具有综合流动感应能力的微型阀.pdf

上传人:a2 文档编号:506571 上传时间:2018-02-20 格式:PDF 页数:9 大小:423.53KB
返回 下载 相关 举报
摘要
申请专利号:

CN201310757438.X

申请日:

2013.12.27

公开号:

CN104197073A

公开日:

2014.12.10

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):F16K 31/04申请日:20131227|||公开

IPC分类号:

F16K31/04; F16K37/00; F16K99/00

主分类号:

F16K31/04

申请人:

浙江盾安禾田金属有限公司

发明人:

P·阿鲁纳萨拉姆; A·劳

地址:

311800 浙江省诸暨市店口工业区中央路1号

优先权:

2012.12.27 US 61/746,291

专利代理机构:

北京市柳沈律师事务所 11105

代理人:

曲莹

PDF下载: PDF下载
内容摘要

具有综合流动感应能力的微型阀,本发明涉及一种用于控制流体从源流到负载的流动的系统,其包括源。通/断型控制阀与该源连通。微机电系统与通/断型控制阀连通。消耗装置与微机电系统连通。电子控制器与消耗装置和源连通。电子控制器测量由流过微机电系统的流体流动所导致的微机电系统的参数变化,以感应流过微机电系统的流体流动。

权利要求书

1.  一种通过微机电系统感应流体流动的方法,包括以下步骤:
(a)提供微机电系统;
(b)提供流过微机电系统的流体流动;以及
(c)测量由流过微机电系统的流体流动所导致的微机电系统的参数变化,以感应流过微机电系统的流体流动。

2.
  如权利要求1所述的方法,其中,步骤(c)是通过测量微机电系统的电阻变化而实现的。

3.
  如权利要求1所述的方法,其中,步骤(c)是通过测量微机电系统的温度变化而实现的。

4.
  如权利要求1所述的方法,其中,步骤(a)是通过提供具有肋结构的微型阀而实现的。

5.
  如权利要求4所述的方法,其中,步骤(c)是通过测量微型阀的肋结构的电阻变化而实现的。

6.
  如权利要求4所述的方法,其中,步骤(c)是通过测量微型阀的肋结构的温度变化而实现的。

7.
  一种用于控制流体从源到负载的流动的系统,包括:
源;
通/断型控制阀,其与源连通;
微机电系统,其与通/断型控制阀连通;
消耗装置,其与微机电系统连通;
电子控制器,其与消耗装置和源连通;
其中,电子控制器测量由流过微机电系统的流体流动所导致的微机电系统的参数变化,以感应流过微机电系统的流体流动。

8.
  如权利要求7所述的系统,其中,参数变化的测量是通过测量微机电系统的电阻变化而实现的。

9.
  如权利要求7所述的系统,其中,参数变化的测量是通过测量微机电系统的温度变化而实现的。

10.
  如权利要求7所述的系统,其中,微机电系统的提供是通过提供具有肋结构的微型阀而实现的。

11.
  如权利要求10所述的系统,其中,参数变化的测量是通过测量微型阀的肋结构的电阻变化而实现的。

12.
  如权利要求10所述的系统,其中,参数变化的测量是通过测量微型阀的肋结构的温度变化而实现的。

说明书

具有综合流动感应能力的微型阀
技术领域
特别地,本发明涉及一种用于微型阀的改进系统,该微型阀设置有感应流过该处的流体流动的综合能力,以响应于此而控制微型阀的操作。 
背景技术
用于将被冷却的装置的典型制冷剂冷却系统包括源,例如压缩机,其选择性地将流体(例如液态制冷剂)提供给消耗装置,例如提供给蒸发器盘管。要做到这一点,该源通过温度响应的螺线管或者其它通/断型控制阀以及通过微型阀或者其它微机电系统而与消耗装置连通。该螺线管阀可选择地致动,以在或者(1)允许液态制冷剂从源流到微型阀的打开情况下或者(2)为了防止液态制冷剂从源流到微型阀的关闭情况下操作。一方面,该微型阀可操作来调节或者控制流过该处抵达消耗装置的液态制冷剂的量。此后,液态制冷剂通过过热或者相似的电子控制器从消耗装置流动返回到液态制冷剂源。 
在制冷剂冷却系统的常规操作中,当将被冷却的装置的感应温度(由温度传感器所确定)增加到预定目标温度之上的时候,导致该螺线管阀被打开。结果,液态制冷剂被允许通过螺线管阀而从源流到微型阀。该微型阀又由过热或类似电子控制器所操作,以在必要时调节或者控制流过该处抵达消耗装置的液态制冷剂流动。 
随后,当将被冷却的装置的感应温度降低到预定目标温度之下的时候,所期望的是停止从源到消耗装置的液态制冷剂的流动。要做到这一点,螺线管阀最初是关闭的。当这发生的时候,留在微型阀内部的全部剩余流体从微型阀抽出到消耗装置中。结果,留在螺线管阀下游的线路中的流体压力(由典型地设置为过热或者类似电子控制器一部分的流体压力传感器所测量)降到零附近。当该接近零的压力情况发生的时候,微型阀然后通过过热或者类似电子控制器而被操作到完全关闭的条件。 
此后,当将被冷却的装置的壳体的感应温度增加到预定目标温度之上 的时候,导致螺线管阀重新打开以允许液态制冷剂从源流入到微型阀中。然而,因为流体压力传感器位于微型阀下游,成为过热或者类似电子控制器的一部分,所以微型阀处流体压力的升高无法通过过热或者类似电子控制器瞬时检测出来,这将可优选地通过在螺线管阀再次打开之后非常快速地打开或者调节微型阀的操作而响应。而最初在螺线管阀被重新打开之后,仅有少量的液态制冷剂通过微型阀和消耗装置抵达过热或者类似的电子控制器。该少量的液态制冷剂最终通过流体压力传感器所感应,该传感器设置为过热或者类似的电子控制器的一部分,这导致了微型阀将被重新打开。 
因而,可以看到,存在不期望的非常长的时间段,在此期间压力传感器连续感应接近零的压力情况,并且将微型阀保持在关闭位置,即使是在螺线管阀已经重新打开以允许液态制冷剂从源流到微型阀中之后也如此。结果,在增压流体以足够的量通过微型阀供给到消耗装置之前出现了不期望的非常长的时间段,从而使得将被冷却的装置进行冷却。由此,所期望的是提供一种避免这种问题的改进系统。 
发明内容
本发明涉及一种改进的系统,其用于控制流体从源到负载的流动。该系统包括流体源、与源连通的通/断型控制阀、与通/断型控制阀连通的微机电系统、与微机电系统连通的消耗装置以及与消耗装置和源连通的电子控制器。电子控制器测量由流过微机电系统的流体流动所导致的微机电系统的参数变化,以感应流过微机电系统的流体流动。 
当观看附图时根据所图示实施方式的下列详细描述,本发明的各方面对于本领域技术人员而言将变得明显。 
附图说明
图1是根据本发明的用于控制从源到负载的流体流动的系统的框图,其包括微型阀,该微型阀具有流动感应能力。 
图2是用于控制从源到负载的流体流动的系统的第二实施方式的示意图,其包括根据本发明的微型阀。 
图3是图2中所示的系统的第二实施方式的一部分的放大示意图。 
具体实施方式
现在来参照附图,图1中图示了系统的第一实施方式的示意图,其通常采用标记10进行标识,用于控制从源11到负载12的流体流动。在所图示的系统10中,流体(例如液态制冷剂)从源11(例如压缩机)通过螺线管13或者其它通/断型控制阀以及通过微型阀14或者其它微机电系统而供给到消耗装置15,例如常规的蒸发器盘管。该螺线管阀13或者其它常规的流动调节结构设置在液态制冷剂源11与微型阀14之间。螺线管阀13典型地以开/关方式使用,以选择性地允许或阻止在其中通过的液态制冷剂以上述方式流入微型阀14。当致动到打开状态时,螺线管阀13允许液态制冷剂从源11流到微型阀14。另一方面,微型阀14可被操作以控制流过该处抵达消耗装置15的液态制冷剂的量,同样正如上面所描述那样。此后,液态制冷剂从消耗装置15通过过热控制器16或者类似的电子控制器而流动返回到液态制冷剂源。过热控制器16包括流体压力传感器(未示出),为此将在下面进行描述。 
在制冷剂冷却系统的通常操作中,当将被冷却的装置的感应温度(正如连接到螺线管阀13的常规温度传感器17所确定的那样)增加到预定目标温度之上的时候,导致螺线管阀13被打开,从而允许在其中流过的液态制冷剂从源11流到微型阀14。根据需要,微型阀14又被操作以调节或者控制流过该处抵达消耗装置15的液态制冷剂流动。 
随后,当将被冷却的装置的感应温度降低到预定目标温度之下的时候,所期望的是,停止从源到消耗装置的液态制冷剂流动。要做到这一点,螺线管13最初是关闭的。当这发生的时候,留在微型阀14内部的全部剩余流体从微型阀抽出到消耗装置15中。结果,留在螺线管阀13下游的线路中的流体压力(正如由典型地设置为过热或者类似电子控制器16的一部分的流体压力传感器所测量)降低到零附近。当该接近零的压力情况发生的时候,微型阀14则由过热或类似的电子控制器16操作到完全关闭状态。 
此后,当将被冷却的装置的感应温度增加到预定目标温度之上的时候,最初导致螺线管阀13重新打开,以允许液态制冷剂从源流到微型阀中。然而,因为流体压力传感器位于微型阀14的下游,成为过热或者类似 电子控制器16的一部分,所以微型阀14处的流体压力的升高无法由过热或类似电子控制器16瞬时(或者至少足够快)检测到,这将可优选地通过在螺线管阀13被重新打开之后非常快速地打开或者调节微型阀14的操作而得到响应。为允许这种情况的发生,本发明的微型阀14用作流动传感器,以检测急流液态制冷剂或者其它流体的存在,从而允许微型阀14的操作在螺线管阀13已经重新打开之后在没有上面讨论的非期望延迟的情况下快速开始。 
当螺线管阀13随后被打开的时候,液态制冷剂将流入到微型阀14中,如上面所述。当这样的流体抵达微型阀14(或者其任何其它所期望的元件)的致动器部分的常规肋结构(未示出)的时候,温度变化(这是由于液态制冷剂接触所导致的热传导而发生的)将导致微型阀14的这些肋或者其它结构的电阻得到改变。本发明构想的是,微型阀14的这些肋或者其它结构的电阻变化(由其温度变化所导致)用作检测机构,该检测机构能快速指示流体流到微型阀14中的流动已经开始。当电阻的这种改变(或者可替换地,由温度变化所导致的微型阀14的任何其它参数的变化)发生的时候,微型阀14将立即通过过热或者类似电子控制器16进行操作,以开始调节流过该处抵达消耗装置15的流体流动。 
微型阀14的肋或者其它结构的电阻测量可以任何期望的方式实现。例如,公知的是,导电材料的电阻将随着其温度而改变。由此,电能源(例如可包括在过热或者类似电子控制器16内部)可用于将电流通过微型阀14的这些肋或者其它结构来施加。电能源例如可实施为常规脉冲宽度的调节回路。无论其自然特性如何,电能源导致电流流过微型阀14的肋或者其它结构。这样的电流的幅值将随着微型阀14的肋或者其它结构的电阻变化而改变,电阻变化是由其温度变化所导致的。由此,通过使用常规电流或者其它传感器(其还可例如包括在过热或者类似电子控制器16的内部),微型阀14的肋或者其它结构的电阻变化(是由流过微型阀14的流体流动所导致的温度变化所导致的)可被测量并被过热或者类似电子控制器16作用在其上。由此,微型阀14可立即通过过热或者类似电子控制器16而被操作,以相比于之前所采用的更快地开始调节流过该处抵达消耗装置15的流体流动。 
本发明的流体流动感应能力可以通断方式或者渐进方式实施。在流体 流动感应的通断方式下,当确定任何预定量的流体流过微型阀14的时候产生信号。这可例如通过将微型阀14的肋或者其它结构所感应的电阻与预定的阈值电阻进行比较而实现。在流体流动感应的渐进方式下,产生表示流体流过微型阀14的速率的信号。这可例如通过测量微型阀14的肋或者其它结构的电阻变化率而实现。 
图2和3图示了包括根据本发明的微型阀的用于控制从源流到负载的流体流动的系统的第二实施方式。该第二实施方式例如特别适用于美国专利7210502的图11到16所图示的微型阀。如图2和3中所示,微型阀的致动器臂3连接到通常L型的阀,其具有设置穿过其中的三个微端口(图示为大体方形)。所图示的微端口示出为常开的微端口(NO)、常闭的微端口(NC)以及控制微端口,控制微端口位于常开的微端口和常闭的微端口之间。常闭的微端口(NC)和控制微端口分别具有延伸贯穿其中的肋2和1(细节参见图3),并且焊线设置在这些肋2和1中每个的末端处,以促进它们连接到动力监视器或者其它测量装置。肋2和1可用作变阻结构,以测量上面所述的方式下的温度变化。 
本发明的原理和操作模式已经在其优选实施方式中进行了说明和图示。然而必须知晓的是,本发明可在不脱离其精神或者范围的情况下以特定说明和图示之外的方式实施。 
相关申请的交叉引用 
本发明大致涉及在美国专利号7210502,7803281,8011388,8113482和8156962以及美国专利申请公开号2007/0172362,2007/0251586,2008/0042084,2009/0123300,2010/0012195,2010/0084031,2011/0127455,2012/0000550,2012/0145252,2012/0140416,2012/0295371和2012/0299129中所描述和图示的常规类型的微型阀。这些专利和专利申请的全部公开内容通过引用合并于此。 

具有综合流动感应能力的微型阀.pdf_第1页
第1页 / 共9页
具有综合流动感应能力的微型阀.pdf_第2页
第2页 / 共9页
具有综合流动感应能力的微型阀.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《具有综合流动感应能力的微型阀.pdf》由会员分享,可在线阅读,更多相关《具有综合流动感应能力的微型阀.pdf(9页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104197073A43申请公布日20141210CN104197073A21申请号201310757438X22申请日2013122761/746,29120121227USF16K31/04200601F16K37/00200601F16K99/0020060171申请人浙江盾安禾田金属有限公司地址311800浙江省诸暨市店口工业区中央路1号72发明人P阿鲁纳萨拉姆A劳74专利代理机构北京市柳沈律师事务所11105代理人曲莹54发明名称具有综合流动感应能力的微型阀57摘要具有综合流动感应能力的微型阀,本发明涉及一种用于控制流体从源流到负载的流动的系统,其包括源。通/断型控。

2、制阀与该源连通。微机电系统与通/断型控制阀连通。消耗装置与微机电系统连通。电子控制器与消耗装置和源连通。电子控制器测量由流过微机电系统的流体流动所导致的微机电系统的参数变化,以感应流过微机电系统的流体流动。30优先权数据51INTCL权利要求书1页说明书4页附图3页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书4页附图3页10申请公布号CN104197073ACN104197073A1/1页21一种通过微机电系统感应流体流动的方法,包括以下步骤A提供微机电系统;B提供流过微机电系统的流体流动;以及C测量由流过微机电系统的流体流动所导致的微机电系统的参数变化,以感应流过微机。

3、电系统的流体流动。2如权利要求1所述的方法,其中,步骤C是通过测量微机电系统的电阻变化而实现的。3如权利要求1所述的方法,其中,步骤C是通过测量微机电系统的温度变化而实现的。4如权利要求1所述的方法,其中,步骤A是通过提供具有肋结构的微型阀而实现的。5如权利要求4所述的方法,其中,步骤C是通过测量微型阀的肋结构的电阻变化而实现的。6如权利要求4所述的方法,其中,步骤C是通过测量微型阀的肋结构的温度变化而实现的。7一种用于控制流体从源到负载的流动的系统,包括源;通/断型控制阀,其与源连通;微机电系统,其与通/断型控制阀连通;消耗装置,其与微机电系统连通;电子控制器,其与消耗装置和源连通;其中,电。

4、子控制器测量由流过微机电系统的流体流动所导致的微机电系统的参数变化,以感应流过微机电系统的流体流动。8如权利要求7所述的系统,其中,参数变化的测量是通过测量微机电系统的电阻变化而实现的。9如权利要求7所述的系统,其中,参数变化的测量是通过测量微机电系统的温度变化而实现的。10如权利要求7所述的系统,其中,微机电系统的提供是通过提供具有肋结构的微型阀而实现的。11如权利要求10所述的系统,其中,参数变化的测量是通过测量微型阀的肋结构的电阻变化而实现的。12如权利要求10所述的系统,其中,参数变化的测量是通过测量微型阀的肋结构的温度变化而实现的。权利要求书CN104197073A1/4页3具有综合。

5、流动感应能力的微型阀技术领域0001特别地,本发明涉及一种用于微型阀的改进系统,该微型阀设置有感应流过该处的流体流动的综合能力,以响应于此而控制微型阀的操作。背景技术0002用于将被冷却的装置的典型制冷剂冷却系统包括源,例如压缩机,其选择性地将流体例如液态制冷剂提供给消耗装置,例如提供给蒸发器盘管。要做到这一点,该源通过温度响应的螺线管或者其它通/断型控制阀以及通过微型阀或者其它微机电系统而与消耗装置连通。该螺线管阀可选择地致动,以在或者1允许液态制冷剂从源流到微型阀的打开情况下或者2为了防止液态制冷剂从源流到微型阀的关闭情况下操作。一方面,该微型阀可操作来调节或者控制流过该处抵达消耗装置的液。

6、态制冷剂的量。此后,液态制冷剂通过过热或者相似的电子控制器从消耗装置流动返回到液态制冷剂源。0003在制冷剂冷却系统的常规操作中,当将被冷却的装置的感应温度由温度传感器所确定增加到预定目标温度之上的时候,导致该螺线管阀被打开。结果,液态制冷剂被允许通过螺线管阀而从源流到微型阀。该微型阀又由过热或类似电子控制器所操作,以在必要时调节或者控制流过该处抵达消耗装置的液态制冷剂流动。0004随后,当将被冷却的装置的感应温度降低到预定目标温度之下的时候,所期望的是停止从源到消耗装置的液态制冷剂的流动。要做到这一点,螺线管阀最初是关闭的。当这发生的时候,留在微型阀内部的全部剩余流体从微型阀抽出到消耗装置中。

7、。结果,留在螺线管阀下游的线路中的流体压力由典型地设置为过热或者类似电子控制器一部分的流体压力传感器所测量降到零附近。当该接近零的压力情况发生的时候,微型阀然后通过过热或者类似电子控制器而被操作到完全关闭的条件。0005此后,当将被冷却的装置的壳体的感应温度增加到预定目标温度之上的时候,导致螺线管阀重新打开以允许液态制冷剂从源流入到微型阀中。然而,因为流体压力传感器位于微型阀下游,成为过热或者类似电子控制器的一部分,所以微型阀处流体压力的升高无法通过过热或者类似电子控制器瞬时检测出来,这将可优选地通过在螺线管阀再次打开之后非常快速地打开或者调节微型阀的操作而响应。而最初在螺线管阀被重新打开之后。

8、,仅有少量的液态制冷剂通过微型阀和消耗装置抵达过热或者类似的电子控制器。该少量的液态制冷剂最终通过流体压力传感器所感应,该传感器设置为过热或者类似的电子控制器的一部分,这导致了微型阀将被重新打开。0006因而,可以看到,存在不期望的非常长的时间段,在此期间压力传感器连续感应接近零的压力情况,并且将微型阀保持在关闭位置,即使是在螺线管阀已经重新打开以允许液态制冷剂从源流到微型阀中之后也如此。结果,在增压流体以足够的量通过微型阀供给到消耗装置之前出现了不期望的非常长的时间段,从而使得将被冷却的装置进行冷却。由此,所期望的是提供一种避免这种问题的改进系统。说明书CN104197073A2/4页4发明。

9、内容0007本发明涉及一种改进的系统,其用于控制流体从源到负载的流动。该系统包括流体源、与源连通的通/断型控制阀、与通/断型控制阀连通的微机电系统、与微机电系统连通的消耗装置以及与消耗装置和源连通的电子控制器。电子控制器测量由流过微机电系统的流体流动所导致的微机电系统的参数变化,以感应流过微机电系统的流体流动。0008当观看附图时根据所图示实施方式的下列详细描述,本发明的各方面对于本领域技术人员而言将变得明显。附图说明0009图1是根据本发明的用于控制从源到负载的流体流动的系统的框图,其包括微型阀,该微型阀具有流动感应能力。0010图2是用于控制从源到负载的流体流动的系统的第二实施方式的示意图。

10、,其包括根据本发明的微型阀。0011图3是图2中所示的系统的第二实施方式的一部分的放大示意图。具体实施方式0012现在来参照附图,图1中图示了系统的第一实施方式的示意图,其通常采用标记10进行标识,用于控制从源11到负载12的流体流动。在所图示的系统10中,流体例如液态制冷剂从源11例如压缩机通过螺线管13或者其它通/断型控制阀以及通过微型阀14或者其它微机电系统而供给到消耗装置15,例如常规的蒸发器盘管。该螺线管阀13或者其它常规的流动调节结构设置在液态制冷剂源11与微型阀14之间。螺线管阀13典型地以开/关方式使用,以选择性地允许或阻止在其中通过的液态制冷剂以上述方式流入微型阀14。当致动。

11、到打开状态时,螺线管阀13允许液态制冷剂从源11流到微型阀14。另一方面,微型阀14可被操作以控制流过该处抵达消耗装置15的液态制冷剂的量,同样正如上面所描述那样。此后,液态制冷剂从消耗装置15通过过热控制器16或者类似的电子控制器而流动返回到液态制冷剂源。过热控制器16包括流体压力传感器未示出,为此将在下面进行描述。0013在制冷剂冷却系统的通常操作中,当将被冷却的装置的感应温度正如连接到螺线管阀13的常规温度传感器17所确定的那样增加到预定目标温度之上的时候,导致螺线管阀13被打开,从而允许在其中流过的液态制冷剂从源11流到微型阀14。根据需要,微型阀14又被操作以调节或者控制流过该处抵达。

12、消耗装置15的液态制冷剂流动。0014随后,当将被冷却的装置的感应温度降低到预定目标温度之下的时候,所期望的是,停止从源到消耗装置的液态制冷剂流动。要做到这一点,螺线管13最初是关闭的。当这发生的时候,留在微型阀14内部的全部剩余流体从微型阀抽出到消耗装置15中。结果,留在螺线管阀13下游的线路中的流体压力正如由典型地设置为过热或者类似电子控制器16的一部分的流体压力传感器所测量降低到零附近。当该接近零的压力情况发生的时候,微型阀14则由过热或类似的电子控制器16操作到完全关闭状态。0015此后,当将被冷却的装置的感应温度增加到预定目标温度之上的时候,最初导致螺线管阀13重新打开,以允许液态制。

13、冷剂从源流到微型阀中。然而,因为流体压力传感器说明书CN104197073A3/4页5位于微型阀14的下游,成为过热或者类似电子控制器16的一部分,所以微型阀14处的流体压力的升高无法由过热或类似电子控制器16瞬时或者至少足够快检测到,这将可优选地通过在螺线管阀13被重新打开之后非常快速地打开或者调节微型阀14的操作而得到响应。为允许这种情况的发生,本发明的微型阀14用作流动传感器,以检测急流液态制冷剂或者其它流体的存在,从而允许微型阀14的操作在螺线管阀13已经重新打开之后在没有上面讨论的非期望延迟的情况下快速开始。0016当螺线管阀13随后被打开的时候,液态制冷剂将流入到微型阀14中,如上。

14、面所述。当这样的流体抵达微型阀14或者其任何其它所期望的元件的致动器部分的常规肋结构未示出的时候,温度变化这是由于液态制冷剂接触所导致的热传导而发生的将导致微型阀14的这些肋或者其它结构的电阻得到改变。本发明构想的是,微型阀14的这些肋或者其它结构的电阻变化由其温度变化所导致用作检测机构,该检测机构能快速指示流体流到微型阀14中的流动已经开始。当电阻的这种改变或者可替换地,由温度变化所导致的微型阀14的任何其它参数的变化发生的时候,微型阀14将立即通过过热或者类似电子控制器16进行操作,以开始调节流过该处抵达消耗装置15的流体流动。0017微型阀14的肋或者其它结构的电阻测量可以任何期望的方式。

15、实现。例如,公知的是,导电材料的电阻将随着其温度而改变。由此,电能源例如可包括在过热或者类似电子控制器16内部可用于将电流通过微型阀14的这些肋或者其它结构来施加。电能源例如可实施为常规脉冲宽度的调节回路。无论其自然特性如何,电能源导致电流流过微型阀14的肋或者其它结构。这样的电流的幅值将随着微型阀14的肋或者其它结构的电阻变化而改变,电阻变化是由其温度变化所导致的。由此,通过使用常规电流或者其它传感器其还可例如包括在过热或者类似电子控制器16的内部,微型阀14的肋或者其它结构的电阻变化是由流过微型阀14的流体流动所导致的温度变化所导致的可被测量并被过热或者类似电子控制器16作用在其上。由此,。

16、微型阀14可立即通过过热或者类似电子控制器16而被操作,以相比于之前所采用的更快地开始调节流过该处抵达消耗装置15的流体流动。0018本发明的流体流动感应能力可以通断方式或者渐进方式实施。在流体流动感应的通断方式下,当确定任何预定量的流体流过微型阀14的时候产生信号。这可例如通过将微型阀14的肋或者其它结构所感应的电阻与预定的阈值电阻进行比较而实现。在流体流动感应的渐进方式下,产生表示流体流过微型阀14的速率的信号。这可例如通过测量微型阀14的肋或者其它结构的电阻变化率而实现。0019图2和3图示了包括根据本发明的微型阀的用于控制从源流到负载的流体流动的系统的第二实施方式。该第二实施方式例如特。

17、别适用于美国专利7210502的图11到16所图示的微型阀。如图2和3中所示,微型阀的致动器臂3连接到通常L型的阀,其具有设置穿过其中的三个微端口图示为大体方形。所图示的微端口示出为常开的微端口NO、常闭的微端口NC以及控制微端口,控制微端口位于常开的微端口和常闭的微端口之间。常闭的微端口NC和控制微端口分别具有延伸贯穿其中的肋2和1细节参见图3,并且焊线设置在这些肋2和1中每个的末端处,以促进它们连接到动力监视器或者其它测量装置。肋2和1可用作变阻结构,以测量上面所述的方式下的温度变化。0020本发明的原理和操作模式已经在其优选实施方式中进行了说明和图示。然而必须知晓的是,本发明可在不脱离其。

18、精神或者范围的情况下以特定说明和图示之外的方式实说明书CN104197073A4/4页6施。0021相关申请的交叉引用0022本发明大致涉及在美国专利号7210502,7803281,8011388,8113482和8156962以及美国专利申请公开号2007/0172362,2007/0251586,2008/0042084,2009/0123300,2010/0012195,2010/0084031,2011/0127455,2012/0000550,2012/0145252,2012/0140416,2012/0295371和2012/0299129中所描述和图示的常规类型的微型阀。这些专利和专利申请的全部公开内容通过引用合并于此。说明书CN104197073A1/3页7图1说明书附图CN104197073A2/3页8图2说明书附图CN104197073A3/3页9图3说明书附图CN104197073A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 机械工程;照明;加热;武器;爆破 > 工程元件或部件;为产生和保持机器或设备的有效运行的一般措施;一般绝热


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1