供电电源切换装置和方法.pdf

上传人:111****112 文档编号:4334921 上传时间:2018-09-14 格式:PDF 页数:16 大小:546.89KB
返回 下载 相关 举报
摘要
申请专利号:

CN201110159679.5

申请日:

2011.06.14

公开号:

CN102832691A

公开日:

2012.12.19

当前法律状态:

驳回

有效性:

无权

法律详情:

发明专利申请公布后的驳回IPC(主分类):H02J 9/06申请公布日:20121219|||实质审查的生效IPC(主分类):H02J 9/06申请日:20110614|||公开

IPC分类号:

H02J9/06

主分类号:

H02J9/06

申请人:

株式会社日立制作所

发明人:

叶涛; 张志霞; 浜田成泰; 张靖; 杜杰

地址:

日本东京都

优先权:

专利代理机构:

中科专利商标代理有限责任公司 11021

代理人:

王波波

PDF下载: PDF下载
内容摘要

本发明提出了一种供电电源切换装置和方法,根据太阳能发电系统的电量、不同负载的类型和/或功耗,将负载的供电电源在太阳能发电系统和商用电力系统之间进行切换。根据本发明的供电电源切换装置包括:切换单元,用于将每个负载的供电电源在太阳能发电系统和商用电力系统之间切换;负载测量单元,用于获得每个负载的特性,以及确定每个负载的实时运行状态;候选负载列表确定单元,用于根据每个负载的特性及其当前时刻的实时运行状态,确定所述负载是否可由太阳能发电系统供电;以及供电负载确定单元,用于针对每个负载,在候选负载列表确定单元确定该负载可由太阳能发电系统供电时,控制切换单元,将该负载的供电电源切换到由太阳能发电系统供电。

权利要求书

1.一种供电电源切换装置,包括:切换单元,用于将每个负载的供电电源在太阳能发电系统和商用电力系统之间切换;负载测量单元,用于获得每个负载的特性,以及确定每个负载的实时运行状态;候选负载列表确定单元,用于根据每个负载的特性及其当前时刻的实时运行状态,确定所述负载是否可由太阳能发电系统供电;以及供电负载确定单元,用于针对每个负载,在所述候选负载列表确定单元确定所述负载可由太阳能发电系统供电时,控制所述切换单元,将所述负载的供电电源切换到由太阳能发电系统供电。2.根据权利要求1所述的供电电源切换装置,其中所述负载测量单元利用每个负载的运行数据和/或历史运行数据,获得每个负载的特性;或者所述负载测量单元从每个负载读出所述负载的特性数据或特性表格,获得每个负载的特性。3.根据权利要求1或2所述的供电电源切换装置,其中负载的特性包括:负载的最大电流值和/或是否是阻性负载。4.根据权利要求3所述的供电电源切换装置,其中所述候选负载列表确定单元针对每个负载,根据所述负载的特性及其当前时刻的实时运行状态,确定所述负载是否处于运行状态;在确定所述负载处于运行状态时,则根据所述负载的特性,进一步确定所述负载是否是阻性负载;在确定所述负载是阻性负载时,则确定所述负载可由太阳能发电系统供电。5.根据权利要求4所述的供电电源切换装置,其中所述候选负载列表确定单元在确定所述负载不是阻性负载时,则根据所述负载的特性及其当前时刻的实时运行状态,进一步确定所述负载的当前电流值是否等于所述负载的最大电流值;以及在确定所述负载的当前电流值等于所述负载的最大电流值时,则确定所述负载可由太阳能发电系统供电。6.根据权利要求4或5所述的供电电源切换装置,其中所述候选负载列表确定单元将确定可由太阳能发电系统供电的所有负载加入候选负载列表中。7.根据权利要求6所述的供电电源切换装置,还包括:太阳能发电系统监测单元,用于获得太阳能发电系统的参考输出功率,其中所述供电负载确定单元根据太阳能发电系统的参考输出功率,按照太阳能发电系统的参考输出功率与负载功耗匹配的方法,进一步确定由所述候选负载列表确定单元生成的候选负载列表中的哪些负载可由太阳能发电系统供电。8.根据权利要求7所述的供电电源切换装置,其中所述太阳能发电系统监测单元直接从太阳能发电系统读出当前的实时输出功率,作为参考输出功率;或者所述太阳能发电系统监测单元采用曲线拟合方法,预测出太阳能发电系统的发电量数据,作为参考输出功率。9.根据权利要求7或8所述的供电电源切换装置,其中所述供电负载确定单元所采用的太阳能发电系统的参考输出功率与负载功耗匹配的方法是:贪心算法、背包算法或回溯算法。10.一种供电电源切换方法,包括:获得每个负载的特性;确定每个负载的实时运行状态;根据每个负载的特性及其当前时刻的实时运行状态,确定所述负载是否可由太阳能发电系统供电;以及如果确定所述负载可由太阳能发电系统供电,将所述负载的供电电源切换到由太阳能发电系统供电。11.根据权利要求10所述的供电电源切换方法,其中利用每个负载的运行数据和/或历史运行数据,获得每个负载的特性;或者从每个负载读出所述负载的特性数据或特性表格,获得每个负载的特性。12.根据权利要求10或11所述的供电电源切换方法,其中负载的特性包括:负载的最大电流值和/或是否是阻性负载。13.根据权利要求12所述的供电电源切换方法,其中确定所述负载是否可由太阳能发电系统供电的步骤包括:针对每个负载,根据所述负载的特性及其当前时刻的实时运行状态,确定所述负载是否处于运行状态;如果确定所述负载处于运行状态,则根据所述负载的特性,进一步确定所述负载是否是阻性负载;如果确定所述负载是阻性负载,则确定所述负载可由太阳能发电系统供电。14.根据权利要求13所述的供电电源切换方法,其中确定所述负载是否可由太阳能发电系统供电的步骤还包括:如果确定所述负载不是阻性负载,则根据所述负载的特性及其当前时刻的实时运行状态,进一步确定所述负载的当前电流值是否等于所述负载的最大电流值;以及如果确定所述负载的当前电流值等于所述负载的最大电流值,则确定所述负载可由太阳能发电系统供电。15.根据权利要求13或14所述的供电电源切换方法,其中确定所述负载是否可由太阳能发电系统供电的步骤还包括:将确定可由太阳能发电系统供电的所有负载加入候选负载列表中。16.根据权利要求15所述的供电电源切换方法,在确定所述负载是否可由太阳能发电系统供电的步骤之后,将所述负载的供电电源切换到由太阳能发电系统供电之前,还包括:获得太阳能发电系统的参考输出功率;根据太阳能发电系统的参考输出功率,按照太阳能发电系统的参考输出功率与负载功耗匹配的方法,进一步确定候选负载列表中的哪些负载可由太阳能发电系统供电。17.根据权利要求16所述的供电电源切换方法,其中直接从太阳能发电系统读出当前的实时输出功率,作为参考输出功率;或者采用曲线拟合方法,预测出太阳能发电系统的发电量数据,作为参考输出功率。18.根据权利要求16或17所述的供电电源切换方法,其中太阳能发电系统的参考输出功率与负载功耗匹配的方法是:贪心算法、背包算法或回溯算法。

说明书

供电电源切换装置和方法

技术领域

本发明涉及太阳能利用领域,更具体地,涉及一种供电电源切换装
置和方法,根据太阳能发电系统的电量、不同负载的类型和/或功耗,将
负载的供电电源在太阳能发电系统和商用电力系统(市电)之间进行切
换。

背景技术

随着社会的发展,节能课题日益为人们所重视,太阳能由于其无污
染、可再生、取之不尽等优点得到了广泛的应用。太阳能光伏发电系统
是利用太阳能进行发电的一种系统。按是否与公共电网相联接,太阳能
光伏发电系统可以分为独立运行和并网运行两种方式。独立运行的光伏
发电系统是目前太阳能光伏发电应用的一种非常重要的方式,其应用非
常广泛。但是,由于太阳能光伏电池的输出功率受太阳光强和环境温度
的影响变化很大,而且不能储存能量,因此独立运行的太阳能光伏发电
系统必须配备贮能蓄电池来储存和调节电能,由太阳能光伏电池和蓄电
池共同为负载供电。由于每天光照强度和气温等环境的变化,太阳能光
伏电池的输出功率也在不断地发生变化;家庭内部的电器等用电负载的
运行状态也随时间发生变化,导致负载的总功耗也随时间发生变化。有
时,太阳能光伏电池的输出功率加上蓄电池的电量能够支持全部正在运
行的负载,这时需要将所有负载的供电电源设置为太阳能供电,以优先
充分利用太阳能,达到节省成本和节能的目的;而有时,太阳能供电不
足以支持全部负载,这时候部分负载的供电电源需要切换到商用电力系
统(市电),才能保证负载的持续运行。

参考文献1(日本专利申请公开JP 2001-95180A)公开了一种将负
载的供电电源在商用电源和蓄电池之间进行切换的装置。此切换装置的
目的是解决商用电源的负载过载问题,在预测到商用电源的负载将要过
载时,将负载切换到由蓄电池供电。

1.参考文献1根据负载的历史运行数据来预测当前的运行数
据,但是历史数据和当前日期实际上并没有相关性,由历史
数据来预测当前数据是不准确的;

2.参考文献1通过预测负载的运行,对于预测可能出现过载的
负载提前切换到由蓄电池供电。但是,由于基于历史数据预
测某一个时刻负载的运行数据是不准确的,可能无法预测到
有些负载的过载,过载仍然会大量发生。

发明内容

本发明的目的是:根据负载的特性和实时运行状态,确定哪些负载
可由太阳能供电,以及根据太阳能的发电总量,选择由太阳能供电的负
载,使太阳能得到充分利用。

根据本发明的第一方案,提出了一种供电电源切换装置,包括:切
换单元,用于将每个负载的供电电源在太阳能发电系统和商用电力系统
之间切换;负载测量单元,用于获得每个负载的特性,以及确定每个负
载的实时运行状态;候选负载列表确定单元,用于根据每个负载的特性
及其当前时刻的实时运行状态,确定所述负载是否可由太阳能发电系统
供电;以及供电负载确定单元,用于针对每个负载,在所述候选负载列
表确定单元确定所述负载可由太阳能发电系统供电时,控制所述切换单
元,将所述负载的供电电源切换到由太阳能发电系统供电。

优选地,所述负载测量单元利用每个负载的运行数据和/或历史运
行数据,获得每个负载的特性;或者所述负载测量单元从每个负载读出
所述负载的特性数据或特性表格,获得每个负载的特性。

优选地,负载的特性包括:负载的最大电流值和/或是否是阻性负
载。

优选地,所述候选负载列表确定单元针对每个负载,根据所述负载
的特性及其当前时刻的实时运行状态,确定所述负载是否处于运行状态;
在确定所述负载处于运行状态时,则根据所述负载的特性,进一步确定
所述负载是否是阻性负载;在确定所述负载是阻性负载时,则确定所述
负载可由太阳能发电系统供电。

优选地,所述候选负载列表确定单元在确定所述负载不是阻性负载
时,则根据所述负载的特性及其当前时刻的实时运行状态,进一步确定
所述负载的当前电流值是否等于所述负载的最大电流值;以及在确定所
述负载的当前电流值等于所述负载的最大电流值时,则确定所述负载可
由太阳能发电系统供电。

优选地,所述候选负载列表确定单元将确定可由太阳能发电系统供
电的所有负载加入候选负载列表中。

优选地,所述供电电源切换装置还包括:太阳能发电系统监测单元,
用于获得太阳能发电系统的参考输出功率,其中所述供电负载确定单元
根据太阳能发电系统的参考输出功率,按照太阳能发电系统的参考输出
功率与负载功耗匹配的方法,进一步确定由所述候选负载列表确定单元
生成的候选负载列表中的哪些负载可由太阳能发电系统供电。

优选地,所述太阳能发电系统监测单元直接从太阳能发电系统读出
当前的实时输出功率,作为参考输出功率;或者所述太阳能发电系统监
测单元采用曲线拟合方法,预测出太阳能发电系统的发电量数据,作为
参考输出功率。

优选地,所述供电负载确定单元所采用的太阳能发电系统的参考输
出功率与负载功耗匹配的方法是:贪心算法、背包算法或回溯算法。

根据本发明的第二方案,提出了一种供电电源切换方法,包括:获
得每个负载的特性;确定每个负载的实时运行状态;根据每个负载的特
性及其当前时刻的实时运行状态,确定所述负载是否可由太阳能发电系
统供电;以及如果确定所述负载可由太阳能发电系统供电,将所述负载
的供电电源切换到由太阳能发电系统供电。

优选地,利用每个负载的运行数据和/或历史运行数据,获得每个
负载的特性;或者从每个负载读出所述负载的特性数据或特性表格,获
得每个负载的特性。

优选地,负载的特性包括:负载的最大电流值和/或是否是阻性负
载。

优选地,确定所述负载是否可由太阳能发电系统供电的步骤包括:
针对每个负载,根据所述负载的特性及其当前时刻的实时运行状态,确
定所述负载是否处于运行状态;如果确定所述负载处于运行状态,则根
据所述负载的特性,进一步确定所述负载是否是阻性负载;如果确定所
述负载是阻性负载,则确定所述负载可由太阳能发电系统供电。

优选地,确定所述负载是否可由太阳能发电系统供电的步骤还包
括:如果确定所述负载不是阻性负载,则根据所述负载的特性及其当前
时刻的实时运行状态,进一步确定所述负载的当前电流值是否等于所述
负载的最大电流值;以及如果确定所述负载的当前电流值等于所述负载
的最大电流值,则确定所述负载可由太阳能发电系统供电。

优选地,确定所述负载是否可由太阳能发电系统供电的步骤还包
括:将确定可由太阳能发电系统供电的所有负载加入候选负载列表中。

优选地,在确定所述负载是否可由太阳能发电系统供电的步骤之
后,将所述负载的供电电源切换到由太阳能发电系统供电之前,所述供
电电源切换方法还包括:获得太阳能发电系统的参考输出功率;根据太
阳能发电系统的参考输出功率,按照太阳能发电系统的参考输出功率与
负载功耗匹配的方法,进一步确定候选负载列表中的哪些负载可由太阳
能发电系统供电。

优选地,直接从太阳能发电系统读出当前的实时输出功率,作为参
考输出功率;或者采用曲线拟合方法,预测出太阳能发电系统的发电量
数据,作为参考输出功率。

优选地,太阳能发电系统的参考输出功率与负载功耗匹配的方法
是:贪心算法、背包算法或回溯算法。

根据本发明,一方面,避免了因负载的运行状况变化,导致对太阳
能发电系统的电流冲击。另一方面,避免了因太阳能发电系统的发电量
的变化,而导致部分负载的供电不稳定而不能正常运行、或者太阳能利
用不充分的问题。

附图说明

通过下面结合附图说明本发明的优选实施例,将使本发明的上述及
其它目的、特征和优点更加清楚,其中:

图1是根据本发明的供电电源切换装置100的示意系统方框图;

图2是根据本发明的供电电源切换方法的示意流程图;

图3是示出了候选负载列表确定步骤S315的具体操作的示意流程
图;

图4是用于说明预测太阳能发电系统的输出功率的曲线拟合方法的
示意图;

图5是示出了供电负载确定步骤S325的具体操作的示意流程图。

在本发明的所有附图中,相同或相似的结构和步骤均以相同或相似
的附图标记标识。

具体实施方式

下面参照附图对本发明的优选实施例进行详细说明,在描述过程中
省略了对于本发明来说是不必要的细节和功能,以防止对本发明的理解
造成混淆。

图1是根据本发明的供电电源切换装置100的示意系统方框图。

如图1所示,根据本发明的供电电源切换装置100包括:太阳能发
电系统检测单元1010、供电负载确定单元1020、候选负载列表确定单元
1030、负载测量单元1040(包括针对负载10701的负载测量单元10401
以及针对负载10702的负载测量单元10402)、和切换开关1050(包括针
对插座10601和负载10701的切换开关10501以及针对插座10602和负载
10702的切换开关10502)。在图1所示的示例中,仅示出了两个负载10701
和10702,以及分别针对这两个负载10701和10702的负载测量单元10401
和10402、切换开关10501和10502、以及插座10601和10602。但是,应
当注意的是,本发明并不局限于负载、负载测量单元、切换开关和插座
的具体数量,本领域技术人员可以根据需要设计出具有不同数量的负载
测量单元和切换开关的供电电源切换装置100。在以下的描述中,为了
简单起见,在不必区分时,将负载10701和10702统称为负载1070,将负
载测量单元10401和10402统称为负载测量单元1040,将切换开关10501
和10502统称为切换开关1050,以及将插座10601和10602统称为插座
1060。

切换开关1050用于将每个负载1070的供电电源在太阳能发电系统
和商用电力系统(市电)之间切换。每个切换开关1050的输入是太阳能
发电系统的电源和市电供电系统电源,切换开关1050在两种电源之间进
行切换,将电源输出给相连的插座1060,负载1070的电力输入线插到
插座1060上。在初始状态下,切换开关1050接通市电系统,而断开太
阳能发电系统,在负载1070的电源开关被打开后,负载1070最初在市
电系统的供电下开始运行。

负载测量单元1040用于获得每个负载1070的特性,以及确定每个
负载1070的实时运行状态。负载测量单元1040与切换开关1050的输出
相连,在负载1070通电以后,可以实时测量负载1070的电力数据(电
流、电压、功率等)。所有负载测量单元1040的输出均与候选负载列表
确定单元1030相连。负载测量单元1040可以利用每个负载1070的历史
运行数据,获得每个负载1070的特性。或者,针对下一代智能家电,负
载测量单元1040可以从每个负载1070读出该负载1070的特性数据或特
性表格,获得每个负载1070的特性(包括但不限于:负载的最大电流值;
是否是阻性负载等)。例如,负载测量单元1040可以包括霍尔电流传感
器和霍尔电压传感器,分别用于测量负载1070的电流值和电压值;负载
测量单元1040可以根据测量得到的电流值和电压值,计算得到负载1070
的功率。

候选负载列表确定单元1030用于根据每个负载1070的特性及其当
前时刻的实时运行状态,确定可由太阳能发电系统供电的候选负载列表。
候选负载列表的具体创建过程可参考图2中的步骤S315和图3所示的流
程,稍后将进行详细的描述。

太阳能发电系统监测单元1010用于获得太阳能发电系统的参考输
出功率PV。太阳能发电系统监测单元1010可以直接从太阳能发电系统
读出当前的实时输出功率,作为参考输出功率PV。或者,所述太阳能发
电系统监测单元1010可以采用曲线拟合方法,预测出太阳能发电系统的
发电量数据,作为参考输出功率PV。关于曲线拟合方法,可参考图4所
示的示例,具体内容可参考稍后对图2中的步骤S320和图4所示曲线图
的详细描述。

供电负载确定单元1020用于根据太阳能发电系统的参考输出功率
PV,按照太阳能发电系统的参考输出功率与负载功耗匹配的方法,确定
由候选负载列表确定单元1030生成的候选负载列表中的哪些负载可由
太阳能发电系统供电,利用切换开关1050,将这些负载的电源切换到太
阳能发电系统,而将其他负载的电源保留/切换到商用电力系统(市电)。
这里,太阳能发电系统的参考输出功率与负载功耗匹配的方法可以采用
贪心算法(稍后,将参考图5进行详细描述),也可以采用背包算法或回
溯算法等多种公知的方法。

根据本发明的供电电源切换装置100可以被实现为单一的设备组
件,其输入是商用电力系统的电源线和太阳能发电系统的电源线,其输
出是与各个插座相连的导线。可以在电源入户线处加装根据本发明的供
电电源切换装置100,具有综合布线的优势。

图2是根据本发明的供电电源切换方法的示意流程图。

下面,将结合图1和图2,具体说明根据本发明的供电电源切换方
法。

首先,在步骤S305,由负载测量单元1040获得负载1070的特性。
这里,可以利用负载的运行数据和/或历史运行数据(电流、电压和功率),
确定负载的特性。例如,根据负载的历史运行数据,可以确定出该负载
的最大电流值;或者,根据负载的运行数据,可以确定出该负载是否是
阻性负载。或者,作为下一代智能家电的附加功能,可以从负载本身(智
能家电)读出负载的特性数据或特性表格,从而确定出负载的各种特性
(包括但不限于:负载的最大电流值;是否是阻性负载等)。

接下来,在步骤S310,由负载测量单元1040确定负载1070的实时
运行状态。例如,可以测量得到负载1070的电压值和电流值等。

在步骤S315,由候选负载列表确定单元1030根据负载1070的特性
及其当前时刻的实时运行状态,确定可由太阳能发电系统供电的候选负
载列表。

执行这一候选负载列表确定步骤的原因在于:

因为负载在从关机或待机状态启动时,通常需要一个比维
持正常运行所需电流大得多的启动电流,太阳能发电系统
的输出功率是有限且变化的,如果负载从关机或待机状态
启动,太阳能系统通常不能提供大的电流,造成负载无法
启动或启动失败,所以处于待机或关机状态的负载不应由
太阳能发电系统供电,其供电电源需要切换到市电电源上;

某些负载(如阻性负载)在从低功耗、小电流的运行状态
切换到大功耗、大电流的运行状态时,电流不会发生大幅
突变,所以对于这类负载,无论其处于何种运行状态,都
可以作为太阳能发电系统供电的候选负载;

另一方面,某些负载(如非阻性负载)在从低功耗、小电
流的运行状态切换到大功耗、大电流的运行状态时,可能
会出现电流突然大幅增大的情况,所以这类负载不能由太
阳能发电系统供电。

作为示例,图3示出了候选负载列表确定步骤S315的具体操作的
示意流程图。参考图3,首先,在步骤S3150,清空候选负载列表。然后,
从任一负载开始,在步骤S3151,根据负载的特性数据及其当前时刻的
实时运行状态,判断该负载是否处于运行状态。

目前,大多数家电都具有待机功能,因此,在负载初次接入根据本
发明的供电电源切换装置时,可以进行以下自学习过程,确定负载的待
机状态:如果负载测量单元1040测量到负载的电流由大突然变小,减小
后的电流小于1安培,则候选负载列表确定单元1030判断负载进入待机
状态。

或者,可以通过家电的红外线遥控器所发送的待机指令来获知负载
的待机状态。在这种情况下,可以在根据本发明的供电电源切换装置中
加装一红外线信号接收单元(未示出),接收家电的红外线遥控器所发送
的待机指令。当用户通过红外线遥控器向负载发送待机指令时,负载进
入待机状态,红外线信号接收单元同时也接收到此待机指令,如果与此
同时负载测量单元1040也测量到负载的电流由大突然变小,则候选负载
列表确定单元1030判断负载进入待机状态,将红外线信号接收单元接收
到的待机指令编码和测量到的负载电流数据作为历史数据保存,这个历
史数据是以后判断负载是否进入待机的参考依据。

又或者,作为下一代智能家电的附加功能,当负载进入待机时,将
待机状态消息以通信的方式发送给候选负载列表确定单元1030(通过或
不通过负载测量单元1040)。

如果在步骤S3151确定负载未处于运行状态(步骤S3151“否”),
则在步骤S3152,确定安装了根据本发明的供电电源切换装置的系统中
是否还存在另外的负载。如果在步骤S3151确定负载处于运行状态(步
骤S3151“是”),则在步骤S3153,根据负载的特性数据,进一步判断负
载是否是阻性负载。

如果在步骤S3153确定负载是阻性负载(步骤S3153“是”),则在
步骤S3155,将该负载加入到候选负载列表中,然后,返回步骤S3152,
确定安装了根据本发明的供电电源切换装置的系统中是否还存在另外的
负载。否则,如果在步骤S3153确定负载不是阻性负载(步骤S3153“否”),
则执行步骤S3154,根据负载的特性数据,进一步判断负载的当前电流
值是否等于该负载的最大电流值。

如果在步骤S3154确定负载的当前电流值等于该负载的最大电流值
(步骤S3154“是”),则在步骤S3155,将该负载加入到候选负载列表中,
然后,返回步骤S3152,确定安装了根据本发明的供电电源切换装置的
系统中是否还存在另外的负载。否则,如果在步骤S3154确定负载的当
前电流值不等于该负载的最大电流值(步骤S3154“否”),则直接返回
步骤S3152,确定安装了根据本发明的供电电源切换装置的系统中是否
还存在另外的负载。

如果在步骤S3152确定系统中还存在下一负载(步骤S3152“存在”),
则针对下一负载,返回步骤S3151进行运行状态判断。如果在步骤S3152
确定系统中不存在另外的负载(步骤S3152“不存在”),则完成候选负
载列表确定步骤S315。

返回图2,在步骤S320,由太阳能发电系统监测单元1010获得太
阳能发电系统的参考输出功率PV。

这里,太阳能发电系统监测单元1010可以从太阳能发电系统直接
读出当前的实时输出功率,作为参考输出功率PV。

或者,太阳能发电系统监测单元1010可以采用预测方法,预测出
太阳能发电系统在当前切换判断周期期间的发电量数据,作为参考输出
功率PV。

作为一种可选的预测方法,图4示出了预测太阳能发电系统的输出
功率的曲线拟合方法的示意图。太阳能的光伏电池发电量受到光照和环
境温度变化的影响,由于光照和环境温度的变化是缓慢的,可以采用上
一个计算周期(上一个切换判断周期期间)内的多个时刻点检测的太阳
能光伏电池发电量的值,采用曲线拟合的方法预测下一个计算周期(当
前切换判断周期期间)的太阳能发电量。参考图4,在一个计算周期(切
换判断周期)内,太阳能发电系统监测单元1010在t0、t1、…、tn的
时刻点检测每个对应时刻的太阳能发电系统的发电量数据P0、P1、…、
Pn,如图4中黑点所示,然后拟合太阳能发电系统的发电量P(t)与时间
t的二次方程关系P(t)=at2+bt+c,求解系数a、b、c,根据最小二乘方
法,依据已知的时刻t0、t1、…、tn和对应的检测值P0、P1、…、Pn,
计算得到系数a、b、c,将当前切换判断周期的最初和最末时刻作为时
间自变量t代入所得到的二次方程P(t)=at2+bt+c,计算出(预测出)
在当前切换判断周期期间始末的发电量数据,选择以最初和最末时刻作
为自变量t而得到的发电量数据中较小的一个,作为参考输出功率PV。
这样,由于考虑到发电量数据的变化,能够更好地实现发电量与负载功
耗的匹配。

返回图2,步骤S325,供电负载确定单元1020根据太阳能发电系
统的参考输出功率PV,按照参考输出功率PV与负载功耗匹配的方法,
确定候选负载列表中的哪些负载可由太阳能供电。这里,太阳能发电系
统的参考输出功率PV与负载功耗匹配的方法可以采用贪心算法,也可以
采用背包算法或者回溯算法等来实现。这一步骤S325的目的在于:根据
太阳能发电系统的参考输出功率PV在候选负载列表中选择合适的负载,
使被选择的负载的总功耗不超过太阳能发电系统的参考输出功率PV,且
尽可能地接近参考输出功率PV,使太阳能发电系统的输出功率能够得到
充分的利用。

作为步骤S325的一种可选实现方式,图5示出了采用贪心算法时、
供电负载确定步骤S325的具体操作的示意流程图。

参考图5,首先,在步骤S3250,将能够由太阳能发电系统供电的
负载的总功率CW设为0(CW=0)。

然后,在步骤S3251,按照各个负载的实时功率(在步骤S310中获
得)从大到小的顺序,对候选负载列表(在步骤S315中获得)中的负载
进行排序。

在步骤S3252,将排序后的第一个负载(实时功率最大的负载)设
为当前负载。

接下来,执行贪心算法的核心步骤S3253~S3256。在步骤S3253,
判断CW+当前负载的实时功率是否小于等于太阳能发电系统的参考输出
功率PV。如果CW+当前负载的实时功率小于等于太阳能发电系统的参考
输出功率PV(步骤S3253“是”),则在步骤S3254,确定当前负载可由
太阳能发电系统供电,且更新能够由太阳能发电系统供电的负载的总功
率CW,另CW=CW+当前负载的实时功率,更新完成后,转步骤S3255。如
果CW+当前负载的实时功率大于太阳能发电系统的参考输出功率PV(步
骤S3253“否”),则直接转步骤S3255。在步骤S3255,确定排序后的候
选负载列表中是否还存在下一负载。如果在步骤S3255确定排序后的候
选负载列表中还存在下一负载(步骤S3255“存在”),则在步骤S3256,
将排序后的下一负载设为当前负载,然后,返回步骤S3253。如果在步
骤S3255确定排序后的候选负载列表中不存在下一负载(步骤S3255“不
存在”),则完成供电负载确定步骤S325。

返回图2,在完成供电负载确定步骤S325之后,在步骤S330,供
电负载确定单元1020控制切换开关1050,将候选负载列表中最终确定
的那些能够由太阳能发电系统供电的负载的供电电源切换到太阳能发电
系统,而将其他负载的供电电源切换到商用电力系统(市电)。

最后,在步骤S335,判断时间是否达到下一供电电源切换判断周期,
如果没有,则返回步骤S335,继续等待;如果达到下一供电电源切换判
断周期,则返回步骤S310,开始新一轮的供电电源切换判断过程。根据
本发明,供电电源切换判断周期是可根据实际情况设定的时间段,例如,
可以设置为5分钟、10分钟、30分钟等任意时长。供电电源切换判断周
期设置得越短,则越能够很好地跟踪太阳能发电系统的发电量和负载的
实时工作状态。但是,为了避免频繁的供电电源切换,供电电源切换判
断周期也不宜设置得过短。

至此已经结合优选实施例对本发明进行了描述。但是,应当注意的
是,上述单元和步骤并不都是必不可少的。为了实现本发明的最佳效果,
发明人给出了上述实施例。但是,对于一些次优的实施例而言,可以省
略掉其中的某些单元和步骤,而仍然能够实现本发明的基本构想和效果。
例如,对于某些应用或初始状态,可能并不需要跟踪太阳能发电系统的
实时发电量,此时,出于避免电流冲击的目的,可以仅执行候选负载列
表确定步骤S315,而在步骤S330中,将候选负载列表中所有候选负载
都切换到由太阳能发电系统供电;而不必执行步骤S320和S325。相应
地,在这种情况下,可以省略太阳能发电系统监测单元1010和供电负载
确定单元1020,而转由候选负载列表确定单元1030来控制切换开关1050
的操作。以上仅是对这种次优实施例的举例,本领域技术人员可以根据
实际情况和需求,自行调整这些单元和步骤的功能和操作顺序。这些调
整后的实施例也应该被理解为涵盖在本发明的构思之内。

应该理解,严格地讲,本发明的实施例也可以实现为数据处理设备
上的软件程序、软件和硬件、或者单独的软件和/或单独的电路。

至此已经结合优选实施例对本发明进行了描述。应该理解,本领域
技术人员在不脱离本发明的精神和范围的情况下,可以进行各种其它的
改变、替换和添加。因此,本发明的范围不局限于上述特定实施例,而
应由所附权利要求所限定。

供电电源切换装置和方法.pdf_第1页
第1页 / 共16页
供电电源切换装置和方法.pdf_第2页
第2页 / 共16页
供电电源切换装置和方法.pdf_第3页
第3页 / 共16页
点击查看更多>>
资源描述

《供电电源切换装置和方法.pdf》由会员分享,可在线阅读,更多相关《供电电源切换装置和方法.pdf(16页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102832691 A (43)申请公布日 2012.12.19 C N 1 0 2 8 3 2 6 9 1 A *CN102832691A* (21)申请号 201110159679.5 (22)申请日 2011.06.14 H02J 9/06(2006.01) (71)申请人株式会社日立制作所 地址日本东京都 (72)发明人叶涛 张志霞 浜田成泰 张靖 杜杰 (74)专利代理机构中科专利商标代理有限责任 公司 11021 代理人王波波 (54) 发明名称 供电电源切换装置和方法 (57) 摘要 本发明提出了一种供电电源切换装置和方 法,根据太阳能发电系统的电量、不。

2、同负载的类型 和/或功耗,将负载的供电电源在太阳能发电系 统和商用电力系统之间进行切换。根据本发明的 供电电源切换装置包括:切换单元,用于将每个 负载的供电电源在太阳能发电系统和商用电力系 统之间切换;负载测量单元,用于获得每个负载 的特性,以及确定每个负载的实时运行状态;候 选负载列表确定单元,用于根据每个负载的特性 及其当前时刻的实时运行状态,确定所述负载是 否可由太阳能发电系统供电;以及供电负载确定 单元,用于针对每个负载,在候选负载列表确定单 元确定该负载可由太阳能发电系统供电时,控制 切换单元,将该负载的供电电源切换到由太阳能 发电系统供电。 (51)Int.Cl. 权利要求书3页 。

3、说明书8页 附图4页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 3 页 说明书 8 页 附图 4 页 1/3页 2 1.一种供电电源切换装置,包括: 切换单元,用于将每个负载的供电电源在太阳能发电系统和商用电力系统之间切换; 负载测量单元,用于获得每个负载的特性,以及确定每个负载的实时运行状态; 候选负载列表确定单元,用于根据每个负载的特性及其当前时刻的实时运行状态,确 定所述负载是否可由太阳能发电系统供电;以及 供电负载确定单元,用于针对每个负载,在所述候选负载列表确定单元确定所述负载 可由太阳能发电系统供电时,控制所述切换单元,将所述负载的供电电源切换到由太阳。

4、能 发电系统供电。 2.根据权利要求1所述的供电电源切换装置,其中 所述负载测量单元利用每个负载的运行数据和/或历史运行数据,获得每个负载的特 性;或者 所述负载测量单元从每个负载读出所述负载的特性数据或特性表格,获得每个负载的 特性。 3.根据权利要求1或2所述的供电电源切换装置,其中 负载的特性包括:负载的最大电流值和/或是否是阻性负载。 4.根据权利要求3所述的供电电源切换装置,其中 所述候选负载列表确定单元 针对每个负载,根据所述负载的特性及其当前时刻的实时运行状态,确定所述负载是 否处于运行状态; 在确定所述负载处于运行状态时,则根据所述负载的特性,进一步确定所述负载是否 是阻性负载。

5、; 在确定所述负载是阻性负载时,则确定所述负载可由太阳能发电系统供电。 5.根据权利要求4所述的供电电源切换装置,其中 所述候选负载列表确定单元 在确定所述负载不是阻性负载时,则根据所述负载的特性及其当前时刻的实时运行状 态,进一步确定所述负载的当前电流值是否等于所述负载的最大电流值;以及 在确定所述负载的当前电流值等于所述负载的最大电流值时,则确定所述负载可由太 阳能发电系统供电。 6.根据权利要求4或5所述的供电电源切换装置,其中 所述候选负载列表确定单元 将确定可由太阳能发电系统供电的所有负载加入候选负载列表中。 7.根据权利要求6所述的供电电源切换装置,还包括: 太阳能发电系统监测单元。

6、,用于获得太阳能发电系统的参考输出功率, 其中所述供电负载确定单元根据太阳能发电系统的参考输出功率,按照太阳能发电系 统的参考输出功率与负载功耗匹配的方法,进一步确定由所述候选负载列表确定单元生成 的候选负载列表中的哪些负载可由太阳能发电系统供电。 8.根据权利要求7所述的供电电源切换装置,其中 所述太阳能发电系统监测单元直接从太阳能发电系统读出当前的实时输出功率,作为 参考输出功率;或者 权 利 要 求 书CN 102832691 A 2/3页 3 所述太阳能发电系统监测单元采用曲线拟合方法,预测出太阳能发电系统的发电量数 据,作为参考输出功率。 9.根据权利要求7或8所述的供电电源切换装置。

7、,其中 所述供电负载确定单元所采用的太阳能发电系统的参考输出功率与负载功耗匹配的 方法是:贪心算法、背包算法或回溯算法。 10.一种供电电源切换方法,包括: 获得每个负载的特性; 确定每个负载的实时运行状态; 根据每个负载的特性及其当前时刻的实时运行状态,确定所述负载是否可由太阳能发 电系统供电;以及 如果确定所述负载可由太阳能发电系统供电,将所述负载的供电电源切换到由太阳能 发电系统供电。 11.根据权利要求10所述的供电电源切换方法,其中 利用每个负载的运行数据和/或历史运行数据,获得每个负载的特性;或者 从每个负载读出所述负载的特性数据或特性表格,获得每个负载的特性。 12.根据权利要求。

8、10或11所述的供电电源切换方法,其中 负载的特性包括:负载的最大电流值和/或是否是阻性负载。 13.根据权利要求12所述的供电电源切换方法,其中确定所述负载是否可由太阳能发 电系统供电的步骤包括: 针对每个负载,根据所述负载的特性及其当前时刻的实时运行状态,确定所述负载是 否处于运行状态; 如果确定所述负载处于运行状态,则根据所述负载的特性,进一步确定所述负载是否 是阻性负载; 如果确定所述负载是阻性负载,则确定所述负载可由太阳能发电系统供电。 14.根据权利要求13所述的供电电源切换方法,其中确定所述负载是否可由太阳能发 电系统供电的步骤还包括: 如果确定所述负载不是阻性负载,则根据所述负。

9、载的特性及其当前时刻的实时运行状 态,进一步确定所述负载的当前电流值是否等于所述负载的最大电流值;以及 如果确定所述负载的当前电流值等于所述负载的最大电流值,则确定所述负载可由太 阳能发电系统供电。 15.根据权利要求13或14所述的供电电源切换方法,其中确定所述负载是否可由太阳 能发电系统供电的步骤还包括: 将确定可由太阳能发电系统供电的所有负载加入候选负载列表中。 16.根据权利要求15所述的供电电源切换方法,在确定所述负载是否可由太阳能发 电系统供电的步骤之后,将所述负载的供电电源切换到由太阳能发电系统供电之前,还包 括: 获得太阳能发电系统的参考输出功率; 根据太阳能发电系统的参考输出。

10、功率,按照太阳能发电系统的参考输出功率与负载功 耗匹配的方法,进一步确定候选负载列表中的哪些负载可由太阳能发电系统供电。 权 利 要 求 书CN 102832691 A 3/3页 4 17.根据权利要求16所述的供电电源切换方法,其中 直接从太阳能发电系统读出当前的实时输出功率,作为参考输出功率;或者 采用曲线拟合方法,预测出太阳能发电系统的发电量数据,作为参考输出功率。 18.根据权利要求16或17所述的供电电源切换方法,其中 太阳能发电系统的参考输出功率与负载功耗匹配的方法是:贪心算法、背包算法或回 溯算法。 权 利 要 求 书CN 102832691 A 1/8页 5 供电电源切换装置和。

11、方法 技术领域 0001 本发明涉及太阳能利用领域,更具体地,涉及一种供电电源切换装置和方法,根据 太阳能发电系统的电量、不同负载的类型和/或功耗,将负载的供电电源在太阳能发电系 统和商用电力系统(市电)之间进行切换。 背景技术 0002 随着社会的发展,节能课题日益为人们所重视,太阳能由于其无污染、可再生、取 之不尽等优点得到了广泛的应用。太阳能光伏发电系统是利用太阳能进行发电的一种系 统。按是否与公共电网相联接,太阳能光伏发电系统可以分为独立运行和并网运行两种方 式。独立运行的光伏发电系统是目前太阳能光伏发电应用的一种非常重要的方式,其应用 非常广泛。但是,由于太阳能光伏电池的输出功率受太。

12、阳光强和环境温度的影响变化很大, 而且不能储存能量,因此独立运行的太阳能光伏发电系统必须配备贮能蓄电池来储存和调 节电能,由太阳能光伏电池和蓄电池共同为负载供电。由于每天光照强度和气温等环境的 变化,太阳能光伏电池的输出功率也在不断地发生变化;家庭内部的电器等用电负载的运 行状态也随时间发生变化,导致负载的总功耗也随时间发生变化。有时,太阳能光伏电池 的输出功率加上蓄电池的电量能够支持全部正在运行的负载,这时需要将所有负载的供电 电源设置为太阳能供电,以优先充分利用太阳能,达到节省成本和节能的目的;而有时,太 阳能供电不足以支持全部负载,这时候部分负载的供电电源需要切换到商用电力系统(市 电)。

13、,才能保证负载的持续运行。 0003 参考文献1(日本专利申请公开JP 2001-95180A)公开了一种将负载的供电电源 在商用电源和蓄电池之间进行切换的装置。此切换装置的目的是解决商用电源的负载过载 问题,在预测到商用电源的负载将要过载时,将负载切换到由蓄电池供电。 0004 1.参考文献1根据负载的历史运行数据来预测当前的运行数据,但是历史数据和 当前日期实际上并没有相关性,由历史数据来预测当前数据是不准确的; 0005 2.参考文献1通过预测负载的运行,对于预测可能出现过载的负载提前切换到由 蓄电池供电。但是,由于基于历史数据预测某一个时刻负载的运行数据是不准确的,可能无 法预测到有些。

14、负载的过载,过载仍然会大量发生。 发明内容 0006 本发明的目的是:根据负载的特性和实时运行状态,确定哪些负载可由太阳能供 电,以及根据太阳能的发电总量,选择由太阳能供电的负载,使太阳能得到充分利用。 0007 根据本发明的第一方案,提出了一种供电电源切换装置,包括:切换单元,用于将 每个负载的供电电源在太阳能发电系统和商用电力系统之间切换;负载测量单元,用于获 得每个负载的特性,以及确定每个负载的实时运行状态;候选负载列表确定单元,用于根据 每个负载的特性及其当前时刻的实时运行状态,确定所述负载是否可由太阳能发电系统供 电;以及供电负载确定单元,用于针对每个负载,在所述候选负载列表确定单元。

15、确定所述负 说 明 书CN 102832691 A 2/8页 6 载可由太阳能发电系统供电时,控制所述切换单元,将所述负载的供电电源切换到由太阳 能发电系统供电。 0008 优选地,所述负载测量单元利用每个负载的运行数据和/或历史运行数据,获得 每个负载的特性;或者所述负载测量单元从每个负载读出所述负载的特性数据或特性表 格,获得每个负载的特性。 0009 优选地,负载的特性包括:负载的最大电流值和/或是否是阻性负载。 0010 优选地,所述候选负载列表确定单元针对每个负载,根据所述负载的特性及其当 前时刻的实时运行状态,确定所述负载是否处于运行状态;在确定所述负载处于运行状态 时,则根据所述。

16、负载的特性,进一步确定所述负载是否是阻性负载;在确定所述负载是阻性 负载时,则确定所述负载可由太阳能发电系统供电。 0011 优选地,所述候选负载列表确定单元在确定所述负载不是阻性负载时,则根据所 述负载的特性及其当前时刻的实时运行状态,进一步确定所述负载的当前电流值是否等于 所述负载的最大电流值;以及在确定所述负载的当前电流值等于所述负载的最大电流值 时,则确定所述负载可由太阳能发电系统供电。 0012 优选地,所述候选负载列表确定单元将确定可由太阳能发电系统供电的所有负载 加入候选负载列表中。 0013 优选地,所述供电电源切换装置还包括:太阳能发电系统监测单元,用于获得太阳 能发电系统的。

17、参考输出功率,其中所述供电负载确定单元根据太阳能发电系统的参考输出 功率,按照太阳能发电系统的参考输出功率与负载功耗匹配的方法,进一步确定由所述候 选负载列表确定单元生成的候选负载列表中的哪些负载可由太阳能发电系统供电。 0014 优选地,所述太阳能发电系统监测单元直接从太阳能发电系统读出当前的实时输 出功率,作为参考输出功率;或者所述太阳能发电系统监测单元采用曲线拟合方法,预测出 太阳能发电系统的发电量数据,作为参考输出功率。 0015 优选地,所述供电负载确定单元所采用的太阳能发电系统的参考输出功率与负载 功耗匹配的方法是:贪心算法、背包算法或回溯算法。 0016 根据本发明的第二方案,提。

18、出了一种供电电源切换方法,包括:获得每个负载的特 性;确定每个负载的实时运行状态;根据每个负载的特性及其当前时刻的实时运行状态, 确定所述负载是否可由太阳能发电系统供电;以及如果确定所述负载可由太阳能发电系统 供电,将所述负载的供电电源切换到由太阳能发电系统供电。 0017 优选地,利用每个负载的运行数据和/或历史运行数据,获得每个负载的特性;或 者从每个负载读出所述负载的特性数据或特性表格,获得每个负载的特性。 0018 优选地,负载的特性包括:负载的最大电流值和/或是否是阻性负载。 0019 优选地,确定所述负载是否可由太阳能发电系统供电的步骤包括:针对每个负载, 根据所述负载的特性及其当。

19、前时刻的实时运行状态,确定所述负载是否处于运行状态;如 果确定所述负载处于运行状态,则根据所述负载的特性,进一步确定所述负载是否是阻性 负载;如果确定所述负载是阻性负载,则确定所述负载可由太阳能发电系统供电。 0020 优选地,确定所述负载是否可由太阳能发电系统供电的步骤还包括:如果确定所 述负载不是阻性负载,则根据所述负载的特性及其当前时刻的实时运行状态,进一步确定 所述负载的当前电流值是否等于所述负载的最大电流值;以及如果确定所述负载的当前电 说 明 书CN 102832691 A 3/8页 7 流值等于所述负载的最大电流值,则确定所述负载可由太阳能发电系统供电。 0021 优选地,确定所。

20、述负载是否可由太阳能发电系统供电的步骤还包括:将确定可由 太阳能发电系统供电的所有负载加入候选负载列表中。 0022 优选地,在确定所述负载是否可由太阳能发电系统供电的步骤之后,将所述负载 的供电电源切换到由太阳能发电系统供电之前,所述供电电源切换方法还包括:获得太阳 能发电系统的参考输出功率;根据太阳能发电系统的参考输出功率,按照太阳能发电系统 的参考输出功率与负载功耗匹配的方法,进一步确定候选负载列表中的哪些负载可由太阳 能发电系统供电。 0023 优选地,直接从太阳能发电系统读出当前的实时输出功率,作为参考输出功率;或 者采用曲线拟合方法,预测出太阳能发电系统的发电量数据,作为参考输出功。

21、率。 0024 优选地,太阳能发电系统的参考输出功率与负载功耗匹配的方法是:贪心算法、背 包算法或回溯算法。 0025 根据本发明,一方面,避免了因负载的运行状况变化,导致对太阳能发电系统的电 流冲击。另一方面,避免了因太阳能发电系统的发电量的变化,而导致部分负载的供电不稳 定而不能正常运行、或者太阳能利用不充分的问题。 附图说明 0026 通过下面结合附图说明本发明的优选实施例,将使本发明的上述及其它目的、特 征和优点更加清楚,其中: 0027 图1是根据本发明的供电电源切换装置100的示意系统方框图; 0028 图2是根据本发明的供电电源切换方法的示意流程图; 0029 图3是示出了候选负。

22、载列表确定步骤S315的具体操作的示意流程图; 0030 图4是用于说明预测太阳能发电系统的输出功率的曲线拟合方法的示意图; 0031 图5是示出了供电负载确定步骤S325的具体操作的示意流程图。 0032 在本发明的所有附图中,相同或相似的结构和步骤均以相同或相似的附图标记标 识。 具体实施方式 0033 下面参照附图对本发明的优选实施例进行详细说明,在描述过程中省略了对于本 发明来说是不必要的细节和功能,以防止对本发明的理解造成混淆。 0034 图1是根据本发明的供电电源切换装置100的示意系统方框图。 0035 如图1所示,根据本发明的供电电源切换装置100包括:太阳能发电系统检测单元 。

23、1010、供电负载确定单元1020、候选负载列表确定单元1030、负载测量单元1040(包括针对 负载1070 1 的负载测量单元1040 1 以及针对负载1070 2 的负载测量单元1040 2 )、和切换开关 1050(包括针对插座1060 1 和负载1070 1 的切换开关1050 1 以及针对插座1060 2 和负载1070 2 的切换开关1050 2 )。在图1所示的示例中,仅示出了两个负载1070 1 和1070 2 ,以及分别针 对这两个负载1070 1 和1070 2 的负载测量单元1040 1 和1040 2 、切换开关1050 1 和1050 2 、以 及插座1060 1 。

24、和1060 2 。但是,应当注意的是,本发明并不局限于负载、负载测量单元、切换 开关和插座的具体数量,本领域技术人员可以根据需要设计出具有不同数量的负载测量单 说 明 书CN 102832691 A 4/8页 8 元和切换开关的供电电源切换装置100。在以下的描述中,为了简单起见,在不必区分时, 将负载1070 1 和1070 2 统称为负载1070,将负载测量单元1040 1 和1040 2 统称为负载测量单 元1040,将切换开关1050 1 和1050 2 统称为切换开关1050,以及将插座1060 1 和1060 2 统称 为插座1060。 0036 切换开关1050用于将每个负载10。

25、70的供电电源在太阳能发电系统和商用电力系 统(市电)之间切换。每个切换开关1050的输入是太阳能发电系统的电源和市电供电系统 电源,切换开关1050在两种电源之间进行切换,将电源输出给相连的插座1060,负载1070 的电力输入线插到插座1060上。在初始状态下,切换开关1050接通市电系统,而断开太阳 能发电系统,在负载1070的电源开关被打开后,负载1070最初在市电系统的供电下开始运 行。 0037 负载测量单元1040用于获得每个负载1070的特性,以及确定每个负载1070的实 时运行状态。负载测量单元1040与切换开关1050的输出相连,在负载1070通电以后,可 以实时测量负载1。

26、070的电力数据(电流、电压、功率等)。所有负载测量单元1040的输出 均与候选负载列表确定单元1030相连。负载测量单元1040可以利用每个负载1070的历 史运行数据,获得每个负载1070的特性。或者,针对下一代智能家电,负载测量单元1040 可以从每个负载1070读出该负载1070的特性数据或特性表格,获得每个负载1070的特性 (包括但不限于:负载的最大电流值;是否是阻性负载等)。例如,负载测量单元1040可以 包括霍尔电流传感器和霍尔电压传感器,分别用于测量负载1070的电流值和电压值;负载 测量单元1040可以根据测量得到的电流值和电压值,计算得到负载1070的功率。 0038 候。

27、选负载列表确定单元1030用于根据每个负载1070的特性及其当前时刻的实时 运行状态,确定可由太阳能发电系统供电的候选负载列表。候选负载列表的具体创建过程 可参考图2中的步骤S315和图3所示的流程,稍后将进行详细的描述。 0039 太阳能发电系统监测单元1010用于获得太阳能发电系统的参考输出功率PV。太 阳能发电系统监测单元1010可以直接从太阳能发电系统读出当前的实时输出功率,作为 参考输出功率PV。或者,所述太阳能发电系统监测单元1010可以采用曲线拟合方法,预测 出太阳能发电系统的发电量数据,作为参考输出功率PV。关于曲线拟合方法,可参考图4所 示的示例,具体内容可参考稍后对图2中的。

28、步骤S320和图4所示曲线图的详细描述。 0040 供电负载确定单元1020用于根据太阳能发电系统的参考输出功率PV,按照太阳 能发电系统的参考输出功率与负载功耗匹配的方法,确定由候选负载列表确定单元1030 生成的候选负载列表中的哪些负载可由太阳能发电系统供电,利用切换开关1050,将这些 负载的电源切换到太阳能发电系统,而将其他负载的电源保留/切换到商用电力系统(市 电)。这里,太阳能发电系统的参考输出功率与负载功耗匹配的方法可以采用贪心算法(稍 后,将参考图5进行详细描述),也可以采用背包算法或回溯算法等多种公知的方法。 0041 根据本发明的供电电源切换装置100可以被实现为单一的设备。

29、组件,其输入是商 用电力系统的电源线和太阳能发电系统的电源线,其输出是与各个插座相连的导线。可以 在电源入户线处加装根据本发明的供电电源切换装置100,具有综合布线的优势。 0042 图2是根据本发明的供电电源切换方法的示意流程图。 0043 下面,将结合图1和图2,具体说明根据本发明的供电电源切换方法。 0044 首先,在步骤S305,由负载测量单元1040获得负载1070的特性。这里,可以利用 说 明 书CN 102832691 A 5/8页 9 负载的运行数据和/或历史运行数据(电流、电压和功率),确定负载的特性。例如,根据负 载的历史运行数据,可以确定出该负载的最大电流值;或者,根据负。

30、载的运行数据,可以确 定出该负载是否是阻性负载。或者,作为下一代智能家电的附加功能,可以从负载本身(智 能家电)读出负载的特性数据或特性表格,从而确定出负载的各种特性(包括但不限于:负 载的最大电流值;是否是阻性负载等)。 0045 接下来,在步骤S310,由负载测量单元1040确定负载1070的实时运行状态。例 如,可以测量得到负载1070的电压值和电流值等。 0046 在步骤S315,由候选负载列表确定单元1030根据负载1070的特性及其当前时刻 的实时运行状态,确定可由太阳能发电系统供电的候选负载列表。 0047 执行这一候选负载列表确定步骤的原因在于: 0048 因为负载在从关机或待。

31、机状态启动时,通常需要一个比维持正常运行所需电流 大得多的启动电流,太阳能发电系统的输出功率是有限且变化的,如果负载从关机或待机 状态启动,太阳能系统通常不能提供大的电流,造成负载无法启动或启动失败,所以处于待 机或关机状态的负载不应由太阳能发电系统供电,其供电电源需要切换到市电电源上; 0049 某些负载(如阻性负载)在从低功耗、小电流的运行状态切换到大功耗、大电流 的运行状态时,电流不会发生大幅突变,所以对于这类负载,无论其处于何种运行状态,都 可以作为太阳能发电系统供电的候选负载; 0050 另一方面,某些负载(如非阻性负载)在从低功耗、小电流的运行状态切换到大 功耗、大电流的运行状态时。

32、,可能会出现电流突然大幅增大的情况,所以这类负载不能由太 阳能发电系统供电。 0051 作为示例,图3示出了候选负载列表确定步骤S315的具体操作的示意流程图。参 考图3,首先,在步骤S3150,清空候选负载列表。然后,从任一负载开始,在步骤S3151,根据 负载的特性数据及其当前时刻的实时运行状态,判断该负载是否处于运行状态。 0052 目前,大多数家电都具有待机功能,因此,在负载初次接入根据本发明的供电电源 切换装置时,可以进行以下自学习过程,确定负载的待机状态:如果负载测量单元1040测 量到负载的电流由大突然变小,减小后的电流小于1安培,则候选负载列表确定单元1030 判断负载进入待机。

33、状态。 0053 或者,可以通过家电的红外线遥控器所发送的待机指令来获知负载的待机状态。 在这种情况下,可以在根据本发明的供电电源切换装置中加装一红外线信号接收单元(未 示出),接收家电的红外线遥控器所发送的待机指令。当用户通过红外线遥控器向负载发 送待机指令时,负载进入待机状态,红外线信号接收单元同时也接收到此待机指令,如果与 此同时负载测量单元1040也测量到负载的电流由大突然变小,则候选负载列表确定单元 1030判断负载进入待机状态,将红外线信号接收单元接收到的待机指令编码和测量到的负 载电流数据作为历史数据保存,这个历史数据是以后判断负载是否进入待机的参考依据。 0054 又或者,作为。

34、下一代智能家电的附加功能,当负载进入待机时,将待机状态消息以 通信的方式发送给候选负载列表确定单元1030(通过或不通过负载测量单元1040)。 0055 如果在步骤S3151确定负载未处于运行状态(步骤S3151“否”),则在步骤S3152, 确定安装了根据本发明的供电电源切换装置的系统中是否还存在另外的负载。如果在步骤 S3151确定负载处于运行状态(步骤S3151“是”),则在步骤S3153,根据负载的特性数据, 说 明 书CN 102832691 A 6/8页 10 进一步判断负载是否是阻性负载。 0056 如果在步骤S3153确定负载是阻性负载(步骤S3153“是”),则在步骤S31。

35、55,将 该负载加入到候选负载列表中,然后,返回步骤S3152,确定安装了根据本发明的供电电源 切换装置的系统中是否还存在另外的负载。否则,如果在步骤S3153确定负载不是阻性负 载(步骤S3153“否”),则执行步骤S3154,根据负载的特性数据,进一步判断负载的当前电 流值是否等于该负载的最大电流值。 0057 如果在步骤S3154确定负载的当前电流值等于该负载的最大电流值(步骤 S3154“是”),则在步骤S3155,将该负载加入到候选负载列表中,然后,返回步骤S3152,确 定安装了根据本发明的供电电源切换装置的系统中是否还存在另外的负载。否则,如果在 步骤S3154确定负载的当前电流。

36、值不等于该负载的最大电流值(步骤S3154“否” ),则直 接返回步骤S3152,确定安装了根据本发明的供电电源切换装置的系统中是否还存在另外 的负载。 0058 如果在步骤S3152确定系统中还存在下一负载(步骤S3152“存在” ),则针对下 一负载,返回步骤S3151进行运行状态判断。如果在步骤S3152确定系统中不存在另外的 负载(步骤S3152“不存在”),则完成候选负载列表确定步骤S315。 0059 返回图2,在步骤S320,由太阳能发电系统监测单元1010获得太阳能发电系统的 参考输出功率PV。 0060 这里,太阳能发电系统监测单元1010可以从太阳能发电系统直接读出当前的实。

37、 时输出功率,作为参考输出功率PV。 0061 或者,太阳能发电系统监测单元1010可以采用预测方法,预测出太阳能发电系统 在当前切换判断周期期间的发电量数据,作为参考输出功率PV。 0062 作为一种可选的预测方法,图4示出了预测太阳能发电系统的输出功率的曲线拟 合方法的示意图。太阳能的光伏电池发电量受到光照和环境温度变化的影响,由于光照和 环境温度的变化是缓慢的,可以采用上一个计算周期(上一个切换判断周期期间)内的多 个时刻点检测的太阳能光伏电池发电量的值,采用曲线拟合的方法预测下一个计算周期 (当前切换判断周期期间)的太阳能发电量。参考图4,在一个计算周期(切换判断周期) 内,太阳能发电。

38、系统监测单元1010在t0、t1、tn的时刻点检测每个对应时刻的太阳能 发电系统的发电量数据P0、P1、Pn,如图4中黑点所示,然后拟合太阳能发电系统的发 电量P(t)与时间t的二次方程关系P(t)at 2 +bt+c,求解系数a、b、c,根据最小二乘方 法,依据已知的时刻t0、t1、tn和对应的检测值P0、P1、Pn,计算得到系数a、b、c, 将当前切换判断周期的最初和最末时刻作为时间自变量t代入所得到的二次方程P(t) at 2 +bt+c,计算出(预测出)在当前切换判断周期期间始末的发电量数据,选择以最初和最 末时刻作为自变量t而得到的发电量数据中较小的一个,作为参考输出功率PV。这样,。

39、由于 考虑到发电量数据的变化,能够更好地实现发电量与负载功耗的匹配。 0063 返回图2,步骤S325,供电负载确定单元1020根据太阳能发电系统的参考输出功 率PV,按照参考输出功率PV与负载功耗匹配的方法,确定候选负载列表中的哪些负载可由 太阳能供电。这里,太阳能发电系统的参考输出功率PV与负载功耗匹配的方法可以采用贪 心算法,也可以采用背包算法或者回溯算法等来实现。这一步骤S325的目的在于:根据太 阳能发电系统的参考输出功率PV在候选负载列表中选择合适的负载,使被选择的负载的 说 明 书CN 102832691 A 10 7/8页 11 总功耗不超过太阳能发电系统的参考输出功率PV,且。

40、尽可能地接近参考输出功率PV,使太 阳能发电系统的输出功率能够得到充分的利用。 0064 作为步骤S325的一种可选实现方式,图5示出了采用贪心算法时、供电负载确定 步骤S325的具体操作的示意流程图。 0065 参考图5,首先,在步骤S3250,将能够由太阳能发电系统供电的负载的总功率CW 设为0(CW0)。 0066 然后,在步骤S3251,按照各个负载的实时功率(在步骤S310中获得)从大到小的 顺序,对候选负载列表(在步骤S315中获得)中的负载进行排序。 0067 在步骤S3252,将排序后的第一个负载(实时功率最大的负载)设为当前负载。 0068 接下来,执行贪心算法的核心步骤S3。

41、253S3256。在步骤S3253,判断CW+当前负 载的实时功率是否小于等于太阳能发电系统的参考输出功率PV。如果CW+当前负载的实时 功率小于等于太阳能发电系统的参考输出功率PV(步骤S3253“是”),则在步骤S3254,确 定当前负载可由太阳能发电系统供电,且更新能够由太阳能发电系统供电的负载的总功率 CW,另CWCW+当前负载的实时功率,更新完成后,转步骤S3255。如果CW+当前负载的实 时功率大于太阳能发电系统的参考输出功率PV(步骤S3253“否”),则直接转步骤S3255。 在步骤S3255,确定排序后的候选负载列表中是否还存在下一负载。如果在步骤S3255确定 排序后的候选。

42、负载列表中还存在下一负载(步骤S3255“存在”),则在步骤S3256,将排序 后的下一负载设为当前负载,然后,返回步骤S3253。如果在步骤S3255确定排序后的候选 负载列表中不存在下一负载(步骤S3255“不存在”),则完成供电负载确定步骤S325。 0069 返回图2,在完成供电负载确定步骤S325之后,在步骤S330,供电负载确定单元 1020控制切换开关1050,将候选负载列表中最终确定的那些能够由太阳能发电系统供电 的负载的供电电源切换到太阳能发电系统,而将其他负载的供电电源切换到商用电力系统 (市电)。 0070 最后,在步骤S335,判断时间是否达到下一供电电源切换判断周期,。

43、如果没有,则 返回步骤S335,继续等待;如果达到下一供电电源切换判断周期,则返回步骤S310,开始新 一轮的供电电源切换判断过程。根据本发明,供电电源切换判断周期是可根据实际情况设 定的时间段,例如,可以设置为5分钟、10分钟、30分钟等任意时长。供电电源切换判断周 期设置得越短,则越能够很好地跟踪太阳能发电系统的发电量和负载的实时工作状态。但 是,为了避免频繁的供电电源切换,供电电源切换判断周期也不宜设置得过短。 0071 至此已经结合优选实施例对本发明进行了描述。但是,应当注意的是,上述单元 和步骤并不都是必不可少的。为了实现本发明的最佳效果,发明人给出了上述实施例。但 是,对于一些次优。

44、的实施例而言,可以省略掉其中的某些单元和步骤,而仍然能够实现本发 明的基本构想和效果。例如,对于某些应用或初始状态,可能并不需要跟踪太阳能发电系统 的实时发电量,此时,出于避免电流冲击的目的,可以仅执行候选负载列表确定步骤S315, 而在步骤S330中,将候选负载列表中所有候选负载都切换到由太阳能发电系统供电;而不 必执行步骤S320和S325。相应地,在这种情况下,可以省略太阳能发电系统监测单元1010 和供电负载确定单元1020,而转由候选负载列表确定单元1030来控制切换开关1050的操 作。以上仅是对这种次优实施例的举例,本领域技术人员可以根据实际情况和需求,自行调 整这些单元和步骤的。

45、功能和操作顺序。这些调整后的实施例也应该被理解为涵盖在本发明 说 明 书CN 102832691 A 11 8/8页 12 的构思之内。 0072 应该理解,严格地讲,本发明的实施例也可以实现为数据处理设备上的软件程序、 软件和硬件、或者单独的软件和/或单独的电路。 0073 至此已经结合优选实施例对本发明进行了描述。应该理解,本领域技术人员在不 脱离本发明的精神和范围的情况下,可以进行各种其它的改变、替换和添加。因此,本发明 的范围不局限于上述特定实施例,而应由所附权利要求所限定。 说 明 书CN 102832691 A 12 1/4页 13 图1 说 明 书 附 图CN 102832691 A 13 2/4页 14 图2 说 明 书 附 图CN 102832691 A 14 3/4页 15 图3 图4 说 明 书 附 图CN 102832691 A 15 4/4页 16 图5 说 明 书 附 图CN 102832691 A 16 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 发电、变电或配电


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1