改变高温地层渗透性 本发明涉及改变高温地层渗透性的方法及组合物。更具体地说,本发明涉及在形成高生产作业的地层中,高温下延迟原地形成胶凝的方法及组合物。
油井中回收到的不需要的水可以是由天然地下水,在注水或注汽操作中,也可以是由注入的推进水或水汽造成的。在这两种情况下,水或水汽通过高渗透区流入井孔中,从而在低渗透区中的油走旁路。在注水或注汽操作中,地层的较高渗透区往往吸收大多数的注水或注汽。当高渗透区内所含的油被扫出时,开始这还可以接受,但随着这种区内变得贫油,以后便不能接受了。从这点来看,注水或蒸汽驱油对提高油的产率意义不大。
为此,已开发和使用了通过在其中形成凝胶使高渗透区的近井或深井堵塞的方法及组合物。凝胶的地层可使高渗透区堵塞或至少降低渗透性,从而使注入的水或注汽进入以前的旁道区。这反过来会使注水或汽流通,提高了从地层回收的油量。
已成功地使用了多种方法和聚合物组合物,这些组合物原地凝胶降低了地层中高渗透区的渗透性。美国专利3,762,476(1973年10月2日发布)分开了一种从地层中减少回收水的方法,其中将用交联金属离子的水溶液隔开地聚合物水溶液注入地层中。多种聚合物可连同多种与多价螯合剂配合的多价金属阳离子一起使用。在第一种聚合物注入之后,注入含交联配合物的溶液,然后注入另外的聚合物溶液等。
美国专利4,569,393(发布于1986年2月11日)公开了一种水渗透性的补偿方法以提高注水的扫油效率,该方法包括顺序注入含多价螯合的多价金属离子(如柠檬酸铝)的溶液和含可凝胶的聚合物(如聚丙烯酰胺)的聚合物溶液,然后注入二氧化碳以降低聚合物的PH值,使其原地延迟的凝胶活化。该方法和美国专利3,762,476的方法的区域应用限于可供淡水区,因为交联金属离子配合物和/或胶化活化剂不能与硬的盐水相容。
美国专利4,683,949(发布于1987年8月4日)介绍了一种渗透性补偿法,该方法使用一种由聚丙烯酰胺和能在水性溶剂中交联聚合物的乙酸铬胶凝剂构成的凝胶。
尽管上述方法及组合物及其它方法和组合物已成功地使用,从而改善了注水或注汽的扫油效率和/或降低了天然存在的地层水的形成,但这些方法和组合物一般不能成功地应用到要求在深的高温高渗透区(温度即约71.i℃以上)中的凝胶地层的场合。在这样的温度下,前面使用的交联金属阳离子配合物经常很快碎裂,在渗透到地层至所需的深度区之前便交联了所用的聚合物。
美国专利4,799,548(发布于1989年1月24日)分开了具有不同温度响应的交联特征的交联剂,用于使水溶性聚合物胶化,以便在重的粗油油井中所进行的蒸汽刺击操作中转化蒸汽。所公开的高温交联剂由酚化合物和醛的混合物构成,通常适用于改变79.4℃或以上的地层的渗透性。
按照本发明,提供了在65.5℃或以上有效的改变地层渗透性的改进了的方法及组合物。按照该方法及组合物所用的交联剂提供了长时间延迟交联,从而可将组合物放在更深的高温地层中,这些组合物的毒性一般比交联先有技术的交联剂造成的毒性更低,更适合环境要求。
按照本发明,提供了改变高温地层渗透性的方法及组合物。在约65.5℃-约148.8℃的地层中,这些组合物能有效地形成凝胶和降低渗透性。虽然这些组合物可用于近井或深井处理,但它们特别适于降低更深的位置的高温地层的渗透性(即从组合物的注入点起更深的位置)。本发明的组合物由水、至少一种水可分散的含丙烯酰胺的聚合物和水可分散的交联剂组成,所述交联剂使聚合物延迟交联和使组合物相应地胶化,它是由醛和选自水杨酰胺和乙酰基水杨酸中的一种水杨酸衍生物的混合物组成。
按照本发明改变高温地层渗透性的方法,本发明的组合物是通过一个穿透井孔注入到地层中。然后,可将组合物沉降到距井孔很深的高渗透区。一旦进入高渗透区内,组合物中的延迟交联剂使聚合物交联,反过来又使组合物胶化并降低高渗透区的渗透性。
因此,本发明的一个目的是提供改变高温地下渗透性的方法和组合物。
本发明的另一个目的是提供改变温度约为65.5℃-148.8℃地层中的近井和深井渗透性的方法及组合物。
本发明的又一个目的是提供用于含水聚合物组合物的交联剂,它们在约65.5℃-148.8℃具有优良的稳定性,且毒性较低。
本领域专业人员阅读了以下优选方案的说明后会很容易地了解到本发明的其它目的、特征和优点。
本发明提供了改变地层渗透性的延迟胶化的组合物。使用任一种易得的水(包括井田盐水和海水在内),可以形成这类组合物,而且可采用这类组合物在深的高温地层处形成凝胶。在穿透地层的井孔附近或远离井孔处的地层中,这类组合物可用于延迟形成凝胶。这类组合物特别适用于在距其注入点很长距离的区域里形成凝胶。
提供的方法是使用这类组合物来改变地层温度约65.5℃-148.8℃的地层渗透性。按照这些方法,含有效量的可胶化的含丙烯酰胺聚合物和交联剂)由醛和水杨酸衍生物构成)的单一含水组合物的有效量被注入到地层中。组合物的注入也可以通过注入预先冲洗液进行,然后再注入一定体积的水,以足以使组合物有效地移到地层所需区域。
本发明用以改变高温地层渗透性的延迟的可胶化的组合物由水、至少一种水可分散的含丙烯酰胺的聚合物和水可分散的交联剂构成,其中交联剂可使聚合物延迟交联和使组合胶化,它是由一种醛和一种选自水杨酰胺和乙酰基水杨酸的水杨酸衍生物的混合物组成。这里所用的术语“水可分散的”指的是的确能水溶的组分以及能分散在水中由此形成其悬浮液的组分。
可以使用多种水可分散的含丙烯酰胺的聚合物,只要它们能在与由醛和上述水杨酸衍生物构成的交联剂接触时便可被胶化。合适的这类聚合的是丙烯酰胺单体的均聚物和这种单体与选自下述物质的任何烯属不饱和单体的共聚物;丙烯酸,甲基丙烯酸,乙烯基磺酸,乙烯基苄磺酸,乙酸乙烯酯,丙烯腈,甲基丙烯腈,乙烯基烷基醚,氯乙烯、马来酐,乙烯基取代的阳离子季铵化全物,2-丙烯酰胺基-2-甲基丙磺酸,2-丙烯酰胺基-2-甲基丙磺酸钠和乙烯基吡咯烷酮。
按照本发明特别优选的含丙烯酰胺的聚合物,可选自丙烯酰胺的均聚物,丙烯酰胺和乙烯基吡咯烷酮的共聚物,甲基丙烯酰胺均聚物,丙烯酰胺和甲基丙烯酰胺的共聚物,丙烯酰胺和丙烯酸的共聚物,甲基丙烯酰胺和丙烯酸的共聚物,乙烯基吡咯烷酮、丙烯酰胺和2-丙烯酰胺基-2-甲基丙磺酸钠的三元共聚物,以及丙烯酰胺和2-丙烯酰胺基-2-甲基丙磺酸钠的共聚物。对本发明来说,单相的相对比率并不严格。但是,特别优选的聚合物包括60∶40wt%的乙烯基吡咯烷酮和丙烯酰胺的共聚物;50∶50wt%的乙烯基吡咯烷酮和丙烯酰胺的共聚物;30∶15∶55%的乙烯基吡咯烷酮、丙烯酰胺和2-丙烯酰胺基-2-甲基丙磺酸钠的三元共聚物;40∶60wt%的丙烯酰胺和2-丙烯酰胺基-2-甲基丙磺酸钠的共聚物;以及不高于40%的甲酰胺基被水解的丙烯酰胺的均聚物。
本发明组合物的聚合物可以呈任何合适的形式,例如凝胶浆(gel-log,约含50-70wt%水的半固体)、粉末、溶液、逆向油包水乳液等。聚合物的百分含量并不严格,但是,最好是100,00~20,000,000。分子量的上限不很重要,只要聚合物仍为水可分散的并可泵抽便可。
所用的含丙烯酰胺的聚合物在组合物中的含量一般约为0.05%-5.0%(重量)、最好约为0.25%-2.0%(重量)。聚合物在组合物中的浓度某种程度上取决于聚合物的分子量。对聚合物的特定粘度来说,高分子量会使所得凝胶体的粘度更高。术语“%(重量)”这里指以组合物中所有组分计,组合物中某一组分的重量百分比。
对实施本发明来说,聚合物聚合的方式不很严格。可通过化合法、辐射法或本领域专业人员公知的任何技术引发聚合反应。另外,任何合适的方法都可以用于制备本发明的含水组合物。但是,聚合物最好在与其它组分化合之前分散在水中。
本发明组合物中所用的交联剂是醛和选自水杨酰胺和乙酰基水杨酸的水杨酸衍生物的混合物。这种混合交联剂在高温和较长时间延迟后(即从几天到几星期),在含水聚合物组合物中是稳定的,时间长短取决于所用的具体水杨酸衍生物和其它因素。这种交联剂使聚合物交联并使含聚合物和交联剂的含水组合物凝胶。
可以使用任何水可分散的醛。所以,合适的醛可以选自脂族一醛、芳族一醛、脂族二醛和芳族二醛。优选的醛可以从选乙醛、丁醛、异丁醛、庚醛、癸醛、戊二醛、乙二醛。对笨二醛和甲醛前体如仲甲醛。由于甲醛效率高,可获性好且成本较低,所以是受推荐的。
所用的醛在组合物中的含量一般约为0.02%-2.0%(重量)、最好约为0.05%-1.0%(重量)。从与醛缔合的水杨酰胺和乙酰基水杨酸中选取的水杨酸衍生物的含量约为0.02%-2.0%(重量)、最好约为0.05%-1.0%(重量)。优选的水杨酸衍生物是乙酰基水杨酸和水杨酰胺。
可预先按传统方法制备本发明的交联剂,即可以制备方便浓度以下的水溶液以随后用于制备本发明的可胶化组合物。一般来说,醛与水杨酸衍生物的重量比可以在约1∶20-20∶1、最好约1∶5-5∶1的范围内变化。
改变高温地层(65.5℃-148.8℃)渗透性用的本发明的特别优选的可胶化组合物由水、30∶15∶15wt%的乙烯基吡咯烯酮、丙烯酰胺和2-丙烯酰胺基-2-甲基丙磺酸钠的三元共聚物(在组合物中的含量约为0.25%-2.0%(重量))和由甲醛和选自水杨酰胺和乙酰基水杨酸的水杨酸衍生物构成的交联剂组成,其中甲醛在组合物中的含量约为0.05%-1.0%(重量),水杨酸衍生物在组合物中的含量约为0.05%-1.0%(重量)。
按照本发明的方法改变高温深地层渗透性时,先制备延迟可胶化的组合物,再通过井孔穿透的地层将其注入到要改变渗透性的地层的所需区域。一般来说,使用可胶化组合物的量约为要处理区的孔容积的100%-120%。组合物中所用的混合交联剂组分的总量取决于组合物中聚合物的量。该量一般约为所用聚合物重量的10%-100%。可胶化组合物一旦到了要减少渗水性的地层区域便能够凝胶。
本发明的交联剂在高温水溶液中具有稳定性,在组合物中长时间不使含丙烯酰胺的聚合物交联,例如可以从5天至5星期,当然这取决于温度、盐度、所用水杨酸衍生物的具体用量和类型和其它因素。这里所用的术语“稳定性”指的是在所指高温下,交联剂长时间不与含丙烯酰胺的聚合物反应或丧失其交联聚合物的能力。所得延迟性使含交联剂的含水聚合物组合物长距离输送到地层中而不过早地将聚合物交联或失效。
为进一步说明本发明,给出以下实施例。
实施例1
制备包含由甲醛和水杨酰胺组成的延迟交联剂的本发明可胶化组合物。更确切地说,将1.0wt%热稳定的30∶15∶55wt%的N-乙烯基吡咯烷酮、丙烯酰胺和2-丙烯酰胺基-2-甲基丙烯磺酸钠的三元共聚物溶于合成海水中,即含33,756ppm总溶盐的水溶液(包括:437ppm钙和1,256ppm镁)。将混合的甲醛~水杨酰胺延迟交联剂与聚合物溶液合并,即合交之后,聚合物溶液含有约1,000ppm甲醛和约1,000ppm水杨酰胺。在121.1℃胶化老化试验中使用所得延迟可胶化的组合物。
在内含20ml可胶化组合物的玻璃瓶(2.2厘米直径,22.5厘米长)中进行胶化老化试验。各瓶中的空气用氮气置换,不从组合物中除去溶解氧以模拟油田条件。然后,在轻微真空下用喷灯密封各玻璃瓶并竖直放在间隔的铝盒中。之后,把含玻璃瓶的盒子放在烘箱中,在此,瓶子在121.1℃被老化。
定期从烘箱中取出瓶子并检查胶化情况,随着交联扩展,小微粒或颗粒开始出现,即形成很小的胶体。微粒继续长成珠粒,称作小粒进一步生成较大凝胶,称作局部凝胶,然后扩展成具有可测舌长的坚固的凝胶。水平放置各玻璃瓶以测定舌头,同时为安全起见,在保护屏后加热,使胶化组合物移到其平衡位置,然后测定形成的舌长。随着胶化随时间进行,发展成坚固的凝胶和较短的舌长。这些试验结果示于下表I。
表I含甲醛和水杨酰胺交联剂的
聚合物组合物的胶化 老化时间 舌长cm 1.5小时 3.3小时 8.0小时 1.4小时 2.0小时 3.4天 6.0天 8.0天 11天 13天 15天 19天 21天 23天 34天 40天 54天 61天 无凝胶 " " " " " " " " " " " " " 稠 5.8 2.2 5.2
表I(续) 老化时间 舌长cm 70天 79天 83天 100天 107天 121天 127天 159天 195天 259天 315天 351天 476天 561天 601天 672天 699天 5.0 5.5 4.7 5.4 4.8 5.3 4.0 0.5 1.1 2.2 2.3 4.9 3.2 1.4 11.01 10.51 10.41
1测得完整的凝胶长而不只是舌长。
实施例2
为进行比较,制备与实施例1可胶化组合物等同的组合物,不同的是用酸代替水杨酰胺。然后用含酚的组合物进行相同的胶体老化试验。这些试验结果列于下表II。
表II
含甲醛和酚交联剂的
聚合物组合物的胶化 老化时间 舌长cm 1.0小时 2.0小时 3.0小时 8.2小时 19.2小时 1.8天 3.8天 5.8天 8.8天 12天 19天 35天 49天 无凝胶 " " " 3.7 1.7 1.2 1.0 1.0 0.7 1.4 1.8 8.6
表II(续) 老化时间 舌长cm 65天 72天 86天 92天 114天 124天 160天 174天 224天 280天 316天 363天 10.3 11.0 12.0 11.7 11.6 12.1 14.51 14.11 14.81 14.51 14.21 3.0+0.2H202
1测得完整的凝胶长而不是舌长。
2凝胶长+分离的脱水收缩水的高。
从表I和表II可以看出,本发明的延迟可胶化组合物用5星期以上的老化期形成了具有可测舌长的凝胶,同时含甲醛~酚交联剂的组合物在一天老化期内便形成了可测舌长。
实施例3
在含2,000ppm甲醛和2,000ppm乙酰基水杨酸的合成海水中,制备可胶化的组合物该组合物由0.7wt%的30∶15∶55wt%的乙烯基吡咯烷、丙烯酰胺和2-丙烯酰胺基-2-甲基丙磺酸钠的三元共聚物组成。在三种不同的温度,即93.3℃、121.1℃和148.8℃,按照实施例1介绍的方法进行胶体老化试验。这些试验结果示于表III。
表 III
含有甲醛和乙酰基水杨酸交联剂的聚合物组合物的胶化老化时间 可胶化合组合物温度 93.3℃ 121.1℃ 148.8℃ 1小时 2小时 3小时 4小时 5小时 9.8小时 21.6小时 1.25天 2.3天 2.85天 3.85天 4.85天 5.87天 6.85天很小的凝胶 " " " " 稠 很稠 稠 " 稠 很稠 " " 很小的凝胶 很小的凝胶 " " " " 稠 " " " 稠 很小的凝胶 " 小凝胶小到不完全的凝胶 很稠 " " " " 稠 " " 10.2 4.5 4.8 9.5 10.51 10.6+0.12
表III(续) 老化时间 可胶化合组合物温度 93.3℃ 121.1℃ 148.8℃ 9.88天 18.0天 24.1天 31.0天 59.0天 89.0天 153天 193天 229天 269天 306天 376天 " " 小到不完全的凝胶 不完全凝胶 " 3.5 9.4 10.01 9.0+0.32 8.4+0.62 8.2+0.82 7.4+1.02 11.0 9.6 11.01 10.5+0.22 9.0 8.2+1.02 7.2+1.22 7.0+1.52 6.7+1.52 6.6+1.52 6.5+1.52 6.3+1.52 10.5+0.32 9.0+0.72 8.6+1.22 8.3+1.22 7.3+1.62 7.0+1.82 6.6+2.02 6.8+2.02 6.7+2.02 6.7+2.02 7.1+2.22 7.4+2.22
1测得完整的凝长而不只是舌长。
2凝胶长+分离的脱水收缩水的高。
实施例4
为进行比较,制备与实施例3介绍的组合物相同的可胶化聚合物组合物,不同的是用酚代替乙酰基水杨酸。按照实施例3介绍的方法进行胶化老化试验。这些试验的结果示于下表IV。
表IV含甲醛和酚交联剂的聚合物组合物的胶化老化时间 可胶化组合物温度 93.3℃ 121.1℃ 148.8℃ 1.1天 2.1天 3.5天 7.0天 18.8天 21.6天 1.0天 1.1天 1.8天 2.1天 2.8天 3.1天 4.0天 6.9天 8.1天 8.8天 9.9天 14天 22天 很小的凝胶 " 稠 稠 很小的凝胶 " " " 15.6 16.0 15.2 14.8 11.8 5.5 7.0 7.6 7.5 9.5 9.0 很稠 稠 稠 19.6 6.2 13.5 14.0 14.6 10.6 12.2 9.5 7.7 7.0 4.3 6.0 7.5 5.9 3.4 3.2 稠 很小的凝胶 19.0 13.3 9.5 5.0 4.6 5.0 3.2 2.8 2.6 0.9 2.2 0.9 1.0 1.0 0.8 0.7 4.0
表IV(续)老化时间 可胶化合组合物温度 93.3℃ 121.1℃ 148.8℃ 28天 35天 63天 93天 157天 197天 233天 265天 303天 379天 10.5 11.5 10.8 11.4 - 12.5 13.5 12.61 17.01 14.4+0.12 2.2 2.6 2.5 3.5 6.0 6.5 7.2 6.5 9.7 8.5 11.7+0.22 11.5+0.32 9.2+1.02 9.4+1.52 8.3+1.52 8.8+1.52 9.0+1.52 9.3+1.52 9.3+1.52 10.8+1.62
1测得完整的凝长而不只是舌长。
2凝胶长+分离的脱水收缩水的高。
表HI和IV的比较表明,与甲醛化合的乙酰基水杨酸以远低于甲醛和酚的速率交联了聚合物。例如,在121.1℃7小时老化期内,甲醛-苯酚交联剂形成了具有可测舌长的凝胶。甲醛-乙酰基水杨酸要形成具有可测舌长的凝胶,需约1星期老化期。表III和表IV还表明,延长老化期可造成脱水收缩,即水从凝胶结构中脱出。这由测得的分离的脱水收缩水的高得到证明。即使最坏的情况——2.2cm脱水收缩水(376天后含甲醛-乙酰基水杨酸的可胶化组合物),脱水收缩的含量仅约30%。这种脱水收缩的批量凝胶仍用在多孔介质中以降低渗透性。
因此,本发明完全可以达到本文所述的目的和优点。尽管为此公开的内容已介绍了本发明的优选实施方案,但在不背离所附权利要求限定的精神实质下,本领域专业人员可以做出多种变型和改进。