CN200610161869.X
2006.12.05
CN1979618A
2007.06.13
授权
有权
专利权的转移IPC(主分类):G09G 3/32变更事项:专利权人变更前权利人:三星电子株式会社变更后权利人:三星显示有限公司变更事项:地址变更前权利人:韩国京畿道变更后权利人:韩国京畿道登记生效日:20130107|||授权|||实质审查的生效|||公开
G09G3/32(2006.01); G09G3/30(2006.01); G09G3/20(2006.01); H05B33/08(2006.01); H05B33/14(2006.01); H05B37/02(2006.01); H01L27/32(2006.01); H01L51/50(2006.01)
G09G3/32
三星电子株式会社;
成始德; 金南德; 朴庆泰; 尹宁秀
韩国京畿道
2005.12.06 KR 10-2005-0118227
北京康信知识产权代理有限责任公司
李伟
一种显示装置,具有:发光像素、向发光像素提供电流的驱动晶体管、连接至驱动晶体管并且选择性地传输数据电压的开关晶体管、以及根据电压信号断开驱动晶体管的第一电容器。由于提供了调整驱动晶体管控制端子的电压的电容器,从而进行了脉冲驱动。
1. 一种具有多个发光像素的显示装置,包括:驱动晶体管,其连接至驱动电压,并且向所述像素提供电流;开关晶体管,其连接至所述驱动晶体管,并且选择性地传输数据电压;以及第一电容器,其根据电压信号断开所述驱动晶体管。2. 根据权利要求1所述的显示装置,其中,每个所述像素还包括括第二电容器,所述第二电容器连接在所述驱动电压与所述驱动晶体管的控制端子之间。3. 根据权利要求2所述的显示装置,其中,所述第一电容器连接至所述驱动晶体管的所述控制端子,以便根据所述电压信号中的变化通过与所述第二电容器耦合来确定所述驱动晶体管的所述控制端子的电压。4. 根据权利要求1所述的显示装置,其中,所述电压信号具有第一电压电平和低于所述第一电压电平的第二电压电平。5. 根据权利要求4所述的显示装置,其中,当所述电压信号为所述第二电压电平时,所述驱动晶体管断开。6. 根据权利要求5所述的显示装置,其中,所述电压信号在垂直同步信号的空白期内具有所述第二电压电平。7. 根据权利要求5所述的显示装置,其中,所述像素被布置成矩阵形,并且所述电压信号根据像素行依次变为所述第二电压电平。8. 一种驱动显示装置的方法,所述显示装置包括多个像素,每个所述像素具有发光装置及向所述发光装置提供电流的驱动晶体管,所述方法包括:向所述驱动晶体管施加数据信号以使所述发光装置发光;以及通过连接至电压信号的电容器向所述驱动晶体管施加反偏压。9. 根据权利要求8所述的方法,其中,所述电压信号可替换地具有第一电压电平和低于所述第一电压电平的第二电压电平。10. 根据权利要求9所述的方法,其中,当所述电压信号为所述第 二电压电平时,所述电容器向所述驱动晶体管施加所述反偏压。11. 根据权利要求10所述的方法,其中,所述反偏压的施加是在垂直同步信号的空白期内进行的。12. 一种显示装置,包括:基板;扫描信号线,形成于所述基板上;电压信号线,形成于所述基板上,并与所述扫描信号线隔开;绝缘层,形成于所述扫描信号线和所述电压信号线上;数据线,形成于所述绝缘层上;驱动电压线,形成在所述绝缘层上,并与所述数据线隔开;开关晶体管,其相应地连接至所述扫描信号线和所述数据线;驱动晶体管,其相应地连接至所述开关晶体管和所述驱动电压线;像素电极,其相应地连接至所述驱动晶体管;以及导体,其相应地电连接至所述驱动晶体管,并与所述电压信号线交叠。13. 根据权利要求12所述的显示装置,其中,所述电压信号线布置成与所述扫描信号线平行,以及所述驱动电压线布置成与所述数据线平行。14. 根据权利要求13所述的显示装置,其中,每个所述驱动晶体管包括:栅电极,其电连接至所述导体中相应的一个;半导体,形成于所述绝缘层上,并且定位在所述栅电极上;源电极,形成于所述半导体上,并且连接至所述驱动电压线中相应的一条;以及漏电极,面向所述源电极,并且连接至所述像素电极中相应的一个。15. 根据权利要求14所述的显示装置,其中,所述电压信号线定位在与所述栅电极相同的层上,并且由与所述栅电极相同的材料形成。16. 根据权利要求15所述的显示装置,其中,所述导体定位在与所述源电极相同的层上,并且由与所述源电极相同的材料形成。17. 一种具有在每帧期间被扫描的多个有机发光像素的显示装置,包括:驱动晶体管,用于在一帧期间对应于数据电压向所述像素提供照明电流;发光电压源,所述电压源在所述数据电压出现时呈现第一发光电压,并在其后呈现第二电压;电容器,连接在所述驱动晶体管与所述发光电压源之间,用于对应于所述数据电压与所述第一发光电压之间的差值来积累电荷,当所述第二电压出现以在帧之间提供空白间隔时,所述电容器的充电断开所述晶体管。18. 一种具有多个发光像素的显示装置,包括:驱动晶体管,用于向所述像素提供电流;开关晶体管,连接至所述驱动晶体管,用于选择性地传输数据电压以接通所述驱动晶体管;存储电容器,连接至所述驱动晶体管,用于储存所述数据电压;标准电容器,连接至所述驱动晶体管,用于在所述空白间隔期间断开所述驱动晶体管,由此,所述存储电容器在所述空白间隔结束时接通所述驱动晶体管。
显示装置及其驱动方法 相关申请交叉参考 本申请要求于2005年12月6日向韩国知识产权局提交的韩国专利申请第10-2005-0118227号的优先权和权益,其全部内容结合于此供参考。 技术领域 本发明涉及一种显示装置及其驱动方法。 背景技术 近年来,重量轻、厚度薄的个人电脑及电视已引发了对重量轻、厚度薄的显示装置的需求,使得平板显示器正在取代阴极射线管。平板显示器包括液晶显示器(LCD)、场致发射显示器(FED)、有机发光二极管(OLED)显示器、等离子显示平板(PDP)装置等。 通常,有源矩阵型平板显示器具有通过控制像素的发光来显示图像的像素矩阵。有机发光二极管(OLED)显示器的像素使用荧光有机材料,其具有低能耗、宽视角、和适于显示动态画面的快速响应速度。根据有源层的种类,驱动像素的薄膜晶体管分为多晶硅薄膜晶体管、非晶硅晶体管等。使用多晶硅薄膜晶体管的有机发光二极管(OLED)显示器被广泛使用,但是其制造工艺复杂、成本高而且不能获得大屏幕。另一方面,使用具有非晶硅薄膜晶体管的有机发光二极管(OLED)显示器可获得大屏幕(其中非晶硅薄膜晶体管具有相对简单的制造工艺),但遇到了偏压应力稳定性(biasstress stability)的问题,即,由于使用了直流控制电压而随着时间减小了输出电流。另外,由于有机发光二极管(OLED)趋向于保留图像,动态画面的显示可导致物体的边缘模糊不清。为了防止这种模糊,已建议在每帧中插入黑图像并维持预定时间。然而,当在一帧中插入黑图像并维持预定时间时,亮度降低。此外,当为了增加帧频率而使用双倍数据速率(DDR)存储器时,成本增加了。另外,当在像素中设置用于施加黑电压的单独的晶体管时,口径比(aperture ratio)减小。 发明内容 本发明致力于提供一种有机发光二极管(OLED)显示器,其在进行脉冲驱动以防止模糊现象的同时具有确保亮度和孔径比的优点。本发明的例示性实施例提供了一种的显示装置,其具有:发光像素;向发光像素供应电流使其发光的驱动晶体管;连接至驱动晶体管并选择性地向驱动晶体管的控制电极传输数据电压的开关晶体管;以及连接至驱动晶体管控制电极的第一电容器,该控制电极根据垂直同步信号的空白期间所提供的电压信号来关闭驱动晶体管。 本发明提供一种显示装置,包括:基板;形成于基板上的扫描信号线;形成于基板上且与扫描信号线隔开的电压信号线;形成于扫描信号线和电压信号线上的绝缘层;形成于绝缘层上的数据线;形成于绝缘层上且与数据线隔开的驱动电压线;相应地连接至扫描信号线和数据线的开关晶体管;相应地连接至开关晶体管和驱动电压线的驱动晶体管;相应地连接至驱动晶体管的像素电极;以及相应地电连接至驱动晶体管并与电压信号线交叠的导体。电压信号线可以布置成与该扫描信号线平行,并且驱动电压线可以布置成与该数据线平行。 每个驱动晶体管可以包括:电连接至导体中的相应的一个的栅电极;形成于绝缘层上并定位在栅电极上的半导体;形成于半导体上且连接至驱动电压线中相应的一条的源电极;面对源电极且连接至像素电极中相应的一个的漏电极。 电压信号线可置于与栅电极相同的层上,并且可由与栅电极相同的材料形成。导体可置于与源电极相同的层上,并且可由与源电极相同的材料形成。 附图说明 通过阅读下面的描述,并结合附图,本发明的前述或者其它的目的、特征以及优点可变得更加显而易见。附图中: 图1是根据本发明例示性实施例的有机发光二极管(OLED)显示器的方块图; 图2是根据本发明例示性实施例的有机发光二极管(OLED)显示器的一个像素的等效电路图; 图3是根据本发明例示性实施例的有机发光二极管(OLED)显示器的布局图; 图4和图5是分别沿IV-IV线和V-V线截取的图3所示的有机发光二极管(OLED)显示器的横截面视图; 图6是根据本发明例示性实施例的有机发光装置的示意图; 图7是示出了根据本发明例示性实施例的有机发光二极管(OLED)显示器的操作的信号波形图; 图8是示出了根据本发明例示性实施例的有机发光二极管(OLED)显示器的另一操作的信号波形图; 图9A是示出了根据本发明例示性实施例的有机发光二极管(OLED)显示器中驱动晶体管控制端子电压的模拟结果的波形图;以及 图9B是示出了根据本发明例示性实施例的有机发光二极管(OLED)显示器的驱动电流的模拟结果的波形图。 具体实施方式 在附图中,为清楚起见,放大了层、薄膜、面板、区域(region)等的厚度。在整个说明书中,相同标号表示相同元件。可以理解,当提到例如层、膜、区域或者基板的元件位于另一个元件之“上”时,其可以直接位于另一个元件之上或者也可以存在介于其间的元件。相反,当提到元件“直接”位于另一个元件之上时,则不存在介于其间的元件。 图1是根据本发明例示性实施例的有机发光二极管(OLED)显示器的方块图,图2是根据本发明例示性实施例的有机发光二极管(OLED)显示器的一个像素的等效电路图。 参照图1,根据本发明例示性实施例的有机发光二极管(OLED)显示器包括:显示板300;连接至显示板300的扫描驱动器400、数据驱动器500、和发光驱动器700;以及控制扫描驱动器400、数据驱动器500和发光驱动器700的信号控制器600。 参照图2所示的等效电路,显示板300包括传输扫描信号的多条扫描信号线G1至Gn、传输发光信号的多条发光信号线E1至En、以及传输数据信号的数据线D1至Dn。扫描信号线G1至Gn基本上沿行的方向彼此平行地延伸且彼此隔开,以及发光信号线E1至En基本上沿行的方向彼此平行地延伸。数据线D1至Dn基本上沿列的方向彼此平行地延伸。每条电压线(未示出)传输驱动电压Vdd和公共电压Vcom。 参照图2,根据本发明示例性实施例的有机发光二极管(OLED)显示器的每个像素PX,例如,连接至扫描信号线Gi(其中i=1,2,...,n)和数据线Dj(其中j=1,2,...,m)的像素PX包括有机发光装置LD、驱动晶体管Qd、电容器Cst、电容器Cref、以及开关晶体管Qs。 驱动晶体管Qd具有连接至驱动电压Vdd的输入端子、连接至有机发光装置LD阳极的输出端子、以及连接至开关晶体管Qs的输出端子的控制端子n1。如果通过开关晶体管Qs向控制端子n1供应数据电压Vdat,则驱动晶体管Qd向有机发光装置LD提供对应于数据电压Vdat的驱动电流ILD。 有机发光装置LD是发光二极管(LED),其具有发光层以及连接至驱动晶体管Qd输出端子的阳极和连接至公共电压Vcom的阴极。有机发光二极管LD接收来自驱动晶体管Qd的驱动电流ILD并发射预定光。 电容器Cst连接在驱动晶体管Qd的控制端子n1与输入端子之间,并且对应于通过开关晶体管Qs所提供的数据电压Vdat与驱动电压Vdd之间的差值而存储电荷。 电容器Cref连接在驱动晶体管Qd的控制端子n1与发光信号线Ei之间,根据通过发光信号线Ei所提供的发光信号来改变驱动晶体管Qd的控制端子n1的电压。 开关晶体管Qs具有连接至数据线Dj的输入端子、连接至驱动晶体管Qd的控制端子n1的输出端子、以及连接至扫描信号线Gi的控制端子。开关晶体管Qs由通过扫描信号线Gi所提供的扫描信号接通,并向驱动晶体管Qd的控制端子n1传输数据电压Vdat。 开关晶体管Qs和驱动晶体管Qd是由非晶硅或者多晶硅形成的n-通道的金属氧化物半导体场效应晶体管(MOSFET)。然而,晶体管Qs和Qd可以是p-通道的MOSFET。在这种情况下,由于p-通道的MOSFET和n-通道的MOSFET是互补的,因而p-通道的MOSFET的操作以及电压和电流与n-通道的MOSFET的操作以及电压和电流相反。 下面,将对有机发光二极管(OLED)显示器的结构进行详细描述。 图3是根据本发明例示性实施例的有机发光二极管(OLED)显示器的布局图,图4和图5是分别沿IV-IV和V-V线截取的图3所示的有机发光二极管(OLED)显示器的横截面视图。图6是有机发光装置的示意图。 包括第一控制电极124a的多条扫描信号线121、具有多个第二控制电极124b的多个栅极导体,以及多条发光信号线122形成于由透明玻璃和塑料形成的绝缘基板110上。 扫描信号线121传输扫描信号且基本上沿水平方向延伸。每条扫描信号线121包括用于连接至不同层或者外部驱动电路的宽端部129。第一控制电极124a从扫描信号线121向上延伸。当产生扫描信号的扫描驱动电路(未示出)集成于基板110上时,扫描信号线121可以延伸且可以直接连接到扫描驱动电路。当扫描电路形成于基板110之外时,扫描信号线121可以连接至基板110上的接收来自扫描驱动电路的扫描信号的焊盘(未示出)。 第二控制电极124b与扫描信号线121隔开且具有在其下部处向右突出的突出部125。第二控制电极124b向上延伸。 发光信号线122传输发光信号且基本上沿水平方向延伸。每条发光信号线122包括向下突出的突出部123。 栅极导体121、124b、122可由铝基金属(如铝(Al)或者铝合金)、银基金属(如银(Ag)或者银合金)、铜基金属(如铜(Cu)或者铜合金)、钼基金属(如钼(Mo)或者钼合金)、铬(Cr)、钽(Ta)、或者钛(Ti)形成。然而,每个栅极导体可以具有多层结构,其包括具有不同物理特性的两个导电层(未示出)。这些导电层中的一个导电层由具有低电阻率的金属(如铝基金属、银基金属、或者铜基金属)形成,以减小信号延迟或电压降。相反,另一个导电层由不同材料形成,具体地,由具有良好的物理特性、化学特性、以及与氧化锡铟(ITO)和氧化锌铟(IZO)的电接触特性的材料形成,例如钼基金属、铬、钛、或者钽。该组合的具体实例包括铬下层和铝(合金)上层的组合,以及铝(合金)下层和钼(合金)上层的组合。栅极导体121、124b、122可以由不同于上述材料的各种金属或导体形成。 每个栅极导体121、124b、122的侧表面相对于基板110的表面倾斜,且倾斜角优选地在30°至80°的范围内。 由氮化硅(SiNx)或者氧化硅(SiOx)形成的栅极绝缘层140形成于栅极导体121、124b、122上。 由氢化非晶硅(简称为a-Si)或多晶硅形成的多个第一半导体岛154a和第二半导体带154b形成于栅极绝缘层140上。第一和第二半导体154a和154b分别位于第一和第二控制电极124a和124b上。 多对第一欧姆接触163a和163b和多对第二欧姆接触165a和165b分别形成于第一和第二半导体154a和154b上。第一欧姆接触163a和165a具有岛形,并且第二欧姆接触163b和165b具有直线形状。第一和第二欧姆接触可由诸如掺杂了高浓度的n型杂质的n+氢化非晶硅或者硅化物的材料形成。第一欧姆触163a和165a成对地设置于第一半导体154a上,并且第二欧姆触163b和165b成对地设置于第二半导体154b上。 包括多条数据线171、多条驱动电压线172、多个第一和第二输出电极175a和175b、以及存储电极176的多个数据导体形成于欧姆接触163a、163b、165a、和165b以及栅极绝缘层140上。 数据线171传输数据信号且基本上沿垂直方向延伸以便与扫描信号线121交叉。每条数据线171包括以J形向该第一控制电极124a延伸的多个第一输入电极173a以及用来连接至不同层或者外部驱动电路的宽端部179。当产生数据信号的数据驱动电路(未示出)集成于基板110上时,数据线171可以延伸并直接连接至数据驱动电路。当数据驱动电路形成于基板110外部时,数据线171可以连接至基板110上的接收来自数据驱动电路的数据信号的焊盘(未示出)。 驱动电压线172传输驱动电压Vdd且基本上沿垂直方向延伸以便与扫描信号线121交叉。每条驱动电压线172包括分别与第二控制电极124b交叠的多个第二输入电极173b。 第一和第二输出电极175a和175b彼此隔开。另外,第一和第二输出电极175a和175b与数据线171和驱动电压线172隔开。第一输出电极175a形成于J形的第一输入电极173a之间。第一输入电极173a和第一输出电极175a彼此相对,且其间插入有第一控制电极124a,同时第二输入电极173b和第二输出电极175b彼此相对,且其间插入有第二控制电极124b。 存储电极176与数据线171和驱动电压线172隔开,且形成为与发光信号线122的突出部123交叠。 数据导体171、172、175a、175b、176优选地由耐火金属(如钼、铬、钽、钛或其合金)形成。数据导体171、172、175a、175b、176可具有由耐火金属形成的导电层(未示出)和低电阻材料导电层(未示出)的多层结构。多层结构的实例包括铬或钼(合金)下层和铝(合金)上层的双层结构,或者钼(合金)下层、铝(合金)中间层、及钼(合金)上层的三层结构。然而,数据导体171、172、175a、175b、176可由不同于上述材料的各种金属或者导体形成。 与栅极导体121、124b、122一样,数据导体171、172、175a、175b、176优选地具有相对于基板110的表面以大约30°至80°的倾斜角倾斜的侧表面。 欧姆接触163a、163b、165a、165b仅设置于下面的半导体154a和154b与上面的数据导体171、172、175a、175b、176之间,以便减小其间的接触电阻。半导体154a和154b具有未由数据导体171、172、175a、175b、176所覆盖的暴露部分,这些暴露部分包括在输入电极173a、173b与输出电极175a、175b之间的部分。 钝化层180形成于数据导体171、172、175a、175b、176及暴露的半导体154a、154b之上。钝化层180由无机绝缘体(如氮化硅或氧化硅)、有机绝缘体、或者低介电常数的绝缘体形成。有机绝缘体和低介电常数的绝缘体的介电常数优选地为4.0或者更小,并且例如使用通过等离子增强化学汽相沉积(PECVD)方法形成的a-Si:C:O或者a-Si:O:F。钝化层180可以由有机绝缘体中具有光敏性的材料形成,且钝化层180的表面可以被平面化,钝化层180可以具有下无机层和上有机层的双层结构,以便使用有机材料的优良的绝缘特性,并防止半导体154a和154b的暴露部分受到损坏。 多个接触孔182、185a、185b、188形成于钝化层180中以便分别暴露数据线171的端部179、第一和第二输出电极175a、175b、以及存储电极176。另外,多个接触孔181、184、187形成于钝化层180和栅极绝缘层140中,以便分别暴露扫描信号线121的端部129、第二输入电极173b、以及第二控制电极124b。 多个像素电极191、多个连接件85和86、以及多个接触辅助件81和82形成于钝化层180上。它们可以由反射金属(如铝、银、或其合金)形成。 像素电极191通过接触孔185b物理连接且电连接至第二输出电极175b,并且连接件85通过接触孔184和185a连接至第二控制电极124b的突出部125和第一输出电极175a。连接件86通过接触孔187、188连接至第二控制电极124b和存储电极176。 接触辅助件81和82分别通过接触孔181、182连接至扫描信号线121的端部129以及数据线171的端部179。接触辅助件81、82协助数据线171和扫描信号线121的端部179、129附于外部装置,并且保护端部179和129。 隔离件361形成于钝化层180上。隔离件361通过以堤形(bankshape)环绕像素电极191的边缘来限定开口365,且由有机绝缘体或者无机绝缘体形成。隔离件361可以由包括黑色颜料的光阻材料形成。在这种情况下,隔离件361用作阻光件。形成隔离件的工艺可以简单地进行。 有机发光件370形成于像素电极191上的由隔离件361限定的开口365中,有机发光元件370由仅发射三原色(例如红、绿和蓝)之一的光的有机材料形成。有机发光二极管(OLED)显示器通过空间地叠加彩光成分(该彩光成分是有机发光件370发射的原色)来显示所想要得到的图像。 如图6所示,除了发光层EML之外,有机发光件370还可具有包括辅助层ETL,HTL,EIL、HIL的多层结构,以便提高发光层的发光效率。辅助层包括用于平衡电子和空穴的电子传输层ETL和空穴传输层HTL,以及用于增强电子和空穴的注入的电子注入层EIL和空穴注入层HIL。 公共电极270形成于有机发光件370上。公共电极270施加有公共电压Vcom,并且由透明导电材料(如ITO或IZO)形成。 在有机发光二级管(OLED)显示器中,连接至扫描信号线121地第一控制电极124a、连接至数据线171的第一输入电极173a、以及第一输出电极175a与第一半导体154a一起形成开关薄膜晶体管Qs。开关薄膜晶体管的沟道形成于第一输入电极173a与第一输出电极175a之间的第一半导体154a中。连接至第一输出电极175a的第二控制电极124b、形成于驱动电压线172上的第二输入电极173b、以及连接至像素电极191的第二输出电极175b和第二半导体154b一起形成驱动薄膜晶体管Qd。驱动薄膜晶体管Qd的沟道形成于第二输入电极173b与第二输出电极175b之间的第二半导体154b中。像素电极191、有机发光元件370、以及公共电极270形成有机发光装置LD。在此,像素电极191用作阳极,公共电极270用作阴极。相对地,像素电极191可用作阴极,公共电极270可用作阳极。彼此交叠的第二控制电极124b和驱动电压线172形成电容器Cst,并且彼此交叠的存储电极176和发光信号线122的突出部123形成电容器Cref。 根据本例示性实施例的有机发光二极管(OLED)显示器在基板的下方发光并显示图像。即,透明的像素电极191和不透明的公共电极270以底部发射型显示图像,其中图像在基板110的下方显示。 当半导体154a和154b由多晶硅形成时,包括有面向控制电极124a和124b的本征区(未示出)以及本征区两侧上的非本征区(未示出)。非本征区电连接至输入电极173a、173b以及输出电极175a、175b,从而可以省略欧姆接触163a、163b、165a、165b。 控制电极124a、124b可设置于半导体154a、154b上。在这种情况下,栅极绝缘层140设置于半导体154a、154b与控制电极124a、124b之间。这时,数据导体171、172、173b、175b、176可设置在栅极绝缘层140上,且可以通过形成于栅极绝缘层140中的接触孔(未示出)电连接至半导体154a、154b。相反,数据导体171、172、173b、175b、176可以设置在半导体154a、154b下方,且可以电连接至上面的半导体154a、154b。 密封件390形成于公共电极270上。密封件390密封有机发光件370和公共电极270,以便阻止湿气和/或氧气从外界渗入。密封件390可以由类似于基板110的材料(例如玻璃或塑料的绝缘材料)形成。 返回图1,扫描驱动器400连接至显示板300的扫描信号线G1至Gn,并且向扫描信号线G1至Gn施加扫描信号Vg1至Vgn,扫描信号Vg1至Vgn通过结合用于接通和断开开关晶体管Qs的高电压Von和低电压Voff而获得。 数据驱动器500连接至显示板300的数据线D1至Dn,并且向数据线施加表示图像信号的数据电压Vdat。 发光驱动器700连接至显示板300的发光信号线E1至En,并且向发光信号线施加发光信号Ve1至Ven,发光信号Ve1至Ven通过结合具有不同电平的第一电压V1和第二电压V2而获得。 扫描驱动器400、数据驱动器500、以及发光驱动器700可以作为多个驱动IC芯片直接安装于显示板300上,或者可以安装在柔性印刷电路膜(未示出)上,以及可以通过TCP(带载封装件)附于显示面板。可替换地,扫描驱动器400、数据驱动器500、或发光驱动器700和信号线及晶体管一起可以形成于显示板300上,由此实现SOP(板上系统)。信号控制器600控制扫描驱动器400、数据驱动器500、和发光驱动器700的操作。 下面,将对有机发光二极管(OLED)显示器的操作进行详细描述。 图7是示出了根据本发明例示性实施例的有机发光二极管(OLED)显示器的操作的波形图。 参照图1和图7,信号控制器600从外部图形控制器(未示出)接收输入图像信号R、G、B、输入控制信号、垂直同步信号Vsync、水平同步信号Hsync、主时钟MCLK、以及数据启动信号DE。信号控制器600根据显示板300的操作情况以输入控制信号为基础适当地处理图像信号R、G、B,并且产生扫描控制信号CONT1、数据控制信号CONT2,以及发光控制信号CONT3。信号控制器600将扫描控制信号CONT1传输至扫描驱动器400、将数据控制信号CONT2和已处理的图像信号DAT传输至数据驱动器500,并将发光控制信号CONT3传输至发光驱动器700。 扫描控制信号CONT1包括用于指示扫描高电压Von的起始的扫描起始信号STV和用于控制高电压Von的输出的至少一个时钟信号。扫描控制信号CONT1还可以包括用于限定高电压Von的持续时间的输出启动信号OE。 数据控制信号CONT2包括:用于告知一行像素的数据传输的水平同步起始信号STH、用于指示对数据线D1至Dm施加数据电压Vdat的负载信号LOAD、以及数据时钟信号HCLK。 首先,数据驱动器500根据来自信号控制器600的数据控制信号CONT2依次地接收用于一行像素PX的图像数据DAT,并且将对应于每个图像数据DAT的模拟数据电压Vdat施加至相应的数据线。 扫描驱动器400接收由信号控制器600提供的扫描起始信号STV和时钟信号,并且输出一个时钟周期的具有高电压Von的扫描信号Vgi。扫描驱动器400可以包括接收先前的扫描信号的移位寄存器,并将所接收的扫描信号移位一个时钟周期,且输出移位后的扫描信号。 如果扫描信号Vgi是由扫描驱动器400提供的高电压Von,那么开关晶体管Qs接通,并且数据电压Vdat通过开关晶体管Qs施加到驱动晶体管Qd的控制端子n1。从而,预设的驱动电流ILD通过驱动晶体管Qd的输出端子流入有机发光装置LD中,并且有机发光装置LD对应于所施加的驱动电流ILD而发光。 在此发光操作期间,通过发光信号线Ei施加到电容器Cref的发光信号Vei具有第一电压(V1)电平。因此,电容器Cst对应于数据电压Vdat与驱动电压Vdd之间的差值积累电荷,并且电容器Cref对应于第一电压V1与数据电压Vdat之间的差值积累电荷。 以上操作依次进行直到第n行像素PX,从而显示一个图像。 接着,如果垂直同步信号Vsync变为低电压电平,那么来自发光驱动器700的发光信号Vei则变为第二电压(V2)电平。当垂直同步信号Vsync具有低电压电平,即,在垂直同步信号Vsync的空白期(blanking period)内,发光信号Vei呈现第二电压(V2)电平。如果将具有第二电压(V2)电平的发光信号Vei供应至电容器Cref,那么驱动晶体管Qd的控制端子n1的电压则改变。即,根据发光信号Vei的改变,电容器Cst和电容器Cref彼此耦合,并且驱动晶体管Qd的控制端子n1的电压(即电容器Cst与电容器Cref之间的电压)改变了,如以下公式所示: Vdat 2 = Vdat 1 - Cref ΔV ( Cst + Cref ) ]]> 此时,Vdat1表示发光信号Vei为第一电压(V1)电平时的驱动晶体管Qd的控制端子n1的电压,并且Vdat2表示发光信号Vei为第二电压(V2)电平时的驱动晶体管Qd的控制端子n1的电压。此外,Cst表示电容器Cst的电容并且Cref表示电容器Cref的电容。另外,ΔV表示发光信号Vei的第一电压V1与第二电压V2之间的差值。 当发光信号Vei的电压电平降低时,使得驱动晶体管Qd的控制端子n1的电压低于驱动晶体管Qd的阈电压,于是驱动晶体管Qd不输出驱动电流ILD。因此,由于有机发光装置LD不发光,则像素PX显示黑色。 发光信号Vei同时变为用于所有像素行的第二电压(V2)电平,因此,在垂直同步信号Vsync的空白期,显示板300显示黑色。此时,发光信号Vei呈现第二电压(V2)电平的时间可以是垂直同步信号Vsync的空白期,或者是空白期的后沿或前沿。 接着,如果发光信号Vei重新变为第一电压(V1)电平,那么根据电容器Cst和电容器Cref的耦合,在黑色显示之前,驱动晶体管Qd的控制端子n1的电压具有数据电压Vdat的值。从而,驱动晶体管Qd对应于数据电压Vdat重新输出驱动电流ILD,并且有机发光装置LD对应于输出驱动电流ILD发射预定光。因此,在黑色再次显示之前像素PX显示彩色,直到下一帧扫描信号Vgi被施加。 结果,在垂直同步信号Vsync的空白期有机发光二极管(OLED)显示器显示黑色,因而确保了足够的发光时间和具有脉冲效应。 图8是示出了根据本发明例示性实施例的有机发光二极管(OLED)显示器的另一操作的波形图。 参照图8,信号控制器600接收输入图像信号R、G、B以及用于控制图像信号R、G、B的显示的输入控制信号,并产生扫描控制信号CONT1、数据控制信号CONT2、以及发光控制信号CONT3。信号控制器600向扫描驱动器400传输扫描控制信号、向数据驱动器500传输数据控制信号CONT2以及已处理的图像信号DAT、并向发光驱动器700传输发光控制信号CONT3。 根据来自信号控制器600的数据控制信号CONT2,数据驱动器500依次接收用于像素PX的图像数据,并且对应于每个图像数据向相应的数据线Dj施加模拟数据电压Vdat。 扫描驱动器400接收由信号控制器600提供的扫描起始信号STV和时钟信号,并输出一个时钟周期的具有高电压Von的扫描信号Vgi。 如果扫描驱动器400提供了高电压Von的扫描信号Vgi,那么开关晶体管Qs接通,并且数据电压Vdat通过开关晶体管Qs施加到电容器Cst和驱动晶体管Qd的控制端子n1。驱动晶体管Qd根据数据电压Vdat向有机发光装置LD输出预定的驱动电流ILD。因此,有机发光装置LD对应于施加的驱动电流ILD发光。 此时,发光驱动器700向电容器Cref施加第一电压(V1)电平的发光信号Vei。然后,电容器Cst对应于数据电压Vdat与驱动电压Vdd之间的差值积累电荷,并且电容器Cref对应于第一电压V1与数据电压Vdat之间的差值积累电荷。以上操作依次进行直到第n行的像素PX,从而显示图像。 其次,发光驱动器700接收发光控制信号CONT3,并依次将具有第一电压信号(V1)电平的发光信号Vei变为第二电压信号(V2)电平。电容器Cref接收第二电压(V2)电平的发光信号Vei,并通过与电容器Cst耦合降低驱动晶体管Qd的控制端子n1的电压。如果驱动晶体管Qd的控制端子n1的电压变得低于驱动晶体管Qd的阈电压,那么驱动晶体管Qd不输出驱动电流ILD,因而有机发光装置LD不发光。因此,像素PX显示黑色,直到发光信号Vei重新变为第一电压(V1)电平。 在下一帧高电压Von的扫描信号Vgi被提供之前,发光信号Vei变为第一电压(V1)电平。因此,在第一电压(V1)电平的发光信号Vei施加给电容器Cref的情况下,提供下一帧的数据电压Vdat。 图9A和图9B是示出了根据本发明例示性实施例的有机发光二极管(OLED)显示器中的驱动晶体管Qd的控制端子n1的电压和驱动电流ILD的模拟结果的波形图。 图9A示出了根据本发明例示性实施例的有机发光二极管(OLED)显示器中的发光信号Vei、驱动晶体管Qd的控制端子n1的电压Vn1、以及Vn1对比值的随时间变化的曲线图。而图9B示出了根据本发明例示性实施例的有机发光二极管(OLED)显示器中的驱动电流ILD的随时间变化的曲线图。 在本发明例示性实施例中,对比值是指有机发光二极管(OLED)显示器中的驱动晶体管Qd的控制端子n1的电压和驱动电流,其中有机发光二极管(OLED)显示器在一像素中仅包括驱动晶体管Qd、有机发光装置LD、开关晶体管Qs、以及电容器Cst,而不包括连接至发光信号线Ei的电容器Cref。 在图9A中,电压Vn1对比值具有大约0.3ms的周期,并且根据通过开关晶体管Qs提供的数据电压Vdat而具有不同的电压电平。具有对比值的驱动晶体管Qd的控制端子n1的电压Vn1对比值保持相同电压电平直到下一数据电压Vdat被提供,因此输出恒定的驱动电流ILD对比值,如图9B所示。 在根据本发明的有机发光二极管(OLED)显示器中,当发光信号Vei为0v(t1)时,如果施加数据电压Vdat,那么对应于数据电压Vdat将驱动晶体管Qd的控制端子n1的电压设定到大约15V。接着,当发光信号Vei跌至大约-25v(t2)时,驱动晶体管Qd的控制端子n1的电压Vn1跌至大约2V。驱动晶体管Qd的控制端子n1的跌落电压Vn1保持在2V的电压电平直到发光信号Vei再次升到0V(t3)。当驱动晶体管Qd的阈电压高于2v时,如图9B所示,驱动电流ILD为大约0A。因此,由于有机发光装置LD不发光,所以像素PX在发光信号Vei保持为大约-25v(t2至t3)时显示黑色,从而显现出脉冲效应。 如上所述,根据本发明,显示装置具有调整驱动晶体管的控制端子电压的电容器,从而进行脉冲驱动。另外,由于仅在垂直同步信号的空白期内进行脉冲驱动,因此能充分保证发光时间,并且能防止亮度降低。 虽然结合目前认为是可实施的例示性实施例已经对本发明进行了描述,然而可以理解,在本发明的精神和范围内,本领域技术人员将很容易进行各种修改和等同布置。
《显示装置及其驱动方法.pdf》由会员分享,可在线阅读,更多相关《显示装置及其驱动方法.pdf(32页珍藏版)》请在专利查询网上搜索。
一种显示装置,具有:发光像素、向发光像素提供电流的驱动晶体管、连接至驱动晶体管并且选择性地传输数据电压的开关晶体管、以及根据电压信号断开驱动晶体管的第一电容器。由于提供了调整驱动晶体管控制端子的电压的电容器,从而进行了脉冲驱动。 。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1