b的地址信号~A2,并锁存地址信号~A2以在锁存地址线1910b上提供锁存地址信号~B2,依此类推,直到地址锁存1904接收互连线1906g的地址信号~A7,并锁存地址信号~A7以在锁存地址线1910g上提供锁存地址信号~B7。 地址产生器1902在三个时间段提供有效的地址信号~A1、~A2...~A7。在三个时间段期间,选择信号SEL1、SEL2以及SEL3分别地被提供给点火组1702a-1702c,每个时间段提供一个选择信号SEL1、SEL2或SEL3。当向点火组1702a提供选择信号SEL1时,地址锁存1904锁存有效地址信号~A1、~A2...~A7。当向点火组1702b提供选择信号SEL1时,地址锁存1904的输出处于有效的锁存地址信号~B1、~B2...~B7。当把选择信号SEL3提供给点火组1702c时,把有效的地址信号~A1、~A2...~A7和有效的锁存地址信号~B1、~B2...~B7提供给点火组1702c。地址锁存1904在四个时间段提供有效的锁存地址信号~B1、~B2...~B7。在四个时间段期间,选择信号SEL3、SEL4、SEL5和SEL6分别地被提供给点火组1702a-1702f,每个时间段提供一个SEL3、SEL4、SEL5或SEL6选择信号。 地址产生器1902在包括选择信号SEL3的时间段后,改变地址信号~A1、~A2...~A7,以寻址13个行子组的下一个行子组。新的地址信号~A1、~A2...~A7在开始下一个循环和包括选择信号SEL1的时间段之前有效。地址锁存1904在包括选择信号SEL6的时间段之后,锁存新的地址信号~A1、~A2...~A7。在包括选择信号SEL3的时间段之前的下一个循环期间,锁存地址信号~B1、~B2...~B7有效。 在一个经过点火组1702a-1702f的循环中,当把选择信号SEL1、SEL2以及SEL3提供给点火组1702a、1702b以及1702c时,地址产生器1902提供地址信号~A1、~A2...~A7到点火组1702a、1702b以及1702c的第一部分。同样,当把选择信号SEL3、SEL4、SEL5以及SEL6提供给点火组1702c-1702f时,把锁存地址信号~B1、~B2...~B7提供给点火组1702c的第二部分以及点火组1702d-1702f。在一个经过点火组1702a-1702f的循环中,地址产生器1902和地址锁存1904在地址线1908a-1908g和锁存地址线1910a-1910g上提供相同的地址。 在由打印头冲模侧边1900b和打印头冲模侧边1900c界定的边角中,地址产生器1902与地址锁存1904相邻布置。由于地址产生器1902和地址锁存1904彼此相邻,与通过较长的互连线1906a-1906g传递地址信号~A1、~A2...~A7相比,从地址产生器1902传递到地址锁存1904的地址信号~A1、~A2...~A7的可靠性得到提高。 在其它具体实施例中,地址产生器1902和地址锁存1904可以布置在打印头冲模1900的不同的位置。在一个具体实施例中,地址产生器1902可以布置在由打印头冲模侧边1900b和打印头冲模侧边1900c界定的打印头冲模1900的边角中,并且地址锁存1904可以布置在沿着打印头冲模侧边1900b的点火组1702c和1702f之间。在该具体实施例中,互连线1906a-1906g用来提供地址信号~A1、~A2...~A7到点火组1702c的第二部分,点火组1702c处于供墨槽1708和打印头冲模侧边1900b之间。地址产生器1902提供地址信号~A1、~A2...~A7到三个点火组1702a-1702c,并且地址锁存1904提供锁存地址信号~B1、~B2...~B7到三个点火组1702d-1702f。 在示例的具体实施例中,7条地址线1908a-1908g沿着打印头冲模侧边1900c选路到供墨槽1704和打印头冲模侧边1900a之间。另外,地址线1908a-1908g在供墨槽1704和1706之间并且在供墨槽1706和1708之间选路。地址线1908a-1908g沿着供墨槽1704、1706和1708的一半长度选路,从而电路连接到点火组1702a、1702b以及点火组1702c的第一部分中的预充电点火单元120。 7条锁存地址线1910a-1910g沿着供墨槽1708的整个长度在供墨槽1708和打印头冲模侧边1900b之间选路。锁存地址线1910a-1910g同样沿着打印头冲模侧边1900d选路到供墨槽1704和打印头冲模侧边1900a之间。另外,地址线1910a-1910g在供墨槽1704和1706之间并且在供墨槽1706和1708之间选路。地址线1910a-1910g沿着供墨槽1708的整个长度在供墨槽1708和打印头冲模侧边1900b之间选路,还沿着供墨槽1704、1706和1708的另一半长度选路,从而电路连接点火组1702c的第二部分和点火组1702d、1702e和1702f中的预充电点火单元120。 数据线208a、208c、208e和208g在打印头冲模侧边1900a和供墨槽1704之间并且且在供墨槽1706和1708之间选路。每条在打印头冲模侧边1900a和供墨槽1704之间选路的数据线208a、208c、208e和208g都电连接到两个点火组1702a和1702d中的预充电点火单元120。每条在供墨槽1706和1708之间选路的数据线208a、208c、208e和208g都电连接到四个点火组1702b和1702f中的预充电点火单元120。数据线208a电连接到1710处的数据线组D1中的预充电点火单元120,以提供数据信号~D1。数据线208c电连接到1714处的数据线组D3中的预充电点火单元120,以提供数据信号~D3。数据线208e电连接到1718处的数据线组D5中的预充电点火单元120,以提供数据信号~D5,并且数据线208g电连接到1722处的数据线组D7中的预充电点火单元120,以提供数据信号~D7。数据线208a、208c、208e和208g接收数据信号~D1、~D3、~D5和~D7,并提供数据信号~D1、~D3、~D5和~D7到每个点火组1702a-1702f中的预充电点火单元120。在一个具体实施例中,数据线208a、208c、208e和208g不以供墨槽1704、1706和1708的整个长度选路。相反,每条数据线208a、208c、208e和208g从沿着打印头冲模1900最靠近点火组1702a-1702f中的数据线组的一侧所设置的焊盘选路到其各自的数据线组。数据线208a和208c沿着打印头冲模1900的一侧1900c电连接到焊盘,并且数据线208e和208h沿着打印头冲模1900的一侧1900d电连接到焊盘。 数据线208b、208d、208f和208h在供墨槽1704、1706之间并且在供墨槽1708和打印头冲模侧边1900b之间选路。每个在供墨槽1708和打印头冲模侧边1900b之间选路的数据线208b、208d、208f和208h都电连接到两个点火组1702a和1702f中的预充电点火单元120。数据线208b电连接到1712处的数据线组D2中的预充电点火单元120,以提供数据信号~D2。数据线208d电连接到1716处的数据线组D4中的预充电点火单元120,以提供数据信号~D4。数据线208f电连接到1720处的数据线组D6中的预充电点火单元120,以提供数据信号~D6,并且数据线208h电连接到1724处的数据线组D8中的预充电点火单元120,以提供数据信号~D8。数据线208b、208d、208f和208h接收数据信号~D2、~D4、~D6和~D8,并提供数据信号~D2、~D4、~D6和~D8到每个点火组1702a-1702f中的预充电点火单元120。在一个具体实施例中,数据线208b、208d、208f和208h不以供墨槽1704、1706和1708的整个长度选路。相反,每条数据线208b、208d、208f和208h从沿着打印头冲模1900最靠近点火组1702a-1702f中的数据线组的一侧所设置的焊盘选路到其各自的数据线组。数据线208b和208d电连接到沿着打印头冲模1900侧边1900c的焊盘,以及数据线208f和208h电连接到沿着打印头冲模1900侧边1900d的焊盘。 传导的点火线214a-214f分别沿着供墨槽1704、1706和1708布置,以提供能量信号FIRE1、FIRE2...FIRE6到点火组1702a-1702f。点火线214a-214f提供能量到导通的预充电点火单元120中的点火电阻器52,以加热和喷出墨滴产生器60的墨水。为了从点火组1702a-1702f的每个墨滴产生器60均匀地喷出墨水,对应的点火线214a-214f被配置成均匀地向每个点火组1702a-1702f提供能量。 能量变化是通过点火组1702a-1702f之一中的任何两个点火电阻器52所耗散的功率的最大百分比差值。当仅有单个点火电阻器52通电时,在点火组1702a-1702f的第一点火电阻器52中得到最高功率,其中该点火电阻器52是最靠近接收能量信号FIRE1、FIRE2...FIRE6的焊盘的点火电阻器52。当行子组的全部点火电阻器52通电时,点火组1702a-1702f中最后的点火电阻器52得到最低功率。布局对于能量变化的影响因素包括点火线宽度、地线宽度、金属厚度以及点火线214a-214f的长度。优选的是10%到15%的能量变化,并且20%的能量变化可认为是合适的能量变化。 点火组1702a-1702f和点火线214a-214f沿着供墨槽1704、1706和1708布置,从而实现合适的能量变化。点火组1702a-1702f中的预充电点火单元120沿着供墨槽1704、1706或1708的相对侧设置。点火组1702a-1702f中的全部预充电点火单元120没有沿着供墨槽1704、1706或1708的一侧的整个长度设置,相反,点火组1702a-1702f中的预充电点火单元120沿着供墨槽1704、1706或1708的相对侧的一半长度设置。与供墨槽1704、1706和1708的整个长度相比,相应的点火线214a-214f的长度从供墨槽1704、1706和1708一端减少到供墨槽1704、1706或1708的一半长度。每条点火线214a-214f布置在供墨槽1704、1706或1708的两侧,并且电连接到供墨槽1704、1706或1708的一端,从而形成一个大体上成U形的点火线214a-214f。大体上成U形的点火线214a-214f实际上是延伸到供墨槽1704、1706和1708的点火线整个长度的一半。下表比较大体上成U形的点火线214a-214f与线性点火线的能量变化,线性点火线即延伸到供墨槽1704、1706和1708的一侧的整个长度的点火线。 行点火组形状点火线宽度 地线宽 度 冲模宽 度 金属厚度 能量变化 %A大体U型250um 115um 4200um 360nm 11%B线性250um 115um 4200um 360nm 52%C线性250um 115um 4200um 1440nm(4倍厚 度) 36%D线性750um 615um ~ 7200um 360nm 11%E线性515um 380um ~ 5790um 1440nm(4倍厚 度) 11%如该表所示,使用带有相同点火线、基线和模具宽度的线性点火组会导致较大的和不合适的能量变化(11%verses52%)。通过增加到4倍金属厚度减少点火线阻抗,从而略微地改进能量变化差值。然而,这种能量变化仍不适宜(11%verses36%)。可替换地,在线性点火组选路中要将能量变化减少到11%,需要增加模具宽度。 大体上成U形的点火线214a-214f电连接到沿着供墨槽1704、1706和1708的相对侧的每一侧布置的预充电点火单元120。点火线214a电连接到1702a处的FG1中的每个预充电点火单元120。点火线214a沿着供墨槽1704的相对侧的每一侧布置,并且从供墨槽1704的一端按照y方向延伸到供墨槽1704的一半长度。点火线214a提供能量信号FIRE1和能量脉冲到1702a处的FG1。 点火线214b电连接到1702b处的FG1中的每个预充电点火单元120。点火线214b沿着供墨槽1706的相对侧的每一侧布置,并且从供墨槽1706的一端按照y方向延伸到供墨槽1706的一半长度。点火线214b提供能量信号FIRE2和能量脉冲到1702b处的FG2。 点火线214c电连接到1702c处的FG3中的每个预充电点火单元120。点火线214c沿着供墨槽1708的相对侧的每一侧布置,并且从供墨槽1708的一端按照y方向延伸到供墨槽1708的一半长度。点火线214c提供能量信号FIRE3和能量脉冲到1702c处的FG3。 点火线214d电连接到1702d处的FG4中的每个预充电点火单元120。点火线214d沿着供墨槽1704的相对侧的每一侧布置,并且从供墨槽1704的一端按照y方向延伸到供墨槽1704的一半长度。点火线214d提供能量信号FIRE4和能量脉冲到1702d处的FG4。 点火线214e电连接到1702e处的FG5中的每个预充电点火单元120。点火线214e沿着供墨槽1706的相对侧的每一侧布置,并且从供墨槽1706的一端按照y方向延伸到供墨槽1706的一半长度。点火线214e提供能量信号FIRE5和能量脉冲到1702e处的FG5。 点火线214f电连接到1702f处的FG6中的每个预充电点火单元120。点火线214f沿着供墨槽1708的相对侧的每一侧布置,并且从供墨槽1708的一端按照y方向延伸到供墨槽1708的一半长度。点火线214f提供能量信号FIRE6和能量脉冲到1702f处的FG6。 虽然图21到24所述的布局示出了打印头冲模上的多个地址产生器和/或一个地址锁存器,但地址信号也可以来自于外部信源。在外部信源提供地址信号的情况下,打印头冲模上不需有地址产生器和/或地址锁存器。在这种情况下,图21到24所示的布局可以完全相同。 参考图25A和25B,图示地表明了扰性电路2002的接触区2000可用于连接到打印头冲模40的外部电路。借助于导通通路2004,接触区2000电连接到触点2006,触点2006提供到打印头冲模的连接。 使能线接触区E0-E6被配置成接收来自外部信源的使能信号,并且提供使能信号,例如选择信号SEL1-SEL6、预先充电信号PRE1-PRE6和锁存信号。但是,值得注意的是,根据图4-8和11-24所描述的线与接触区E0-E6之间的关系不必一一对应,比如信号PRE1不必提供到接触区E0。所需要的只是将适当的选择线和预先充电线连接到适当的使能接触区。 数据线接触区D1-D8被配置成接收多个信号,这些信号提供代表要打印的图像的打印数据,并分别地提供数据信号D1-D8到例如数据线组D1-D8的单个数据线组。点火线接触区F1-F6被配置成接收能量脉冲,并沿着点火线FIRE1-FIRE6将能量信号提供给适当的点火组,例如,点火组202a-202f和1702a-1702f。地线接触区GD1-GD6被配置成提供信号返回通路,信号通过来自如点火组202a-202f或点火组1702a-1702f的点火组的电阻器进行传导。控制信号接触区C被配置成接收控制打印头冲模内部操作的信号,例如CSYNC信号。 感温电阻器接触区TSR允许打印机连接到喷墨盒,基于对电阻器的测量来确定打印头冲模的温度。感温电阻器返回接触区TSR-RT为感温电阻器接触区TSR处提供的信号提供信号返回通路。利用感温电阻器的方法在共有的专利申请序号中描述。 识别位接触区ID连接到打印头冲模上的识别电路,允许打印机确定打印头冲模和打印墨盒的操作参数。 在一个具体实施例中,接触区2000和预充电点火单元120之间的电通路包括导电通路2004、触点2006和适当的信号线,例如数据线208a-208h、预充电线210a-210f、选择线212a-212f或地线。值得注意的是,预充电线210a-210f和选择线212a-212f可以连接到使能线接触区E0-E6。 值得注意的是,在某些具体实施例中,所述的高电压电平处于或大于大约4.0伏,而所述低电压电平处于或小于大约1.0伏。在其它具体实施例中,可以使用不同于前述电平的电平。 尽管本文说明和描述了指定的具体实施例,本领域技术人员能够理解,可以对所述指定具体实施例进行各种更改和/或等效替换,而不脱离本发明的范围。本申请的目的在于覆盖所述指定具体实施例的各种改进或变化。因此,本发明仅受权利要求的范围及其等效范围限定。
《液体喷射装置.pdf》由会员分享,可在线阅读,更多相关《液体喷射装置.pdf(132页珍藏版)》请在专利查询网上搜索。
一种流体喷射装置,包括点火单元(70,120)、配置成接收脉冲序列的信号线(106,212)、以及一个地址产生器(1000,1200),该地址产生器被配置成接收来自脉冲序列的脉冲,并且响应于所接收的脉冲而产生地址信号集,其中地址信号集适于为激活而使能点火单元(70,120)。 。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1