管理混合系统操作的方法.pdf

上传人:a3 文档编号:4752919 上传时间:2018-11-06 格式:PDF 页数:14 大小:2.51MB
返回 下载 相关 举报
摘要
申请专利号:

CN201210178411.0

申请日:

2012.06.01

公开号:

CN102810685A

公开日:

2012.12.05

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):H01M 8/04申请日:20120601|||公开

IPC分类号:

H01M8/04; H02J7/00

主分类号:

H01M8/04

申请人:

巴莱诺斯清洁能源控股公司

发明人:

J·伯纳德

地址:

瑞士比尔

优先权:

2011.06.01 EP 11168535.0

专利代理机构:

北京市中咨律师事务所 11247

代理人:

杨晓光;于静

PDF下载: PDF下载
内容摘要

本发明涉及一种用于管理混合连续电源的操作的方法,所述电源包括燃料电池堆(2)、电池(6)和包括输入和输出的DC/DC转换器(4),转换器(4)的输入被连接到燃料电池堆的输出并且其输出被连接到与所述电池并联的可变负载(8),由适合从燃料和氧化气体产生电力的多个电化学电池元形成所述燃料电池堆。

权利要求书

1: 一种用于管理混合连续电源的操作的方法, 所述电源包括燃料电池堆 (2) 、 电池 (6) 和包括输入和输出的 DC/DC 转换器 (4) , 所述转换器 (4) 的输入被连接到所述燃料电池堆的 输出并且所述转换器的输出被连接到与所述电池并联的可变负载 (8) , 由适合从燃料和氧 化气体产生电力的多个电化学电池元形成所述燃料电池堆, 所述方法的特征在于包括以下 操作 : a) 向所述电化学电池元的每一个提供燃料流和氧化气体流 ; b) 限定表示所述可变负载的设定点 ; c) 监视在所述燃料电池堆中的所述燃料压力和所述氧化气体压力 ; d) 将所述燃料电池堆中的所述压力 (P) 调整到第一参考值 ; e) 通过改变所述 DC/DC 转换器 (4) 的所述输出电压 (Vcell) 根据所述设定点在所述燃料 电池堆 (2) 和所述电池 (6) 之间分配所述可变负载 ; f) 监视表示在所述燃料电池堆的至少一个电化学电池元的端子处的电压的电压 ; g) 监视所述变量 ; 如果表示至少一个所述电池元的端子处的所述电压的电压超过第一预定临界值并且 如果所述变量指示所述可变负载的下降 ; h) 中断操作 (d) 并且中断操作 (e) ; 以及 i) 通过适应所述 DC/DC 转换器的输入阻抗将表示在至少一个电池元的端子处的所述 电压的电压调整到第二参考值 ; j) 通过改变压力在所述燃料电池堆和所述电池之间分配所述可变负载。2: 根据权利要求 1 的管理方法, 其特征在于, 所述方法还包括以下操作 : 如果在所述燃料电池堆中的所述压力超过第二预定临界值并且如果所述变量指示所 述可变负载的增加, k) 中断操作 (i) 并且中断操作 (j) 并且重复操作 (d) 和操作 (e) 。3: 根据权利要求 1 的管理方法, 其特征在于, 表示所述可变负载的所述变量是第三参 考值和测量的电池电压 (Vbatt) 之间的差 (ε) 。4: 根据权利要求 2 的管理方法, 其特征在于, 表示所述可变负载的所述变量是第三参 考值和测量的电池电压 (Vbatt) 之间的差 (ε) 。5: 根据权利要求 1 的管理方法, 其特征在于, 表示所述可变负载的所述变量是所述可 变负载要求的功率和所述燃料电池堆的输出功率之间的差。6: 根据权利要求 2 的管理方法, 其特征在于, 表示所述可变负载的所述变量是所述可 变负载要求的功率和所述燃料电池堆的输出功率之间的差。7: 根据权利要求 2 的管理方法, 其特征在于, 所述第二临界值是 2.45 巴。8: 根据权利要求 4 的管理方法, 其特征在于, 所述第二临界值是 2.45 巴。9: 根据权利要求 6 的管理方法, 其特征在于, 所述第二临界值是 2.45 巴。10: 根据权利要求 1 的管理方法, 其特征在于, 所述第一预定临界值是 0.845 伏特。11: 根据权利要求 1 的管理方法, 其特征在于, 所述第二参考值是每电池元 0.85 伏特的 值。12: 根据权利要求 1 的管理方法, 其特征在于, 所述第一参考值是 2.5 巴。13: 根据权利要求 1 的管理方法, 其特征在于, 所述燃料电池堆 (2) 使用氢气作为燃料 2 并且使用氧气作为氧化气体。14: 一种管理混合连续电源的系统, 所述电源包括燃料电池堆 (2) 、 电池 (6) 以及包括 输入和输出的 DC/DC 转换器 (4) , 所述转换器 (4) 的输入被连接到所述燃料电池堆的输出并 且其输出被连接到与所述电池 (6) 并联的可变负载, 由适合从燃料和氧化气体产生电力的 多个电化学电池元形成所述燃料电池堆。

说明书


管理混合系统操作的方法

    技术领域 本发明涉及用于管理混合连续电源操作的方法, 所述电源包括燃料电池堆、 电池 (battary) 和包括输入和输出的 DC/DC 转换器, 所述转换器的输入被连接到燃料电池堆输 出并且其输出被连接到与与电池并联的可变负载, 由适合从燃料和氧化气体产生电力的多 个电化学电池元 (cell) 形成燃料电池堆。
     背景技术 串联连接的电化学单元装配 (常称为堆) 已公知。可以通过例如蓄电池元件或者通 过燃料电池形成这样装配的电化学单元。 燃料电池指将化学能直接转化成电能的电化学器 件。 例如, 一种类型的燃料电池包括阳极和阴极, 其间安置通常称作聚合物电解质膜的质子 交换膜。此类型的膜仅允许质子在燃料电池的阴极和阳极之间通过。在阳极上双原子氢进 行反应以产生穿过聚合物电解质膜的 H+ 离子。 通过此反应产生的电子通过燃料电池的外部 电路到达阴极, 从而产生电流。因为单个燃料电池一般仅能产生低电压 (约 1 伏特) , 通常串 联连接燃料电池以形成能够产生包括每个电池的电压的总和的更高的电压的燃料电池堆。
     当在汽车工业中使用时, 这些燃料电池堆通常与电池关联以形成混合系统。此系 统将燃料电池堆和电池并联以便燃料电池堆和电池通过称为母线 (bus) 的公共部分同时或 者分别给汽车供电。此混合还允许燃料电池堆给电池充电。当其使用连接在燃料电池堆的 输出处的 DC/DC 转换器时混合系统称为 “激活 (active) ” , 参见图 1。此 DC/DC 转换器经常 用于适应燃料电池堆和电池的电压水平并且调整通过燃料电池堆输出的功率。
     调整功率要求实施控制方案, 以根据汽车电机的功率要求和系统约束在燃料电池 堆和电池之间分配功率。 控制方案必须考虑的系统约束是燃料电池堆和电池的最大电压和 电流、 必须不能超过的温度范围、 电池充电状态, 即, 例如, 当其已经 100% 充电时, 电池必须 不再充电, 等等。
     用于此混合系统的一个控制方案包括将电池充电状态调整在额定值附近, 不达到 该电池的最大和最小充电状态。 从而, 电池从来不需要外部充电, 因为其通过燃料电池堆以 及通过当车辆处在制动状态时的再生动能再充电。 这意味着燃料电池堆提供车辆的电机消 耗的平均功率, 而电池用作充电或放电能量的能量缓冲器装置。通过使用 DC/DC 转换器调 整母线电压在恒定值实现此方案。
     此已知方案的一个缺点是没有防止燃料电池堆在开路电压 ( “OCV” ) 下操作的措 施。 “开路电压” 意义为每个电池元的电压高于 0.85-0.9V/ 电池元的操作区域。公知该电 压会减少燃料电池堆的寿命。因此不希望燃料电池堆在此模式中操作。
     当燃料电池堆仅用恒定压力电流 (pressure current) 控制时, 会出现开路电压操 作模式。此控制方法来源于减少燃料电池堆的操作压力到低功率以避免 OCV 范围的构思。 然而, 必须认识到压力变化的动态远慢于电流变化的动态 (对于压力在秒的量级并且对于 电流在毫秒量级) 。还必须认识到, 燃料电池堆压力的降低仅在消耗电流时发生并且电流值 直接影响压力降低的速率。因此, 如果燃料电池堆的功率瞬间 (或者快速) 从几千瓦特变化
     到 0KW, 就不可能避免 OCV 范围, 因此就不会再有任何电流来减少压力, 因而燃料电池堆将 被损坏。 发明内容 本发明的一个方面目的为提供一种用于管理混合系统的操作的方法, 该系统包括 燃料电池堆和电池, 其能优化混合系统的性能并且增加燃料电池堆的寿命。
     因此, 根据所附权利要求 1, 本发明涉及一种用于管理混合连续电源的操作的方 法。
     本发明的一个优点是为燃料电池堆提供更长的寿命。实际上, 通过根据混合系统 是在低功率模式还是高功率模式选择不同的调整方法, 该系统利用了这两种调整模式而又 能避免其缺点。 实际上, 因为低功率意味着低电流, 所以在低功率下使用压力变化的调整是 有利的。 因此, 在低功率下感觉不到电流变化和压力变化之间的反应性的差异, 然而在高功 率下, 即, 具有高电流, 此差异会导致混合系统进入 OCV 范围。
     本发明的方法的优选实施例形成所附权利要求的主题。
     通过权利要求 2 限定第一有利实施例。
     在根据权利要求 3 的第二有利实施例中, 表示可变负载的变量是第三参考值和测 量的电池电压之间的差。
     在根据权利要求 4 的第三有利实施例中, 表示可变负载的变量是可变负载要求的 功率和燃料电池输出功率之间的差。
     在另一个有利实施例中, 第二临界值是 2.45 巴。
     在另一个有利实施例中, 第一预定临界值是 0.845 伏特。
     在另一个有利实施例中, 第二参考值是每电池元 0.85 伏特。
     在另一个有利实施例中, 第一参考值是 2.5 巴。
     在另一个有利实施例中, 所述燃料电池堆使用氢气作为燃料并且氧气作为氧化气 体。
     本发明还涉及一种包括燃料电池堆的混合系统, 该燃料电池堆包括 : 多个串联的 电池元, 其使用还原燃料和氧化剂的以提供燃料电池电压 ; 以及包括提供电池电压、 与可变 负载并联的电池 ; 所述燃料电池堆通过控制所述燃料电池堆的 DC/DC 转换器与可变负载连 接。混合系统使用作为本发明操作的主旨的该操作方法。
     附图说明 在随后独立给出非限制性实例并且在附图中示出的本发明的至少一个实施例的 详细描述中将更清晰的展现根据本发明的混合系统的目标、 优点和特征, 其中 :
     图 1 是已知混合系统的示意图 ;
     图 2 是根据本发明的第一实施例操作的混合系统的示意图 ;
     图 3 是根据本发明的第二操作模式操作的混合系统的示意图 ;
     图 4 是根据本发明的一个实施方式在两个操作模式之间的转换条件的示意图 ;
     图 5 是根据本发明的混合系统操作的模拟 ;
     图 6 是根据本发明在图 4 中示出的实施方式操作时, 燃料电池堆的操作点。
     具体实施方式
     在随后的描述中, 仅以简化方式描述所有本领域的技术人员已公知的燃料电池堆 的那些部分。
     图 1 示出了根据本发明的混合系统 1 的示意图。此混合系统 1 包括燃料电池堆 2, 即多个串联安装的电化学电池元。此燃料电池堆 2 以如氢气的还原燃料和如氧气的氧化剂 功能。还原燃料和氧化剂之间的反应产生燃料电池电压。通过装备有再循环泵的循环回路 抽空来源于还原燃料和氧化剂之间的反应的气体。 混合系统 1 还包括存储能量的装置 6, 例 如一个或几个电池。在说明书的余下部分, 此存储能量的装置被假定为电池 6 但是不限制 使用几个电池。此电池 6 提供电池电压并且与燃料电池堆 2 并联连接以便燃料电池堆 2 和 电池 6 两者都与可变负载 8 连接。此可变负载 8 可以是, 例如, 汽车发动机。
     此混合系统 1 还包括包含两个输入和两个输出的 DC/DC 转换器 4。燃料电池堆 2 的输出与 DC/DC 转换器 4 的两个输入连接, 这因此意味着由燃料电池堆 2 提供的电压进入 DC/DC 转换器 4。可变负载 8 和电池 6 的连接点被连接到 DC/DC 转换器 4 的两个输出。
     还设置 DC/DC 转换器 4 以控制混合系统 1, 因为 DC/DC 转换器 4 能够适应燃料电池 堆 2 的电压水平和电池 6 的电压水平。同样, DC/DC 转换器能够调整由燃料电池堆 2 提供 的功率。
     实际上, DC/DC 转换器 4 的任务是控制混合系统 1 以便电池 6 和燃料电池堆 2 共 同操作以给负载 8 供电。DC/DC 转换器的功能还有在负载 (是汽车应用中的发送机) 和电池 之间分配由燃料电池堆提供的功率。当然, 要对混合系统 1 的控制收到约束, 该约束是燃料 电池堆 2 的电压和电流限制、 电池 6 的电压和电流限制、 电池 6 的充电状态限制、 必须不能 超过的温度限制等等。
     一种控制方案是调整电池 6 的充电状态在额定值附近, 不到达最大和最小充电限 制。 换句话说, 电池从来不需要外部充电, 并且其通过燃料电池堆以及通过当车辆处在制动 状态期间的动能的再生而再充电。此方案的一个结果是燃料电池堆 2 响应平均电机能量要 求和电池 6 作为充电或放电能量的能量缓冲装置。通过 DC/DC 转换器 4 实现此方案。
     根据本发明, DC/DC 转换器 4 被设置为使混合系统 1 以两种操作模式操作从而避 免开路电压模式。将回顾当燃料电池堆 2 产生的功率低并且通过大于 0.85 伏特的电池电 压表征时出现此模式。从而, 此模式破坏燃料电池堆 2 的电池元并且降低堆的寿命。
     通过形成所述堆的电池元的端子处的电压和其产生的电流之间的关系表征燃料 电池堆。实际上, 每个燃料电池堆 2 都由电流和电池电压之间的关系表征, 即, 对于给定的 电流, 每个电池元产生电压, 该电压的值与所述给定的电流联系。 从而, 当电流增加时, 观察 到电池元端子处的电压 Vcell 下降。此电流 / 电池元电压关系甚至更复杂, 因为其还依赖于 压力。这意味着燃料电池堆 2 的性能依赖于还原燃料压力和注入到所述燃料电池堆中的氧 化气体。性能随压力的此变化结果是存在对于每个压力的电流 / 电池元电压关系。图 6 示 出了各种的压力下的电压 - 电流特性, 可以看出, 压力越高, 电池元电压 - 电流曲线的斜率 越小。另外, 可以看出, 对于给定的电流, 压力 P 越高, 电池元电压将越高。
     第一操作模式是混合系统 1 的低功率操作模式。此第一操作模式具有特定的调整 方法, 该方法在于调整电池 6 的电压和燃料电池堆 2 的电压。使用第一调整回路 9 和第二调整回路 11 进行此调整, 参见图 2。
     第一调整回路 9 包括第一比较器 10, 其比较用作燃料电池堆的参考电压 Vcell0 的第 二参考值和燃料电池堆的测量电压 Vcell(即, 燃料电池堆 2 的输出电压) 。这意味着燃料电 池的参考电压 Vcell0 与第一比较器 10 的正输入连接并且测量的燃料电池电压 Vcell 与第一比 较器 10 的负输入连接。第一比较器 10 的输出与第一电压控制器 12 连接。第一电压控制 器 12 被设置为控制并分析来源于燃料电池参考电压 Vcell0 和测量的燃料电池电压 Vcell 之间 的比较的数据并且向 DC/DC 转换器 4 提供指令或希望的信号 -1。此指令信号 -1 控制供给 到燃料电池堆 2 的电流的值。此电流影响 DC/DC 转换器 4 的阻抗并随即影响燃料电池堆 2 的每个电池元的电压。因此, 调整 DC/DC 转换器 4 的电流允许燃料电池堆 2 的每个电池元 的电压被调整到预定值。在本实例中, 每个电池元的电压将被调整到每电池元 0.85 伏特的 第二参考值, 该值为额定操作值。当然, 此值可依赖于使用的燃料电池堆的类型而不同。此 调整防止燃料电池堆进入开路电压范围。
     第二调整回路 11 用于功率改变。第二调整回路 11 包括第二比较器 14, 其比较参 考电池电压 Vbatt0 和测量的电池电压 Vbatt。 这意味着参考电池电压 Vbatt0 与第二比较器 14 的 正输入连接并且测量电池电压 Vbatt 与第二比较器的负输入连接。第二比较器 14 的输出与 第二电压控制器 16 连接。第二电压控制器 16 被设置为分析来源于参考电池电压 Vbatt0 和 测量电池电压 Vbatt 之间的比较的数据以影响燃料电池堆的压力。为了实现这一点, 第二电 压控制器 16 提供作用于阀门的信号 (信号 -P) 以增加或减少压力。影响压力的事实控制燃 料电池堆 2 的功率, 因为在恒定的电池元电压下, 压力的改变意味着电池元电压 - 电流曲线 的改变。增加压力增加了电流, 反之亦然。电池电压 Vbatt 的调整对控制混合系统 1 的方案 有用。实际上, 电池电压被调整到其额定值以便电池 6 从不需要外部充电, 因为其通过燃料 电池堆 2 以及当车辆处在制动状态时通过再生车辆动能而再充电。因此, 燃料电池堆 2 提 供车辆的电机 8 消耗的平均功率, 而电池用作充电或放电能量的能量缓冲器装置。
     因此, 在低功率模式或模式 1 的操作期间, 燃料电池堆的电池元电压 Vcell 被调整到 每电池 0.85 伏特的第二参考值, 并且通过改变压力产生功率的改变。从而, 获得了一种操 作模式, 其允许电池元电压不高于每电池元 0.85 伏特并且因此不破坏电池元, 因为燃料电 池堆不进入开路电压范围。
     然而, 因为每个电池元的端子处的电压受到了限制, 所以调整燃料电池堆的电池 元电压 Vcell 到恒定值减少了产率 (yield) 。当压力 P 最大时, 燃料电池堆的产率最大。在此 情况下, 产率的降低是可接受的, 因为此第一操作模式表征在于低功率。 给定产率下降具有 有限后果, 在该第一调整模式中较低的产率是可接受的。例如, 在第一操作模式中对于 500 瓦特的最大理论功率, 产率从 90% 变化到 85% 将使提供的功率从 450 瓦特变化到 425 瓦特。
     第二操作模式或模式 2 是当混合系统 1 在高功率下操作时混合系统 1 的操作模 式。此第二操作模式在于利用燃料电池堆压力 P 和调整燃料电池堆 2 的电池元电压 Vcell, 参见图 3。
     在此第二操作模式中, 存在第三调整回路 13, 参见图 3。该回路包括第三比较器 18, 其比较电池电压设定点 Vbatt0 和测量的电池电压 Vbatt, 即, 电池输出电压。这意味着电池 电压设定点 Vbatt0 与第三比较器 18 的正输入连接并且测量的电池电压 Vbatt 与第三比较器 18 的负输入连接。第三比较器 18 的输出与第三电压控制器 20 连接。第三电压控制器 20 被设置为分析来源于电池电压设定点 Vbatt0 和测量的电池电压 Vbatt 之间的比较的数据并且向 DC/DC 转换器 4 提供信号信号 -2。此信号信号 -2 的目的是通过影响燃料电池堆 2 的每个 电池元的电压而改变燃料电池堆 2 的电流, 从而保护电池 6。此调整回路 13 类似于在第一 操作模式中用于改变压力 P 并因此改变功率的第二调整回路 11。在变体中, 可以设想第二 调整回路 11 和第三调整回路 13 具有作为公共元件的电压比较器 18 或 14 以及电压控制器 16 或 20。电压控制器包括用于当系统在第一操作模式下操作时提供信号信号 -1 或者当系 统 1 在第二操作模式下操作时提供信号信号 -2 的选择装置。此设置要求较少的部件。与 此控制平行, 还原燃料即氢气的压力 P 和氧化气体即氧气的压力恒定保持在最大压力水平 Pmax。从而, 此最大压力 Pmax 可以提供燃料电池堆 2 的最大产率。
     当然, 根据本发明可以使用其它类型的调整执行该方法并且引用的实例不是限 制。
     因此获得了以两种操作模式操作的混合系统 1 : 其中电压恒定而压力 P 可变的第 一操作模式和其中电压可变而压力 P 恒定的第二操作模式。此系统 1 既在第一操作模式中 保护燃料电池堆 2 不进入开路电压范围又在第二操作模式中保护电池 6 不过充。然而, 优 选地, 电池 6 的保护优先于燃料电池堆 2 的保护, 以便在电流从可变负载 8 返回到混合系统 1 的情况下, 电流将传送到燃料电池堆 2 而没有进入电池 6。这是因为过冲电池 6 的风险。 特别地, 对于在用于汽车的混合系统 1 中使用的电池 6, 电池 6 过冲可能引起其的爆炸。为 了安全起见, 因此优选损坏燃料电池堆 2 而不是电池 6。 当组合用于过渡的条件时, 根据本变体的混合系统 1 从一种操作模式向另一种操 作模式转变。有两种过渡条件, 当达成第一条件时, 将混合系统 1 从第一操作模式改变到第 二操作模式, 并且当达成第二条件时, 将混合系统 1 从第二操作模式改变到第一操作模式。
     第一过渡使用必须满足混合系统 1 的两个条件的两个变量以能够从第一向第二 操作模式转变。这些条件中的第一个是压力条件。仅在燃料电池堆中的压力 P 高于或等于 2.45 巴的第二临界值时达成此压力条件。 实际上, 在称为低功率模式的第一操作模式中, 改 变压力 P 导致出现功率的改变, 以便压力 P 的增加引起功率的增加, 反之亦然。因为在每个 电池元的端子处的电压调整到第二参考值 (这里为 0.85 伏特) , 因此当压力 P 最大时达到功 率限制。但是, 此限制不是燃料电池堆 2 能提供的最大功率。因此, 必须改变操作模式以进 入允许提供更多功率的操作模式。这即为上述第二操作模式。
     然而, 必须存在指示需要更大的功率的信号。实际上, 如果简单的当压力 P 获得最 大压力时进行从第一操作模式到第二操作模式的改变, 当电压等于 0.85 伏特并且压力 P 具 有最大压力值时, 这会导致从一种模式到当混合系统 1 希望为提供功率而操作时的另一种 模式的不合时宜的切换。压力 P 的峰将引起这样的切换。因此必须适当设置表示功率要求 的附加条件。此条件指示混合系统 1 需要提供更大或更小的功率。此条件可以包括电池设 定点 Vbatt0 和测量电池电压 Vbatt 之间的电压差 ε。此电压条件表示期望的功率, 因为电池 6 的充电受控制以便所述电池从不过充。因此, 如果电池 6 已经充分充电, 其功率要求较少或 者是零并且随后必须减小功率。在第一过渡情况下, 如果电池电压设定点 Vbatt0 和电池电压 测量值 Vbatt 之间的电压差 ε 大于零, 将满足变为功率条件的电压条件。 这意味着混合系统 1 要求增加功率。因此, 当第一和第二条件都满足时, 进行第一操作模式和第二操作模式之 间的过渡, 并且混合系统 1 开始以第二操作模式操作, 该模式允许向混合系统 1 提供更多的
     功率。 在第二过渡情况中, 同样存在两个条件。第一条件是表示功率要求的条件, 即, 电 池 6 的电压设定点或参考电压 Vbatt0 和测量的电池电压 Vbatt 之间的电压差 ε 小于零。这意 味着混合系统 1 将试图降低功率。此电压条件与作为电压条件的第二条件相关。仅在燃料 电池堆的每个电池元的电压高于或等于 0.845 伏特的第一临界值时达成此电压条件。实际 上, 在高功率模式中, 通过降低每个电池元的端子处的电压实现功率的改变。在此模式中, 根据用于最大压力 Pmax 的电池元电压 - 电流曲线操作燃料电池堆 2。在此情况下, 在每个 电池元的端子处的电压下降越多, 电流以及由此的功率增加越多。 相反地, 当每个电池元的 端子处的电压增加时, 电流下降并且功率也下降。 在功率下降的情况下, 每个电池元的端子 处的电压增加, 并且此下降会继续直到导致每个电池元的端子处的接近 0.85 伏特的电压, 必须不超出此限制。如果混合系统 1 仍要求更低的功率, 混合系统 1 必须转换到第一操作 模式。因此, 当满足第一和第二条件时, 进行第二操作模式和第一操作模式之间的过渡, 混 合系统 1 以第一操作模式操作。
     然而, 如果电池设定点 Vbatt0 和测量的电池电压 Vbatt 之间的电压差 ε 等于零, 混合 系统 1 了解到必须提供功率。因此, 当参考电池电压 Vbatt0 和测量电池电压 Vbatt 之间的电压 差 ε 等于零时, 混合系统 1 确保电流值和压力值被设定并且保持恒定。
     出于安全原因, 可以选择不同于 0.85 伏特和 2.5 巴的 0.845 伏特和 2.45 巴的第 一和第二临界值的值。实际上, 人工产生滞后以防止操作模式不合时宜的改变。如果阈值 压力值 P 选择为 2.5 巴, 则如果压力下降到 2.495 巴会存在操作模式改变。那么, 可以认为 0.845 伏特的电压和 2.5 巴的压力可以写为 0.85V-x 和 2.5 巴 -x, 其中 x 是可调整值。因 此, 滞后意味着可以去除这些小的变化并因此使得操作方法更稳定。 应该明白, 第一和第二 临界值 (分别为 0.845V 和 2.45 巴) 不受限制并且可以选择其他值。
     当然, 功率设定点不必是参考电池电压 Vbatt0 和测量电池电压 Vbatt 之间的差 ε。 该 功率设定点可以是与根据燃料电池堆 2 产生的电流和电压的测量的功率关联的设定点。表 示功率要求的该设定点可以是踏板位置。因此, 如果系统检测到加速踏板没有在其静止位 置, 其推断该功率是必要的。相反地, 如果系统检测到加速器踏板在其静止位置, 系统 1 推 断零功率要求并且功率可以下降。
     根据本发明的操作管理方法的不同步骤为 :
     a) 向每个电化学电池元提供燃料气体流和氧化气体流以便发生产生电力的化学 反应。
     b) 限定表示可变负载或功率要求的设定点。 此设定点可以是预定电池电压设定点 值和测量电池电压之间的差。
     c) 使用压力传感器监视在燃料电池堆 2 中的燃料气体压力和氧化气体压力。这意 味着燃料电池堆 2 中的压力连续可知。几个传感器提供该压力的平均值并且因此提供更可 靠的压力值。
     d) 调整在燃料电池堆 2 中的压力到第一参考值。燃料电池堆 2 中的压力 P 保持在 其最大值 Pmax 以便从燃料电池堆获得最大功率。第一参考值是 2.5 巴。
     e) 通过改变 DC/DC 转换器 4 的输出电压 (Vcell) , 根据设定点在燃料电池堆 2 和电 池 6 之间分配所述可变负载。DC/DC 转换器 4 影响燃料电池堆 2 的电压水平并且具体地影
     响燃料电池堆 2 的输出电压 Vcell, 该输出电压是每个电池元的端子处的电压的和。每个电 池元的端子处的电压改变提供限定的电流并且因此提供限定的功率。
     f) 监视表示在燃料电池堆的至少一个电化学电池元的端子处的电压的电压或者 还检测燃料电池堆的输出电压是否超出第一预定临界值。这里检测每个电池元的端子处 的电压是否接近于 0.85V 的值, 该值为该电压的最大希望值。在此情况中, 第一临界值是 0.845V。
     g) 监视表示功率要求的设定点是否指示要求较少的功率, 这是为了了解系统是否 要求更多或更少的功率。此设定点可以是电池电压设定点值 Vbatt0 和测量的电池电压 Vbatt 之间的差或者是功率设定点值和测量的功率值之间的差。
     如果表示至少一个电池元的端子处的电压的电压超过第一预定临界值并且如果 上述变量指示可变负载的下降 :
     h) 中断保持燃料电池堆中的压力在参考值的步骤并且中断通过 DC/DC 转换器改 变燃料电池堆的输出电压来改变并调整燃料电池堆的输出功率的步骤。
     i) 通过适应 DC/DC 转换器的输入阻抗, 调整表示至少一个电池元的端子处的电压 的电压到第二参考值。第二参考值是 0.85V。
     j) 通过改变压力, 即, 通过改变压力改变燃料电池堆的输出功率, 在燃料电池堆和 电池之间分配可变负载。 当在每个电池元的端子处的电压恒定时允许调整功率的电流调整 依赖于压力。对于每个压力存在根据电流的电池元端子电压的曲线。因此, 对于固定的电 流, 每个电池元的端子处的电压随压力增加, 相仿地, 对于在每个电池元的端子处的固定的 电压, 电流随压力增加。
     如果在燃料电池堆中的压力超过了第二预定临界值并且如果设定点指示可变负 载的增加 :
     k) 中断操作 (i) 并且中断操作 (j) 并且重复操作 (d) 和操作 (e) 。
     因此, 图 5 示出了表示在模拟操作中混合系统 1 的不同特征变量的曲线。
     本领域的技术人员应该明白, 在不脱离本发明的附加权利要求限定的范围内, 可 以对上面列出的本发明的不同实施例进行各种替代和 / 或改善和 / 或组合。

管理混合系统操作的方法.pdf_第1页
第1页 / 共14页
管理混合系统操作的方法.pdf_第2页
第2页 / 共14页
管理混合系统操作的方法.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《管理混合系统操作的方法.pdf》由会员分享,可在线阅读,更多相关《管理混合系统操作的方法.pdf(14页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102810685 A (43)申请公布日 2012.12.05 CN 102810685 A *CN102810685A* (21)申请号 201210178411.0 (22)申请日 2012.06.01 11168535.0 2011.06.01 EP H01M 8/04(2006.01) H02J 7/00(2006.01) (71)申请人 巴莱诺斯清洁能源控股公司 地址 瑞士比尔 (72)发明人 J伯纳德 (74)专利代理机构 北京市中咨律师事务所 11247 代理人 杨晓光 于静 (54) 发明名称 管理混合系统操作的方法 (57) 摘要 本发明涉及一种用。

2、于管理混合连续电源的 操作的方法, 所述电源包括燃料电池堆 (2) 、 电池 (6) 和包括输入和输出的 DC/DC 转换器 (4) , 转换 器 (4) 的输入被连接到燃料电池堆的输出并且其 输出被连接到与所述电池并联的可变负载 (8) , 由适合从燃料和氧化气体产生电力的多个电化学 电池元形成所述燃料电池堆。 (30)优先权数据 (51)Int.Cl. 权利要求书 2 页 说明书 7 页 附图 4 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 2 页 说明书 7 页 附图 4 页 1/2 页 2 1. 一种用于管理混合连续电源的操作的方法, 所述电源包括燃料电。

3、池堆 (2) 、 电池 (6) 和包括输入和输出的 DC/DC 转换器 (4) , 所述转换器 (4) 的输入被连接到所述燃料电池堆的 输出并且所述转换器的输出被连接到与所述电池并联的可变负载 (8) , 由适合从燃料和氧 化气体产生电力的多个电化学电池元形成所述燃料电池堆, 所述方法的特征在于包括以下 操作 : a) 向所述电化学电池元的每一个提供燃料流和氧化气体流 ; b) 限定表示所述可变负载的设定点 ; c) 监视在所述燃料电池堆中的所述燃料压力和所述氧化气体压力 ; d) 将所述燃料电池堆中的所述压力 (P) 调整到第一参考值 ; e) 通过改变所述 DC/DC 转换器 (4) 的所。

4、述输出电压 (Vcell) 根据所述设定点在所述燃料 电池堆 (2) 和所述电池 (6) 之间分配所述可变负载 ; f) 监视表示在所述燃料电池堆的至少一个电化学电池元的端子处的电压的电压 ; g) 监视所述变量 ; 如果表示至少一个所述电池元的端子处的所述电压的电压超过第一预定临界值并且 如果所述变量指示所述可变负载的下降 ; h) 中断操作 (d) 并且中断操作 (e) ; 以及 i) 通过适应所述 DC/DC 转换器的输入阻抗将表示在至少一个电池元的端子处的所述 电压的电压调整到第二参考值 ; j) 通过改变压力在所述燃料电池堆和所述电池之间分配所述可变负载。 2. 根据权利要求 1 的。

5、管理方法, 其特征在于, 所述方法还包括以下操作 : 如果在所述燃料电池堆中的所述压力超过第二预定临界值并且如果所述变量指示所 述可变负载的增加, k) 中断操作 (i) 并且中断操作 (j) 并且重复操作 (d) 和操作 (e) 。 3. 根据权利要求 1 的管理方法, 其特征在于, 表示所述可变负载的所述变量是第三参 考值和测量的电池电压 (Vbatt) 之间的差 () 。 4. 根据权利要求 2 的管理方法, 其特征在于, 表示所述可变负载的所述变量是第三参 考值和测量的电池电压 (Vbatt) 之间的差 () 。 5. 根据权利要求 1 的管理方法, 其特征在于, 表示所述可变负载的所。

6、述变量是所述可 变负载要求的功率和所述燃料电池堆的输出功率之间的差。 6. 根据权利要求 2 的管理方法, 其特征在于, 表示所述可变负载的所述变量是所述可 变负载要求的功率和所述燃料电池堆的输出功率之间的差。 7. 根据权利要求 2 的管理方法, 其特征在于, 所述第二临界值是 2.45 巴。 8. 根据权利要求 4 的管理方法, 其特征在于, 所述第二临界值是 2.45 巴。 9. 根据权利要求 6 的管理方法, 其特征在于, 所述第二临界值是 2.45 巴。 10. 根据权利要求 1 的管理方法, 其特征在于, 所述第一预定临界值是 0.845 伏特。 11.根据权利要求1的管理方法, 。

7、其特征在于, 所述第二参考值是每电池元0.85伏特的 值。 12. 根据权利要求 1 的管理方法, 其特征在于, 所述第一参考值是 2.5 巴。 13. 根据权利要求 1 的管理方法, 其特征在于, 所述燃料电池堆 (2) 使用氢气作为燃料 权 利 要 求 书 CN 102810685 A 2 2/2 页 3 并且使用氧气作为氧化气体。 14. 一种管理混合连续电源的系统, 所述电源包括燃料电池堆 (2) 、 电池 (6) 以及包括 输入和输出的 DC/DC 转换器 (4) , 所述转换器 (4) 的输入被连接到所述燃料电池堆的输出并 且其输出被连接到与所述电池 (6) 并联的可变负载, 由适。

8、合从燃料和氧化气体产生电力的 多个电化学电池元形成所述燃料电池堆。 权 利 要 求 书 CN 102810685 A 3 1/7 页 4 管理混合系统操作的方法 技术领域 0001 本发明涉及用于管理混合连续电源操作的方法, 所述电源包括燃料电池堆、 电池 (battary) 和包括输入和输出的 DC/DC 转换器, 所述转换器的输入被连接到燃料电池堆输 出并且其输出被连接到与与电池并联的可变负载, 由适合从燃料和氧化气体产生电力的多 个电化学电池元 (cell) 形成燃料电池堆。 背景技术 0002 串联连接的电化学单元装配 (常称为堆) 已公知。可以通过例如蓄电池元件或者通 过燃料电池形成。

9、这样装配的电化学单元。 燃料电池指将化学能直接转化成电能的电化学器 件。 例如, 一种类型的燃料电池包括阳极和阴极, 其间安置通常称作聚合物电解质膜的质子 交换膜。此类型的膜仅允许质子在燃料电池的阴极和阳极之间通过。在阳极上双原子氢进 行反应以产生穿过聚合物电解质膜的H+离子。 通过此反应产生的电子通过燃料电池的外部 电路到达阴极, 从而产生电流。因为单个燃料电池一般仅能产生低电压 (约 1 伏特) , 通常串 联连接燃料电池以形成能够产生包括每个电池的电压的总和的更高的电压的燃料电池堆。 0003 当在汽车工业中使用时, 这些燃料电池堆通常与电池关联以形成混合系统。此系 统将燃料电池堆和电池。

10、并联以便燃料电池堆和电池通过称为母线 (bus) 的公共部分同时或 者分别给汽车供电。此混合还允许燃料电池堆给电池充电。当其使用连接在燃料电池堆的 输出处的 DC/DC 转换器时混合系统称为 “激活 (active) ” , 参见图 1。此 DC/DC 转换器经常 用于适应燃料电池堆和电池的电压水平并且调整通过燃料电池堆输出的功率。 0004 调整功率要求实施控制方案, 以根据汽车电机的功率要求和系统约束在燃料电池 堆和电池之间分配功率。 控制方案必须考虑的系统约束是燃料电池堆和电池的最大电压和 电流、 必须不能超过的温度范围、 电池充电状态, 即, 例如, 当其已经 100% 充电时, 电池。

11、必须 不再充电, 等等。 0005 用于此混合系统的一个控制方案包括将电池充电状态调整在额定值附近, 不达到 该电池的最大和最小充电状态。 从而, 电池从来不需要外部充电, 因为其通过燃料电池堆以 及通过当车辆处在制动状态时的再生动能再充电。 这意味着燃料电池堆提供车辆的电机消 耗的平均功率, 而电池用作充电或放电能量的能量缓冲器装置。通过使用 DC/DC 转换器调 整母线电压在恒定值实现此方案。 0006 此已知方案的一个缺点是没有防止燃料电池堆在开路电压 ( “OCV” ) 下操作的措 施。 “开路电压” 意义为每个电池元的电压高于 0.85-0.9V/ 电池元的操作区域。公知该电 压会减。

12、少燃料电池堆的寿命。因此不希望燃料电池堆在此模式中操作。 0007 当燃料电池堆仅用恒定压力电流 (pressure current) 控制时, 会出现开路电压操 作模式。此控制方法来源于减少燃料电池堆的操作压力到低功率以避免 OCV 范围的构思。 然而, 必须认识到压力变化的动态远慢于电流变化的动态 (对于压力在秒的量级并且对于 电流在毫秒量级) 。还必须认识到, 燃料电池堆压力的降低仅在消耗电流时发生并且电流值 直接影响压力降低的速率。因此, 如果燃料电池堆的功率瞬间 (或者快速) 从几千瓦特变化 说 明 书 CN 102810685 A 4 2/7 页 5 到 0KW, 就不可能避免 O。

13、CV 范围, 因此就不会再有任何电流来减少压力, 因而燃料电池堆将 被损坏。 发明内容 0008 本发明的一个方面目的为提供一种用于管理混合系统的操作的方法, 该系统包括 燃料电池堆和电池, 其能优化混合系统的性能并且增加燃料电池堆的寿命。 0009 因此, 根据所附权利要求 1, 本发明涉及一种用于管理混合连续电源的操作的方 法。 0010 本发明的一个优点是为燃料电池堆提供更长的寿命。实际上, 通过根据混合系统 是在低功率模式还是高功率模式选择不同的调整方法, 该系统利用了这两种调整模式而又 能避免其缺点。 实际上, 因为低功率意味着低电流, 所以在低功率下使用压力变化的调整是 有利的。 。

14、因此, 在低功率下感觉不到电流变化和压力变化之间的反应性的差异, 然而在高功 率下, 即, 具有高电流, 此差异会导致混合系统进入 OCV 范围。 0011 本发明的方法的优选实施例形成所附权利要求的主题。 0012 通过权利要求 2 限定第一有利实施例。 0013 在根据权利要求 3 的第二有利实施例中, 表示可变负载的变量是第三参考值和测 量的电池电压之间的差。 0014 在根据权利要求 4 的第三有利实施例中, 表示可变负载的变量是可变负载要求的 功率和燃料电池输出功率之间的差。 0015 在另一个有利实施例中, 第二临界值是 2.45 巴。 0016 在另一个有利实施例中, 第一预定临。

15、界值是 0.845 伏特。 0017 在另一个有利实施例中, 第二参考值是每电池元 0.85 伏特。 0018 在另一个有利实施例中, 第一参考值是 2.5 巴。 0019 在另一个有利实施例中, 所述燃料电池堆使用氢气作为燃料并且氧气作为氧化气 体。 0020 本发明还涉及一种包括燃料电池堆的混合系统, 该燃料电池堆包括 : 多个串联的 电池元, 其使用还原燃料和氧化剂的以提供燃料电池电压 ; 以及包括提供电池电压、 与可变 负载并联的电池 ; 所述燃料电池堆通过控制所述燃料电池堆的 DC/DC 转换器与可变负载连 接。混合系统使用作为本发明操作的主旨的该操作方法。 附图说明 0021 在随。

16、后独立给出非限制性实例并且在附图中示出的本发明的至少一个实施例的 详细描述中将更清晰的展现根据本发明的混合系统的目标、 优点和特征, 其中 : 0022 图 1 是已知混合系统的示意图 ; 0023 图 2 是根据本发明的第一实施例操作的混合系统的示意图 ; 0024 图 3 是根据本发明的第二操作模式操作的混合系统的示意图 ; 0025 图 4 是根据本发明的一个实施方式在两个操作模式之间的转换条件的示意图 ; 0026 图 5 是根据本发明的混合系统操作的模拟 ; 0027 图 6 是根据本发明在图 4 中示出的实施方式操作时, 燃料电池堆的操作点。 说 明 书 CN 102810685 。

17、A 5 3/7 页 6 具体实施方式 0028 在随后的描述中, 仅以简化方式描述所有本领域的技术人员已公知的燃料电池堆 的那些部分。 0029 图 1 示出了根据本发明的混合系统 1 的示意图。此混合系统 1 包括燃料电池堆 2, 即多个串联安装的电化学电池元。此燃料电池堆 2 以如氢气的还原燃料和如氧气的氧化剂 功能。还原燃料和氧化剂之间的反应产生燃料电池电压。通过装备有再循环泵的循环回路 抽空来源于还原燃料和氧化剂之间的反应的气体。 混合系统1还包括存储能量的装置6, 例 如一个或几个电池。在说明书的余下部分, 此存储能量的装置被假定为电池 6 但是不限制 使用几个电池。此电池 6 提供。

18、电池电压并且与燃料电池堆 2 并联连接以便燃料电池堆 2 和 电池 6 两者都与可变负载 8 连接。此可变负载 8 可以是, 例如, 汽车发动机。 0030 此混合系统 1 还包括包含两个输入和两个输出的 DC/DC 转换器 4。燃料电池堆 2 的输出与 DC/DC 转换器 4 的两个输入连接, 这因此意味着由燃料电池堆 2 提供的电压进入 DC/DC 转换器 4。可变负载 8 和电池 6 的连接点被连接到 DC/DC 转换器 4 的两个输出。 0031 还设置DC/DC转换器4以控制混合系统1, 因为DC/DC转换器4能够适应燃料电池 堆 2 的电压水平和电池 6 的电压水平。同样, DC/。

19、DC 转换器能够调整由燃料电池堆 2 提供 的功率。 0032 实际上, DC/DC 转换器 4 的任务是控制混合系统 1 以便电池 6 和燃料电池堆 2 共 同操作以给负载 8 供电。DC/DC 转换器的功能还有在负载 (是汽车应用中的发送机) 和电池 之间分配由燃料电池堆提供的功率。当然, 要对混合系统 1 的控制收到约束, 该约束是燃料 电池堆 2 的电压和电流限制、 电池 6 的电压和电流限制、 电池 6 的充电状态限制、 必须不能 超过的温度限制等等。 0033 一种控制方案是调整电池 6 的充电状态在额定值附近, 不到达最大和最小充电限 制。 换句话说, 电池从来不需要外部充电, 。

20、并且其通过燃料电池堆以及通过当车辆处在制动 状态期间的动能的再生而再充电。此方案的一个结果是燃料电池堆 2 响应平均电机能量要 求和电池 6 作为充电或放电能量的能量缓冲装置。通过 DC/DC 转换器 4 实现此方案。 0034 根据本发明, DC/DC 转换器 4 被设置为使混合系统 1 以两种操作模式操作从而避 免开路电压模式。将回顾当燃料电池堆 2 产生的功率低并且通过大于 0.85 伏特的电池电 压表征时出现此模式。从而, 此模式破坏燃料电池堆 2 的电池元并且降低堆的寿命。 0035 通过形成所述堆的电池元的端子处的电压和其产生的电流之间的关系表征燃料 电池堆。实际上, 每个燃料电池。

21、堆 2 都由电流和电池电压之间的关系表征, 即, 对于给定的 电流, 每个电池元产生电压, 该电压的值与所述给定的电流联系。 从而, 当电流增加时, 观察 到电池元端子处的电压 Vcell下降。此电流 / 电池元电压关系甚至更复杂, 因为其还依赖于 压力。这意味着燃料电池堆 2 的性能依赖于还原燃料压力和注入到所述燃料电池堆中的氧 化气体。性能随压力的此变化结果是存在对于每个压力的电流 / 电池元电压关系。图 6 示 出了各种的压力下的电压 - 电流特性, 可以看出, 压力越高, 电池元电压 - 电流曲线的斜率 越小。另外, 可以看出, 对于给定的电流, 压力 P 越高, 电池元电压将越高。 。

22、0036 第一操作模式是混合系统 1 的低功率操作模式。此第一操作模式具有特定的调整 方法, 该方法在于调整电池 6 的电压和燃料电池堆 2 的电压。使用第一调整回路 9 和第二 说 明 书 CN 102810685 A 6 4/7 页 7 调整回路 11 进行此调整, 参见图 2。 0037 第一调整回路9包括第一比较器10, 其比较用作燃料电池堆的参考电压Vcell0的第 二参考值和燃料电池堆的测量电压 Vcell(即, 燃料电池堆 2 的输出电压) 。这意味着燃料电 池的参考电压Vcell0与第一比较器10的正输入连接并且测量的燃料电池电压Vcell与第一比 较器 10 的负输入连接。第。

23、一比较器 10 的输出与第一电压控制器 12 连接。第一电压控制 器12被设置为控制并分析来源于燃料电池参考电压Vcell0和测量的燃料电池电压Vcell之间 的比较的数据并且向 DC/DC 转换器 4 提供指令或希望的信号 -1。此指令信号 -1 控制供给 到燃料电池堆 2 的电流的值。此电流影响 DC/DC 转换器 4 的阻抗并随即影响燃料电池堆 2 的每个电池元的电压。因此, 调整 DC/DC 转换器 4 的电流允许燃料电池堆 2 的每个电池元 的电压被调整到预定值。在本实例中, 每个电池元的电压将被调整到每电池元 0.85 伏特的 第二参考值, 该值为额定操作值。当然, 此值可依赖于使。

24、用的燃料电池堆的类型而不同。此 调整防止燃料电池堆进入开路电压范围。 0038 第二调整回路 11 用于功率改变。第二调整回路 11 包括第二比较器 14, 其比较参 考电池电压Vbatt0和测量的电池电压Vbatt。 这意味着参考电池电压Vbatt0与第二比较器14的 正输入连接并且测量电池电压 Vbatt与第二比较器的负输入连接。第二比较器 14 的输出与 第二电压控制器 16 连接。第二电压控制器 16 被设置为分析来源于参考电池电压 Vbatt0和 测量电池电压 Vbatt之间的比较的数据以影响燃料电池堆的压力。为了实现这一点, 第二电 压控制器 16 提供作用于阀门的信号 (信号 -。

25、P) 以增加或减少压力。影响压力的事实控制燃 料电池堆2的功率, 因为在恒定的电池元电压下, 压力的改变意味着电池元电压-电流曲线 的改变。增加压力增加了电流, 反之亦然。电池电压 Vbatt的调整对控制混合系统 1 的方案 有用。实际上, 电池电压被调整到其额定值以便电池 6 从不需要外部充电, 因为其通过燃料 电池堆 2 以及当车辆处在制动状态时通过再生车辆动能而再充电。因此, 燃料电池堆 2 提 供车辆的电机 8 消耗的平均功率, 而电池用作充电或放电能量的能量缓冲器装置。 0039 因此, 在低功率模式或模式1的操作期间, 燃料电池堆的电池元电压Vcell被调整到 每电池 0.85 伏。

26、特的第二参考值, 并且通过改变压力产生功率的改变。从而, 获得了一种操 作模式, 其允许电池元电压不高于每电池元 0.85 伏特并且因此不破坏电池元, 因为燃料电 池堆不进入开路电压范围。 0040 然而, 因为每个电池元的端子处的电压受到了限制, 所以调整燃料电池堆的电池 元电压 Vcell到恒定值减少了产率 (yield) 。当压力 P 最大时, 燃料电池堆的产率最大。在此 情况下, 产率的降低是可接受的, 因为此第一操作模式表征在于低功率。 给定产率下降具有 有限后果, 在该第一调整模式中较低的产率是可接受的。例如, 在第一操作模式中对于 500 瓦特的最大理论功率, 产率从 90% 变。

27、化到 85% 将使提供的功率从 450 瓦特变化到 425 瓦特。 0041 第二操作模式或模式 2 是当混合系统 1 在高功率下操作时混合系统 1 的操作模 式。此第二操作模式在于利用燃料电池堆压力 P 和调整燃料电池堆 2 的电池元电压 Vcell, 参见图 3。 0042 在此第二操作模式中, 存在第三调整回路 13, 参见图 3。该回路包括第三比较器 18, 其比较电池电压设定点 Vbatt0和测量的电池电压 Vbatt, 即, 电池输出电压。这意味着电池 电压设定点Vbatt0与第三比较器18的正输入连接并且测量的电池电压Vbatt与第三比较器18 的负输入连接。第三比较器 18 的。

28、输出与第三电压控制器 20 连接。第三电压控制器 20 被 说 明 书 CN 102810685 A 7 5/7 页 8 设置为分析来源于电池电压设定点 Vbatt0和测量的电池电压 Vbatt之间的比较的数据并且向 DC/DC 转换器 4 提供信号信号 -2。此信号信号 -2 的目的是通过影响燃料电池堆 2 的每个 电池元的电压而改变燃料电池堆 2 的电流, 从而保护电池 6。此调整回路 13 类似于在第一 操作模式中用于改变压力 P 并因此改变功率的第二调整回路 11。在变体中, 可以设想第二 调整回路 11 和第三调整回路 13 具有作为公共元件的电压比较器 18 或 14 以及电压控制。

29、器 16 或 20。电压控制器包括用于当系统在第一操作模式下操作时提供信号信号 -1 或者当系 统 1 在第二操作模式下操作时提供信号信号 -2 的选择装置。此设置要求较少的部件。与 此控制平行, 还原燃料即氢气的压力 P 和氧化气体即氧气的压力恒定保持在最大压力水平 Pmax。从而, 此最大压力 Pmax 可以提供燃料电池堆 2 的最大产率。 0043 当然, 根据本发明可以使用其它类型的调整执行该方法并且引用的实例不是限 制。 0044 因此获得了以两种操作模式操作的混合系统 1 : 其中电压恒定而压力 P 可变的第 一操作模式和其中电压可变而压力 P 恒定的第二操作模式。此系统 1 既在。

30、第一操作模式中 保护燃料电池堆 2 不进入开路电压范围又在第二操作模式中保护电池 6 不过充。然而, 优 选地, 电池 6 的保护优先于燃料电池堆 2 的保护, 以便在电流从可变负载 8 返回到混合系统 1 的情况下, 电流将传送到燃料电池堆 2 而没有进入电池 6。这是因为过冲电池 6 的风险。 特别地, 对于在用于汽车的混合系统 1 中使用的电池 6, 电池 6 过冲可能引起其的爆炸。为 了安全起见, 因此优选损坏燃料电池堆 2 而不是电池 6。 0045 当组合用于过渡的条件时, 根据本变体的混合系统 1 从一种操作模式向另一种操 作模式转变。有两种过渡条件, 当达成第一条件时, 将混合。

31、系统 1 从第一操作模式改变到第 二操作模式, 并且当达成第二条件时, 将混合系统 1 从第二操作模式改变到第一操作模式。 0046 第一过渡使用必须满足混合系统 1 的两个条件的两个变量以能够从第一向第二 操作模式转变。这些条件中的第一个是压力条件。仅在燃料电池堆中的压力 P 高于或等于 2.45巴的第二临界值时达成此压力条件。 实际上, 在称为低功率模式的第一操作模式中, 改 变压力 P 导致出现功率的改变, 以便压力 P 的增加引起功率的增加, 反之亦然。因为在每个 电池元的端子处的电压调整到第二参考值 (这里为 0.85 伏特) , 因此当压力 P 最大时达到功 率限制。但是, 此限制。

32、不是燃料电池堆 2 能提供的最大功率。因此, 必须改变操作模式以进 入允许提供更多功率的操作模式。这即为上述第二操作模式。 0047 然而, 必须存在指示需要更大的功率的信号。实际上, 如果简单的当压力 P 获得最 大压力时进行从第一操作模式到第二操作模式的改变, 当电压等于0.85伏特并且压力P具 有最大压力值时, 这会导致从一种模式到当混合系统 1 希望为提供功率而操作时的另一种 模式的不合时宜的切换。压力 P 的峰将引起这样的切换。因此必须适当设置表示功率要求 的附加条件。此条件指示混合系统 1 需要提供更大或更小的功率。此条件可以包括电池设 定点 Vbatt0和测量电池电压 Vbatt。

33、之间的电压差 。此电压条件表示期望的功率, 因为电池 6 的充电受控制以便所述电池从不过充。因此, 如果电池 6 已经充分充电, 其功率要求较少或 者是零并且随后必须减小功率。在第一过渡情况下, 如果电池电压设定点 Vbatt0和电池电压 测量值Vbatt之间的电压差大于零, 将满足变为功率条件的电压条件。 这意味着混合系统 1 要求增加功率。因此, 当第一和第二条件都满足时, 进行第一操作模式和第二操作模式之 间的过渡, 并且混合系统1开始以第二操作模式操作, 该模式允许向混合系统1提供更多的 说 明 书 CN 102810685 A 8 6/7 页 9 功率。 0048 在第二过渡情况中,。

34、 同样存在两个条件。第一条件是表示功率要求的条件, 即, 电 池 6 的电压设定点或参考电压 Vbatt0和测量的电池电压 Vbatt之间的电压差 小于零。这意 味着混合系统 1 将试图降低功率。此电压条件与作为电压条件的第二条件相关。仅在燃料 电池堆的每个电池元的电压高于或等于 0.845 伏特的第一临界值时达成此电压条件。实际 上, 在高功率模式中, 通过降低每个电池元的端子处的电压实现功率的改变。在此模式中, 根据用于最大压力 Pmax 的电池元电压 - 电流曲线操作燃料电池堆 2。在此情况下, 在每个 电池元的端子处的电压下降越多, 电流以及由此的功率增加越多。 相反地, 当每个电池元。

35、的 端子处的电压增加时, 电流下降并且功率也下降。 在功率下降的情况下, 每个电池元的端子 处的电压增加, 并且此下降会继续直到导致每个电池元的端子处的接近 0.85 伏特的电压, 必须不超出此限制。如果混合系统 1 仍要求更低的功率, 混合系统 1 必须转换到第一操作 模式。因此, 当满足第一和第二条件时, 进行第二操作模式和第一操作模式之间的过渡, 混 合系统 1 以第一操作模式操作。 0049 然而, 如果电池设定点Vbatt0和测量的电池电压Vbatt之间的电压差等于零, 混合 系统 1 了解到必须提供功率。因此, 当参考电池电压 Vbatt0和测量电池电压 Vbatt之间的电压 差 。

36、等于零时, 混合系统 1 确保电流值和压力值被设定并且保持恒定。 0050 出于安全原因, 可以选择不同于 0.85 伏特和 2.5 巴的 0.845 伏特和 2.45 巴的第 一和第二临界值的值。实际上, 人工产生滞后以防止操作模式不合时宜的改变。如果阈值 压力值 P 选择为 2.5 巴, 则如果压力下降到 2.495 巴会存在操作模式改变。那么, 可以认为 0.845 伏特的电压和 2.5 巴的压力可以写为 0.85V-x 和 2.5 巴 -x, 其中 x 是可调整值。因 此, 滞后意味着可以去除这些小的变化并因此使得操作方法更稳定。 应该明白, 第一和第二 临界值 (分别为 0.845V。

37、 和 2.45 巴) 不受限制并且可以选择其他值。 0051 当然, 功率设定点不必是参考电池电压Vbatt0和测量电池电压Vbatt之间的差。 该 功率设定点可以是与根据燃料电池堆 2 产生的电流和电压的测量的功率关联的设定点。表 示功率要求的该设定点可以是踏板位置。因此, 如果系统检测到加速踏板没有在其静止位 置, 其推断该功率是必要的。相反地, 如果系统检测到加速器踏板在其静止位置, 系统 1 推 断零功率要求并且功率可以下降。 0052 根据本发明的操作管理方法的不同步骤为 : 0053 a) 向每个电化学电池元提供燃料气体流和氧化气体流以便发生产生电力的化学 反应。 0054 b) 。

38、限定表示可变负载或功率要求的设定点。 此设定点可以是预定电池电压设定点 值和测量电池电压之间的差。 0055 c) 使用压力传感器监视在燃料电池堆 2 中的燃料气体压力和氧化气体压力。这意 味着燃料电池堆 2 中的压力连续可知。几个传感器提供该压力的平均值并且因此提供更可 靠的压力值。 0056 d) 调整在燃料电池堆 2 中的压力到第一参考值。燃料电池堆 2 中的压力 P 保持在 其最大值 Pmax 以便从燃料电池堆获得最大功率。第一参考值是 2.5 巴。 0057 e) 通过改变 DC/DC 转换器 4 的输出电压 (Vcell) , 根据设定点在燃料电池堆 2 和电 池 6 之间分配所述。

39、可变负载。DC/DC 转换器 4 影响燃料电池堆 2 的电压水平并且具体地影 说 明 书 CN 102810685 A 9 7/7 页 10 响燃料电池堆 2 的输出电压 Vcell, 该输出电压是每个电池元的端子处的电压的和。每个电 池元的端子处的电压改变提供限定的电流并且因此提供限定的功率。 0058 f) 监视表示在燃料电池堆的至少一个电化学电池元的端子处的电压的电压或者 还检测燃料电池堆的输出电压是否超出第一预定临界值。这里检测每个电池元的端子处 的电压是否接近于 0.85V 的值, 该值为该电压的最大希望值。在此情况中, 第一临界值是 0.845V。 0059 g) 监视表示功率要求。

40、的设定点是否指示要求较少的功率, 这是为了了解系统是否 要求更多或更少的功率。此设定点可以是电池电压设定点值 Vbatt0和测量的电池电压 Vbatt 之间的差或者是功率设定点值和测量的功率值之间的差。 0060 如果表示至少一个电池元的端子处的电压的电压超过第一预定临界值并且如果 上述变量指示可变负载的下降 : 0061 h) 中断保持燃料电池堆中的压力在参考值的步骤并且中断通过 DC/DC 转换器改 变燃料电池堆的输出电压来改变并调整燃料电池堆的输出功率的步骤。 0062 i) 通过适应 DC/DC 转换器的输入阻抗, 调整表示至少一个电池元的端子处的电压 的电压到第二参考值。第二参考值是。

41、 0.85V。 0063 j) 通过改变压力, 即, 通过改变压力改变燃料电池堆的输出功率, 在燃料电池堆和 电池之间分配可变负载。 当在每个电池元的端子处的电压恒定时允许调整功率的电流调整 依赖于压力。对于每个压力存在根据电流的电池元端子电压的曲线。因此, 对于固定的电 流, 每个电池元的端子处的电压随压力增加, 相仿地, 对于在每个电池元的端子处的固定的 电压, 电流随压力增加。 0064 如果在燃料电池堆中的压力超过了第二预定临界值并且如果设定点指示可变负 载的增加 : 0065 k) 中断操作 (i) 并且中断操作 (j) 并且重复操作 (d) 和操作 (e) 。 0066 因此, 图。

42、 5 示出了表示在模拟操作中混合系统 1 的不同特征变量的曲线。 0067 本领域的技术人员应该明白, 在不脱离本发明的附加权利要求限定的范围内, 可 以对上面列出的本发明的不同实施例进行各种替代和 / 或改善和 / 或组合。 说 明 书 CN 102810685 A 10 1/4 页 11 图 1 图 2 说 明 书 附 图 CN 102810685 A 11 2/4 页 12 图 3 图 4 说 明 书 附 图 CN 102810685 A 12 3/4 页 13 图 5 说 明 书 附 图 CN 102810685 A 13 4/4 页 14 图 6 说 明 书 附 图 CN 102810685 A 14 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1