序列预测的农田无线网络簇内数据稀疏基生成方法.pdf

上传人:xia****o6 文档编号:4079205 上传时间:2018-08-14 格式:PDF 页数:15 大小:1.11MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410712457.5

申请日:

2014.11.28

公开号:

CN104469797A

公开日:

2015.03.25

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):H04W16/22申请日:20141128|||公开

IPC分类号:

H04W16/22(2009.01)I; H04W52/02(2009.01)I; H04W84/18(2009.01)I

主分类号:

H04W16/22

申请人:

北京农业信息技术研究中心

发明人:

吴华瑞; 孙想; 缪祎晟; 顾静秋; 朱华吉

地址:

100097北京市海淀区曙光花园中路11号农科大厦A座318b

优先权:

专利代理机构:

北京路浩知识产权代理有限公司11002

代理人:

李相雨

PDF下载: PDF下载
内容摘要

本发明公开一种序列预测的农田无线网络簇内数据稀疏基生成方法,所述方法包括:簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出环境数据初步融合结果之间的空间关联性;簇头节点根据环境数据初步融合结果之间的空间关联性,对环境数据初步融合结果进行二次融合,得到农田无线传感网络簇内数据的融合结果。本发明的方法构建层次型成簇网络,以时间关联性进行监测数据预测,以空间关联性进行簇内数据融合,根据监测数据的周期性变化规律以及空间数据上的稀疏性,快速生成簇内稀疏映射矩阵,减小网络数据通信负载,进而减小网络总体能耗,并最终达到延长网络生命周期,提高网络传输效率的目的。

权利要求书

权利要求书1.  一种序列预测的农田无线网络簇内数据稀疏基生成方法,其特征在于,所述方法包括:簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出所述环境数据初步融合结果之间的空间关联性;簇头节点根据所述环境数据初步融合结果之间的空间关联性,对所述环境数据初步融合结果进行二次融合,得到农田无线传感网络簇内数据的融合结果。2.  根据权利要求1所述的方法,其特征在于,所述普通节点上传的环境数据初步融合结果通过以下步骤得到:普通节点定时采集并缓存环境数据;普通节点根据所述环境数据之间的时间关联性,对所述环境数据进行初步融合。3.  根据权利要求2所述的方法,其特征在于,所述普通节点根据所述环境数据之间的时间关联性,对所述环境数据进行初步融合,包括:利用缓存的环境数据预测当前采集的环境数据,得到环境数据预测值,所述环境数据预测值通过下式得到:SH′k=Σi(ak(i)×ESk(i));]]>其中,SH'k为第k个环境数据的预测值,ESk(i)为第k个环境数据的缓存值,i为环境数据的缓存值的时间逆序,ak(i)为环境数据的缓存值的时间关联因子;利用天气模型对所述环境数据预测值进行修正,得到环境数据修正值,所述环境数据修正值通过下式得到:SHk=W(t)×SH'k;其中,SHk为第k个环境数据的修正值,W(t)为天气模型, W(t)=k×t+d;其中,k、d为天气模型因子,由汇聚节点确定,t为当前采集时间;将所述环境数据修正值与当前采集的环境数据进行差分处理,得到差分结果;根据预设的传感器精度,对所述差分结果进行滤波修正,得到滤波修正结果,所述滤波修正结果为环境数据初步融合结果。4.  根据权利要求3所述的方法,其特征在于,所述簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出所述环境数据初步融合结果之间的空间关联性,包括:簇头节点根据普通节点上传的环境数据初步融合结果以及普通节点之间的位置关系,得到环境数据初步融合结果之间的空间关联性矩阵C;其中,C中的元素xi、xj为簇内节点i和j的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,为簇内节点i和j的空间关联性的历史均值,簇头节点首次接收普通节点上传的环境数据初步融合结果时,C&OverBar;ij=Cij*;]]>Cij*=O(i,j)-RsO(i,j);]]>其中,O(i,j)为簇内节点i与j之间的欧氏距离,Rs为簇内节点通信半径。5.  根据权利要求4所述的方法,其特征在于,所述簇头节点根据所述环境数据初步融合结果之间的空间关联性,对所述环境数据 初步融合结果进行二次融合,得到农田无线传感网络簇内数据的融合结果,包括:簇头节点根据环境数据初步融合结果之间的空间关联性矩阵C,得到映射基Ψ:C=X·XT=Ψ·Λ·ΨT;其中,X=[x1,x2,...xi,...,xn]T,xi为簇内节点i的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,Λ为对角阵;簇头节点根据所述映射基Ψ,计算环境数据初步融合结果的稀疏性λ,并将λ上传至汇聚节点,λ通过下式计算:λ=||Ψ·X||0;簇头节点在接收到汇聚节点发送的观测矩阵之后,对环境数据初步融合结果进行基于观测矩阵的欠采样,完成对环境数据初步融合结果的二次融合,得到农田无线传感网络簇内数据的融合结果。6.  根据权利要求5所述的方法,其特征在于,所述观测矩阵为汇聚节点在接收到簇头节点上传的λ之后,按高斯分布构建的m行n列矩阵Φ,n为簇内节点个数,m为欠采样数量,满足λ<m<<n,Aij为观测矩阵Φ位于第i行第j列位置的元素,且以概率pij服从高斯分布,其中,Aij=0,p=1-pijG(0,1λ),p=pij]]>相应地,所述农田无线传感网络簇内数据的融合结果为Y,满足:Y=ΦΨX。7.  根据权利要求6所述的方法,其特征还在于,所述方法进一步包括:汇聚节点在接收到簇头节点上报的农田无线传感网络簇内数据的融合结果之后,进行解算重构,恢复原始采集数据,具体包括:汇聚节点对观测矩阵Φ求逆,得到观测矩阵Φ的逆矩阵Φ-1;汇聚节点根据簇头节点上报的农田无线传感网络簇内数据的融合结果Y以及所述逆矩阵Φ-1,得到重构中间数据矩阵D:D=Φ-1Y;汇聚节点对簇头节点上报的映射基求逆,得到映射基的逆矩阵Ψ-1;汇聚节点根据所述重构中间数据矩阵D以及所述逆矩阵Ψ-1,得到重构数据向量Xr:Xr=Ψ-1D;汇聚节点根据环境数据的修正值向量SH与所述重构数据向量Xr,得出环境数据的测量值向量ES:ES=SH-Xr。

说明书

说明书序列预测的农田无线网络簇内数据稀疏基生成方法
技术领域
本发明涉及农业技术领域,具体涉及序列预测的农田无线网络簇内数据稀疏基生成方法。
背景技术
无线传感器网络WSN是一种无基础设施的无线网络,能够实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,在农业领域广泛应用,成为指导农业生产,提高作物产量的关键技术。传统无线传感器网络一般使用电池供电,而面向大规模农田复杂环境,能量有限的供电电池不能支持足够长的时间。大面积农田监测传感器节点数量众多,人工更换电池周期长、工作量大,一旦节点电池能量耗尽,网络性能和覆盖范围将受到很大影响。
常用的低能耗设计主要从节点功率控制与节点睡眠调度作为出发点,而网络监测感知融合则从上层数据层面提供了另一种降低网络能耗的方法。无线传感器网络节点的功耗可分成三个方面:感知功耗,通信功耗,数据处理功耗。其中感知功耗随应用的特性而变化。三个功耗中,节点在数据通信方面消耗的能量最大,相比较下,数据处理能耗比数据通信能耗小得多。在瑞利衰落和四阶功率距离损耗模型下,在100m距离上发送1KB信息的能耗约等于1MHz处理器执行300万条指令的能耗。而在WSN中通讯能耗与发送或接收的数量量成线性关系,如果能减少节点间实际交换的数据量,则可以有效节约能耗,而延长网络生命周期。节点在空间分布上存在冗余,邻近节点间数据存在高度相关性,从时间上来说,农田环境变化缓慢,相邻采样时间数据可能无变化或按一定规律进行周期性变化。大量冗余数据极大的加重了网络传输与处理负担。通过对 相同或邻近节点的感知数据进行压缩与融合,可显著减少节点间的数据传输量,并降低节点能耗。
现有无线传感器网络数据融合方法中的定向扩散路由算法采用“抑制副本”的融合方法,对重复数据不予转发,只是以简单的防冲突方式,避免相同数据的多次转发,只适用于效率低下的洪泛传播方式。在平面路由结构中,基于链或融合树的数据融合方法,部分节点数据转发次数多,且整体端到端时延大,且对关键位置节点的依赖性强,网络鲁棒性差。现有层次型网络数据融合方法主要强调簇头对簇内节点上报信息进行融合,此方法仅能减小簇头到汇聚节点的数据通信量,并不能节约普通簇内节点的数据通信开销。部分现有方法在采集节点进行空间相关数据融合,需要交换大量节点信息,数据融合的开销超过了原始数据直接传输的开销,得不偿失。现有压缩感知技术在构建数据的稀疏表示时需要引入随机种子序列,而随机序列由接收端生成并发送至采集节点,此部分由算法而引入的通信开销大大抵消了数据融合可节约的通信能量开销。
在无线传感器网络感知融合中需要尽可能的减少节点间通信,现有方法在构建数据稀疏表示时产生了大量的算法通信开销,从而无法保证数据融合的效果。对于层次型网络,从簇头处开始进行融合并不能减少簇内数据通信量,从而限制了网络感知融合的性能。单纯数据层面的数据融合算法一般较为复杂,且压缩比例不高,不适用于资源受限的无线传感器网络应用场景;网络层数据融合,需要网络拓扑结构信息,不适合于分布式算法;决策层数据融合,过滤了大量的原始数据,最终只得到决策结果信息,在目前信息化水平并不是很高的农业生产中显得并不实用。在满足农田环境监测要求的前提下,如何减少基本节点的通信开销,同时将额外的算法开销尽可能的转移至骨干节点或汇聚节点,降低节点平均能耗,从而延长网络整体生存周期是需要研究解决的问题。
发明内容
本发明所要解决的技术问题是如何通过数据融合达到降低节点间通信数据量以节约能耗延长网络周期。
为此目的,本发明提供一种序列预测的农田无线网络簇内数据稀疏基生成方法,所述方法包括:
簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出所述环境数据初步融合结果之间的空间关联性;
簇头节点根据所述环境数据初步融合结果之间的空间关联性,对所述环境数据初步融合结果进行二次融合,得到农田无线传感网络簇内数据的融合结果。
可选的,所述普通节点上传的环境数据初步融合结果通过以下步骤得到:
普通节点定时采集并缓存环境数据;
普通节点根据所述环境数据之间的时间关联性,对所述环境数据进行初步融合。
可选的,所述普通节点根据所述环境数据之间的时间关联性,对所述环境数据进行初步融合,包括:
利用缓存的环境数据预测当前采集的环境数据,得到环境数据预测值,所述环境数据预测值通过下式得到:
SHk=Σi(ak(i)×ESk(i));]]>
其中,SH'k为第k个环境数据的预测值,ESk(i)为第k个环境数据的缓存值,i为环境数据的缓存值的时间逆序,ak(i)为环境数据的缓存值的时间关联因子;
利用天气模型对所述环境数据预测值进行修正,得到环境数据修正值,所述环境数据修正值通过下式得到:
SHk=W(t)×SH'k;
其中,SHk为第k个环境数据的修正值,W(t)为天气模型,W(t)=k×t+d;其中,k、d为天气模型因子,由汇聚节点确定,t为当前采集时间;
将所述环境数据修正值与当前采集的环境数据进行差分处理,得到差分结果;
根据预设的传感器精度,对所述差分结果进行滤波修正,得到滤波修正结果,所述滤波修正结果为环境数据初步融合结果。
可选的,所述簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出所述环境数据初步融合结果之间的空间关联性,包括:
簇头节点根据普通节点上传的环境数据初步融合结果以及普通节点之间的位置关系,得到环境数据初步融合结果之间的空间关联性矩阵C;

其中,C中的元素xi、xj为簇内节点i和j的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,为簇内节点i和j的空间关联性的历史均值,簇头节点首次接收普通节点上传的环境数据初步融合结果时,
C&OverBar;ij=Cij*;]]>
Cij*=O(i,j)-RsO(i,j);]]>
其中,O(i,j)为簇内节点i与j之间的欧氏距离,Rs为簇内节点通信半径。
可选的,所述簇头节点根据所述环境数据初步融合结果之间的空间关联性,对所述环境数据初步融合结果进行二次融合,得到农 田无线传感网络簇内数据的融合结果,包括:
簇头节点根据环境数据初步融合结果之间的空间关联性矩阵C,得到映射基Ψ:
C=X·XT=Ψ·Λ·ΨT;
其中,X=[x1,x2,…xi,…,xn]T,xi为簇内节点i的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,Λ为对角阵;
簇头节点根据所述映射基Ψ,计算环境数据初步融合结果的稀疏性λ,并将λ上传至汇聚节点,λ通过下式计算:
λ=||Ψ·X||0;
簇头节点在接收到汇聚节点发送的观测矩阵之后,对环境数据初步融合结果进行基于观测矩阵的欠采样,完成对环境数据初步融合结果的二次融合,得到农田无线传感网络簇内数据的融合结果。
可选的,所述观测矩阵为汇聚节点在接收到簇头节点上传的λ之后,按高斯分布构建的m行n列矩阵Φ,n为簇内节点个数,m为欠采样数量,满足λ<m<<n,Aij为观测矩阵Φ位于第i行第j列位置的元素,且以概率pij服从高斯分布,其中,
Aij=0,p=1-pijG(0,1λ),p=pij]]>
相应地,所述农田无线传感网络簇内数据的融合结果为Y,满足:Y=ΦΨX。
可选的,所述方法进一步包括:
汇聚节点在接收到簇头节点上报的农田无线传感网络簇内数据的融合结果之后,进行解算重构,恢复原始采集数据,具体包括:
汇聚节点对观测矩阵Φ求逆,得到观测矩阵Φ的逆矩阵Φ-1;
汇聚节点根据簇头节点上报的农田无线传感网络簇内数据的融合结果Y以及所述逆矩阵Φ-1,得到重构中间数据矩阵D:
D=Φ-1Y;
汇聚节点对簇头节点上报的映射基求逆,得到映射基的逆矩阵Ψ-1;
汇聚节点根据所述重构中间数据矩阵D以及所述逆矩阵Ψ-1,得到重构数据向量Xr:
Xr=Ψ-1D;
汇聚节点根据环境数据的修正值向量SH与所述重构数据向量Xr,得出环境数据的测量值向量ES:
ES=SH-Xr。
相比于现有技术,本发明的序列预测的农田无线网络簇内数据稀疏基生成方法,构建层次型成簇网络,以时间关联性进行监测数据预测,以空间关联性进行簇内数据融合,根据监测数据的周期性变化规律以及空间数据上的稀疏性,快速生成簇内稀疏映射矩阵,简化了采集节点与簇头节点处的分布式融合算法,将较为复杂的恢复算法由汇聚节点完成,在保证数据失真率的前提下,减小网络数据通信负载,进而减小网络总体能耗,并最终达到延长网络生命周期,提高网络传输效率的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了农田无线传感器感知融合过程示意图;
图2示出了采集节点基于环境参数预测的时间关联融合流程图;
图3示出了簇头节点基于空间相关度的空间感知融合流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
针对大规模农田监测网络规模大、节点众多、分布不均匀、能量多级异构等特点,从减小网络间数据传输量以达到节能高效的角度,本实施例公开一种序列预测的农田无线网络簇内数据稀疏基生成方法,所述方法包括:
所有节点按采集预设周期时间唤醒,按区域内能量最高的方式选举簇头节点,其余节点选择最近的簇头节点加入成簇,成为簇内普通节点;
普通节点对农田环境信息进行周期性采集,并根据数据的时间关联性按预设规则对采集数据进行初步融合,并将初步融合结果上传至簇头节点;
簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出所述环境数据初步融合结果之间的空间关联性;
簇头节点根据所述环境数据初步融合结果之间的空间关联性,对所述环境数据初步融合结果进行二次融合,得到农田无线传感网络簇内数据的融合结果并上传至汇聚节点;
汇聚节点对接收到的融合结果进行解算重构,恢复原始采集数据。
该方法针对现有技术融合层次过高,无法有效降低基本采集节点通讯能耗,算法设计增加基本节点开销抵消数据融合效果等问题,以农田监测环境数据时空关联性为基础,依据数据间时间关联性对 采集数据进行初步简单融合,簇头处根据节点间位置关系得出节点间数据空间关联程度,并进行二次深度融合,根据网络不同层次的数据特点进行数据融合,达到减少数据传输量、节约能耗、延长网络生命周期的效果。
具体地,网络按现有成簇技术进行网络构建,所有节点按预设时间唤醒,并进行成簇操作,节点选取可达区域内能量权重最高的节点并向其发送投票信息,获得投票最多的节点宣布成为簇头,周边节点选择最近的簇头加入。节点按在网络中层次角色不同决定数据融合的策略方法。
簇内节点以轮为单位对环境参数进行采集,由于农田环境参数缓慢连续变化,所以相邻采集间隔监测数据间的关联性强,不仅如此农田环境每天周期性规律变化,且大田气候季节性变化规律明显,可通过环境参数模型对采集值进行预测,并此以对环境参数进行时间关联融合。具体包含以下步骤:
1.采集节点按采集周期T对环境参数进行周期采集,并缓存历史数据,在进行当前数据采集前,根据采集数据间的时间关联特性,以历史采集数据对当前环境参数值进行预测。对于任意簇内节点S,对于某一环境参数,有
SHk=Σi(ak(i)×ESk(i))]]>
其中,SH'k为第k个环境数据的预测值,ESk(i)为第k个环境数据的缓存值,i为环境数据的缓存值的时间逆序,越大说明时间间隔越长,数据间关联性越弱,ak(i)为环境数据的缓存值的时间关联因子。
2.由于天气气候原因,环境参数时刻变化,仅由历史数据的关联性得出的预测值存在较大偏差,利用天气模型对所述环境数据预测值进行修正,得到环境数据修正值,环境数据修正值通过下式得到:
SHk=W(t)×SH'k;
其中,SHk为第k个环境数据的修正值,W(t)为天气模型,W(t)=k×t+d;其中,k、d为天气模型因子,由汇聚节点确定,t为当前采集时间;
对于修正函数有:
W1(t)=a×e-(t-b)2/c2;]]>
其中a、b、c为天气模型因子,t为当前时间,由汇聚节点根据当前季节、当天天气等因素决定。但指数运算对于普通采集节点仍显复杂,由于修正函数的时间范围t∈[0,24)在此范围内指数函数线性度较高,可改用线性函数进行逼近,所以有
W(t)=kt+d
其中k、d为时间关联天气线性模型因子,t为当前时间,由汇聚节点得出,并于每天第一轮采集周期时进行广播更新。
3.节点S对当前时间n种环境参数进行采集记录,记为{ES1,ES2,…ESi…ESn};
4.并将步骤3中得出的实际采集值与步骤2中得出修正后的预测值进行差分,由
EPi=SHi-ESi
即得出当时差分处理结果EP={EP1,EP2,…EPi…EPn};
5.结合监测系统对传感器的精度要求,对差分结果进行滤波修正,例如传感器的精度为±1%,则差分结果的值小于实测值的±1%以内,则令差分结果等于0;并将修正后的结果作为时间关联融合结果。
对于步骤1中所包含的数据间时间关联因子ai,设其初始值均为0.25,且i取1-4,当i≥5时,则认为相隔时间较长,关联性弱。每次完成环境参数实测后,根据实测值ES进行ak(i)值学习:
ak(i)=(|ESk(i-1)-ESk(i)|)0.5
其中,当前实测值为ESk(0),k表示第k个参数的监测值。
农田环境总体上一致性较高,且网络覆盖度本身也包含了相当程度的空间冗余信息,但由于采集节点本身只能获取自身覆盖范围内的环境信息,无法在数据融合时考虑不同节点间的空间关联性,所以在采集节点将自身的时间关联融合结果上报至簇头,由簇头根据节点间关系进行空间关联数据融合。对于某特定环境参数k,空间关联数据融合具体包含以下步骤:
1.假设第i个采集节点上报的参数k的数据为:xki此处简化为xi,则簇头节点处参数k的本轮上报数据为
X=[x1,x2,…xi,…,xn]T
其中n为簇内节点个数(包括簇头本身)。
2.簇头节点保有和维护所有簇内节点相关信息,包括节点位置信息,对于某簇U,簇头根据当前数据差异对历史关联度进行学习。
簇头节点根据普通节点上传的环境数据初步融合结果以及普通节点之间的位置关系,得到环境数据初步融合结果之间的空间关联性矩阵C;

其中,C中的元素xi、xj为簇内节点i和j的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,为簇内节点i和j的空间关联性的历史均值,簇头节点首次接收普通节点上传的环境数据初步融合结果时,
C&OverBar;ij=Cij*;]]>
Cij*=O(i,j)-RsO(i,j);]]>
其中,O(i,j)为簇内节点i与j之间的欧氏距离,Rs为簇内节点通信半径。
3.簇头节点根据相关度矩阵C按如下公式求解映射基Ψ(本实施例中为小波变换矩阵)
C=X·XT=Ψ·Λ·ΨT;
其中,X=[x1,x2,…xi,…,xn]T,xi为簇内节点i的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,Λ为对角阵;
4.簇头节点计算数据稀疏性
λ=||Ψ·X||0
并将λ的值上传至汇聚节点;
5.汇聚节点按高斯分布构建m行n列的观测矩阵Φ,n为簇内节点个数,m为欠采样数量,满足λ<m<<n,Aij为观测矩阵Φ位于第i行第j列位置的元素,且以概率pij服从高斯分布,其中,
Aij=0,p=1-pijG(0,1λ),p=pij]]>
并将构建的观测矩阵Φ发送给簇头节点。
6.簇头节点在接收到观测矩阵后,对数据进行欠采样融合,融合结果为Y,满足:Y=ΦΨX
向量Y即为最终簇内融合数据,并将Y上报至汇聚节点。
汇聚节点接收到簇头上报的融合数据后,进行解算重构以无失真地恢复原始采集数据。如上一部分“基于簇内数据稀疏性的空间关联融合”步骤5中所述,汇聚节点根据各簇数据的稀疏性,构建观测矩阵Φ,在数据重构阶段,进行数据融合的反向过程,具体步骤如下:
1.在接收到某簇的上报数据向量Y后,根据其上报的数据稀疏程度λ,获得对应的观测矩阵Φ,并求逆,求得重构中间数据矩阵
D=Φ-1Y
2.按“基于簇内数据稀疏性的空间关联融合”部分步骤2中的方 法,以重构的历史数据更新数据关联度矩阵,初始状态无历史数据时,则按“基于簇内数据稀疏性的空间关联融合”部分步骤2的方法求解节点距离相关初始数据关联度矩阵。最后按步骤3的方法求解小波变换矩阵,并求逆Ψ-1。则重构数据向量为
Xr=Ψ-1D
3.按“基于环境参数预测的时间关联融合”部分步骤3中的方法,求出所有节点的环境参数预测值,得出参数预测向量SH,与重构数据求差,即得出环境参数测量值
ES=SH-Xr。
以上所有方法步骤均为普遍性方法,不针对某一特定环境参数或某一特定簇,以某一环境参数或簇来说明只是为了对该实施例进行完整描述。
图1示出了农田无线传感器感知融合过程示意图;图2示出了采集节点基于环境参数预测的时间关联融合流程图;图3示出了簇头节点基于空间相关度的空间感知融合流程图。
相比于现有的估计方法如贝叶斯估计、卡尔曼滤波等方法,方法需要进行复乘加与递归运算,计算量过大,并不适用于资源受限的基本采集节点,本实施例的方法在较小范围内采用线性模型逼近,大大简化了预测算法的复杂度,并引入时间关联修正,适用于无线传感器网络分布式处理机制。
采集节点依据数据间时间关联性对采集数据进行初步融合,无需节点间信息交换,采集节点以之前的采样数据结合农田环境预测模型对当前采样值进行预测,并将实测值与预测值进行差分,以差分数据作为上报数据。由于农田环境参数变化缓慢且规律性较强,预测值在误差允许范围内的可能性很大,自然完成了节点自身数据的稀疏化,避免了现有技术中需要随机种子序列进行预处理等复杂的数据稀疏化算法与节点间通信。
对于农田环境数据空间关联融合,现有技术需要频繁大量的节点间数据交换,或是按融合链或融合树进行多次数据传输融合,效率较低。本实施例的方法根据层次型网络的簇头的角色特点,以节点间位置为基础,结合历史数据等信息得出节点间数据空间关联程度,并以此得出稀疏基矩阵并采用小波变换对簇内数据进行进一步融合。在距离相关因子的基础上,引入学习校正,经过一段时间的学习,相关函数收敛迅速,相比现有技术算法计算开销小。
现有技术中一般将稀疏基、观测矩阵均由汇聚节点生成并进行传输,但稀疏基与观测矩阵的数据量可能就已超过数据传输量本身,本实施例的方法仅需传输观测矩阵,减少了算法所需数据传输量。
有益效果,本发明提供了一种序列预测的农田无线网络簇内数据稀疏基生成方法,构建层次型成簇网络,以时间关联性进行监测数据预测,以空间关联性进行簇内数据融合,根据监测数据的周期性变化规律以及空间数据上的稀疏性,快速生成簇内稀疏映射矩阵,简化了采集节点与簇头节点处的分布式融合算法,将较为复杂的恢复算法由汇聚节点完成,在保证数据失真率的前提下,减小网络数据通信负载,进而减小网络总体能耗,并最终达到延长网络生命周期,提高网络传输效率的目的。
有益效果二,有限的能量供给是限制农田无线传感器网络应用的最大瓶颈,而对于大规模农田监测通信能耗占总能量的比重最大,通过减小网络节点间数据通信量可显著减小网络能耗并最终延长网络生命周期。农田环境参数在空间上均匀连续分布,时间上缓慢连续变化,采集数据具有较高的时空冗余度,具备进行数据感知融合的潜在条件。
在采集节点处进行数据初步融合,解决了现有技术层次型网络仅在簇头进行数据融合的问题,有效减少了簇内的数据通信量。采用时间关联预测的方法对数据进行预测差分,无需节点间额外信息 交互,且融合结果相对于原始数据稀疏性更佳,有利于簇头处的空间关联数据融合。
在簇头处进行空间关联深度数据融合,避免了现有技术中沿融合链或融合树进行多次数据传输融合的问题,通过数据关联度矩阵自适应学习,对稀疏基矩阵进行训练,从而避免了节点间算法数据大量交换。汇聚节点将预测、学习算法重复计算,并承担其他复杂解算过程,在减小网络传输数据量的同时,将算法开销向汇聚节点倾斜,减少网络节点的算法复杂度与运算量,避免了部分现有融合技术中算法开销得不偿失的问题。
本发明提供的方法不但可有效减少网络通信负载,还通过减小节点间数据通信量而缓解网络传输拥堵等问题,提高了网络的鲁棒性与传输速度。同时合理的算法设计与功能分配,有效的保证了网络节点尤其是普通采集节点的低算法开销,达到了降低网络功耗,提高网络通信效率的目的。
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

序列预测的农田无线网络簇内数据稀疏基生成方法.pdf_第1页
第1页 / 共15页
序列预测的农田无线网络簇内数据稀疏基生成方法.pdf_第2页
第2页 / 共15页
序列预测的农田无线网络簇内数据稀疏基生成方法.pdf_第3页
第3页 / 共15页
点击查看更多>>
资源描述

《序列预测的农田无线网络簇内数据稀疏基生成方法.pdf》由会员分享,可在线阅读,更多相关《序列预测的农田无线网络簇内数据稀疏基生成方法.pdf(15页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 (43)申请公布日 (21)申请号 201410712457.5(22)申请日 2014.11.28H04W 16/22(2009.01)H04W 52/02(2009.01)H04W 84/18(2009.01)(71)申请人北京农业信息技术研究中心地址 100097 北京市海淀区曙光花园中路11号农科大厦A座318b(72)发明人吴华瑞 孙想 缪祎晟 顾静秋朱华吉(74)专利代理机构北京路浩知识产权代理有限公司 11002代理人李相雨(54) 发明名称序列预测的农田无线网络簇内数据稀疏基生成方法(57) 摘要本发明公开一种序列预测的农田无线网络簇内数据稀疏基生成方法,所。

2、述方法包括:簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出环境数据初步融合结果之间的空间关联性;簇头节点根据环境数据初步融合结果之间的空间关联性,对环境数据初步融合结果进行二次融合,得到农田无线传感网络簇内数据的融合结果。本发明的方法构建层次型成簇网络,以时间关联性进行监测数据预测,以空间关联性进行簇内数据融合,根据监测数据的周期性变化规律以及空间数据上的稀疏性,快速生成簇内稀疏映射矩阵,减小网络数据通信负载,进而减小网络总体能耗,并最终达到延长网络生命周期,提高网络传输效率的目的。(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明。

3、专利申请权利要求书3页 说明书9页 附图2页(10)申请公布号 CN 104469797 A(43)申请公布日 2015.03.25CN 104469797 A1/3页21.一种序列预测的农田无线网络簇内数据稀疏基生成方法,其特征在于,所述方法包括:簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出所述环境数据初步融合结果之间的空间关联性;簇头节点根据所述环境数据初步融合结果之间的空间关联性,对所述环境数据初步融合结果进行二次融合,得到农田无线传感网络簇内数据的融合结果。2.根据权利要求1所述的方法,其特征在于,所述普通节点上传的环境数据初步融合结果通过以。

4、下步骤得到:普通节点定时采集并缓存环境数据;普通节点根据所述环境数据之间的时间关联性,对所述环境数据进行初步融合。3.根据权利要求2所述的方法,其特征在于,所述普通节点根据所述环境数据之间的时间关联性,对所述环境数据进行初步融合,包括:利用缓存的环境数据预测当前采集的环境数据,得到环境数据预测值,所述环境数据预测值通过下式得到:其中,SHk为第k个环境数据的预测值,ESk(i)为第k个环境数据的缓存值,i为环境数据的缓存值的时间逆序,ak(i)为环境数据的缓存值的时间关联因子;利用天气模型对所述环境数据预测值进行修正,得到环境数据修正值,所述环境数据修正值通过下式得到:SHkW(t)SHk;其。

5、中,SHk为第k个环境数据的修正值,W(t)为天气模型,W(t)kt+d;其中,k、d为天气模型因子,由汇聚节点确定,t为当前采集时间;将所述环境数据修正值与当前采集的环境数据进行差分处理,得到差分结果;根据预设的传感器精度,对所述差分结果进行滤波修正,得到滤波修正结果,所述滤波修正结果为环境数据初步融合结果。4.根据权利要求3所述的方法,其特征在于,所述簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出所述环境数据初步融合结果之间的空间关联性,包括:簇头节点根据普通节点上传的环境数据初步融合结果以及普通节点之间的位置关系,得到环境数据初步融合结果之间的空。

6、间关联性矩阵C;其中,C中的元素xi、xj为簇内节点i和j的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,为簇内节点i和j权 利 要 求 书CN 104469797 A2/3页3的空间关联性的历史均值,簇头节点首次接收普通节点上传的环境数据初步融合结果时,其中,O(i,j)为簇内节点i与j之间的欧氏距离,Rs为簇内节点通信半径。5.根据权利要求4所述的方法,其特征在于,所述簇头节点根据所述环境数据初步融合结果之间的空间关联性,对所述环境数据初步融合结果进行二次融合,得到农田无线传感网络簇内数据的融合结果,包括:簇头节点根据环境数据初步融合结果之间的空间关联性矩阵C。

7、,得到映射基:CXXTT;其中,Xx1,x2,.xi,.,xnT,xi为簇内节点i的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,为对角阵;簇头节点根据所述映射基,计算环境数据初步融合结果的稀疏性,并将上传至汇聚节点,通过下式计算:|X|0;簇头节点在接收到汇聚节点发送的观测矩阵之后,对环境数据初步融合结果进行基于观测矩阵的欠采样,完成对环境数据初步融合结果的二次融合,得到农田无线传感网络簇内数据的融合结果。6.根据权利要求5所述的方法,其特征在于,所述观测矩阵为汇聚节点在接收到簇头节点上传的之后,按高斯分布构建的m行n列矩阵,n为簇内节点个数,m为欠采样数量,满。

8、足mn,Aij为观测矩阵位于第i行第j列位置的元素,且以概率pij服从高斯分布,其中,相应地,所述农田无线传感网络簇内数据的融合结果为Y,满足:YX。7.根据权利要求6所述的方法,其特征还在于,所述方法进一步包括:汇聚节点在接收到簇头节点上报的农田无线传感网络簇内数据的融合结果之后,进行解算重构,恢复原始采集数据,具体包括:汇聚节点对观测矩阵求逆,得到观测矩阵的逆矩阵-1;汇聚节点根据簇头节点上报的农田无线传感网络簇内数据的融合结果Y以及所述逆矩阵-1,得到重构中间数据矩阵D:D-1Y;汇聚节点对簇头节点上报的映射基求逆,得到映射基的逆矩阵-1;汇聚节点根据所述重构中间数据矩阵D以及所述逆矩阵。

9、-1,得到重构数据向量Xr:Xr-1D;汇聚节点根据环境数据的修正值向量SH与所述重构数据向量Xr,得出环境数据的测量值向量ES:权 利 要 求 书CN 104469797 A3/3页4ESSH-Xr。权 利 要 求 书CN 104469797 A1/9页5序列预测的农田无线网络簇内数据稀疏基生成方法技术领域0001 本发明涉及农业技术领域,具体涉及序列预测的农田无线网络簇内数据稀疏基生成方法。背景技术0002 无线传感器网络WSN是一种无基础设施的无线网络,能够实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,在农业领域广泛应用,成为指导农业生产,提高作物产量的关键技术。传统无线。

10、传感器网络一般使用电池供电,而面向大规模农田复杂环境,能量有限的供电电池不能支持足够长的时间。大面积农田监测传感器节点数量众多,人工更换电池周期长、工作量大,一旦节点电池能量耗尽,网络性能和覆盖范围将受到很大影响。0003 常用的低能耗设计主要从节点功率控制与节点睡眠调度作为出发点,而网络监测感知融合则从上层数据层面提供了另一种降低网络能耗的方法。无线传感器网络节点的功耗可分成三个方面:感知功耗,通信功耗,数据处理功耗。其中感知功耗随应用的特性而变化。三个功耗中,节点在数据通信方面消耗的能量最大,相比较下,数据处理能耗比数据通信能耗小得多。在瑞利衰落和四阶功率距离损耗模型下,在100m距离上发。

11、送1KB信息的能耗约等于1MHz处理器执行300万条指令的能耗。而在WSN中通讯能耗与发送或接收的数量量成线性关系,如果能减少节点间实际交换的数据量,则可以有效节约能耗,而延长网络生命周期。节点在空间分布上存在冗余,邻近节点间数据存在高度相关性,从时间上来说,农田环境变化缓慢,相邻采样时间数据可能无变化或按一定规律进行周期性变化。大量冗余数据极大的加重了网络传输与处理负担。通过对相同或邻近节点的感知数据进行压缩与融合,可显著减少节点间的数据传输量,并降低节点能耗。0004 现有无线传感器网络数据融合方法中的定向扩散路由算法采用“抑制副本”的融合方法,对重复数据不予转发,只是以简单的防冲突方式,。

12、避免相同数据的多次转发,只适用于效率低下的洪泛传播方式。在平面路由结构中,基于链或融合树的数据融合方法,部分节点数据转发次数多,且整体端到端时延大,且对关键位置节点的依赖性强,网络鲁棒性差。现有层次型网络数据融合方法主要强调簇头对簇内节点上报信息进行融合,此方法仅能减小簇头到汇聚节点的数据通信量,并不能节约普通簇内节点的数据通信开销。部分现有方法在采集节点进行空间相关数据融合,需要交换大量节点信息,数据融合的开销超过了原始数据直接传输的开销,得不偿失。现有压缩感知技术在构建数据的稀疏表示时需要引入随机种子序列,而随机序列由接收端生成并发送至采集节点,此部分由算法而引入的通信开销大大抵消了数据融。

13、合可节约的通信能量开销。0005 在无线传感器网络感知融合中需要尽可能的减少节点间通信,现有方法在构建数据稀疏表示时产生了大量的算法通信开销,从而无法保证数据融合的效果。对于层次型网络,从簇头处开始进行融合并不能减少簇内数据通信量,从而限制了网络感知融合的性能。单纯数据层面的数据融合算法一般较为复杂,且压缩比例不高,不适用于资源受限的无线说 明 书CN 104469797 A2/9页6传感器网络应用场景;网络层数据融合,需要网络拓扑结构信息,不适合于分布式算法;决策层数据融合,过滤了大量的原始数据,最终只得到决策结果信息,在目前信息化水平并不是很高的农业生产中显得并不实用。在满足农田环境监测要。

14、求的前提下,如何减少基本节点的通信开销,同时将额外的算法开销尽可能的转移至骨干节点或汇聚节点,降低节点平均能耗,从而延长网络整体生存周期是需要研究解决的问题。发明内容0006 本发明所要解决的技术问题是如何通过数据融合达到降低节点间通信数据量以节约能耗延长网络周期。0007 为此目的,本发明提供一种序列预测的农田无线网络簇内数据稀疏基生成方法,所述方法包括:0008 簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出所述环境数据初步融合结果之间的空间关联性;0009 簇头节点根据所述环境数据初步融合结果之间的空间关联性,对所述环境数据初步融合结果进行二次融。

15、合,得到农田无线传感网络簇内数据的融合结果。0010 可选的,所述普通节点上传的环境数据初步融合结果通过以下步骤得到:0011 普通节点定时采集并缓存环境数据;0012 普通节点根据所述环境数据之间的时间关联性,对所述环境数据进行初步融合。0013 可选的,所述普通节点根据所述环境数据之间的时间关联性,对所述环境数据进行初步融合,包括:0014 利用缓存的环境数据预测当前采集的环境数据,得到环境数据预测值,所述环境数据预测值通过下式得到:0015 0016 其中,SHk为第k个环境数据的预测值,ESk(i)为第k个环境数据的缓存值,i为环境数据的缓存值的时间逆序,ak(i)为环境数据的缓存值的。

16、时间关联因子;0017 利用天气模型对所述环境数据预测值进行修正,得到环境数据修正值,所述环境数据修正值通过下式得到:0018 SHkW(t)SHk;0019 其中,SHk为第k个环境数据的修正值,W(t)为天气模型,W(t)kt+d;其中,k、d为天气模型因子,由汇聚节点确定,t为当前采集时间;0020 将所述环境数据修正值与当前采集的环境数据进行差分处理,得到差分结果;0021 根据预设的传感器精度,对所述差分结果进行滤波修正,得到滤波修正结果,所述滤波修正结果为环境数据初步融合结果。0022 可选的,所述簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,。

17、得出所述环境数据初步融合结果之间的空间关联性,包括:0023 簇头节点根据普通节点上传的环境数据初步融合结果以及普通节点之间的位置关系,得到环境数据初步融合结果之间的空间关联性矩阵C;0024 说 明 书CN 104469797 A3/9页70025 其中,C中的元素xi、xj为簇内节点i和j的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,为簇内节点i和j的空间关联性的历史均值,簇头节点首次接收普通节点上传的环境数据初步融合结果时,0026 0027 0028 其中,O(i,j)为簇内节点i与j之间的欧氏距离,Rs为簇内节点通信半径。0029 可选的,所述簇头节点。

18、根据所述环境数据初步融合结果之间的空间关联性,对所述环境数据初步融合结果进行二次融合,得到农田无线传感网络簇内数据的融合结果,包括:0030 簇头节点根据环境数据初步融合结果之间的空间关联性矩阵C,得到映射基:0031 CXXTT;0032 其中,Xx1,x2,xi,xnT,xi为簇内节点i的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,为对角阵;0033 簇头节点根据所述映射基,计算环境数据初步融合结果的稀疏性,并将上传至汇聚节点,通过下式计算:0034 |X|0;0035 簇头节点在接收到汇聚节点发送的观测矩阵之后,对环境数据初步融合结果进行基于观测矩阵的欠采。

19、样,完成对环境数据初步融合结果的二次融合,得到农田无线传感网络簇内数据的融合结果。0036 可选的,所述观测矩阵为汇聚节点在接收到簇头节点上传的之后,按高斯分布构建的m行n列矩阵,n为簇内节点个数,m为欠采样数量,满足mn,Aij为观测矩阵位于第i行第j列位置的元素,且以概率pij服从高斯分布,其中,0037 0038 相应地,所述农田无线传感网络簇内数据的融合结果为Y,满足:YX。0039 可选的,所述方法进一步包括:0040 汇聚节点在接收到簇头节点上报的农田无线传感网络簇内数据的融合结果之后,进行解算重构,恢复原始采集数据,具体包括:0041 汇聚节点对观测矩阵求逆,得到观测矩阵的逆矩阵。

20、-1;0042 汇聚节点根据簇头节点上报的农田无线传感网络簇内数据的融合结果Y以及所说 明 书CN 104469797 A4/9页8述逆矩阵-1,得到重构中间数据矩阵D:0043 D-1Y;0044 汇聚节点对簇头节点上报的映射基求逆,得到映射基的逆矩阵-1;0045 汇聚节点根据所述重构中间数据矩阵D以及所述逆矩阵-1,得到重构数据向量Xr:0046 Xr-1D;0047 汇聚节点根据环境数据的修正值向量SH与所述重构数据向量Xr,得出环境数据的测量值向量ES:0048 ESSH-Xr。0049 相比于现有技术,本发明的序列预测的农田无线网络簇内数据稀疏基生成方法,构建层次型成簇网络,以时间。

21、关联性进行监测数据预测,以空间关联性进行簇内数据融合,根据监测数据的周期性变化规律以及空间数据上的稀疏性,快速生成簇内稀疏映射矩阵,简化了采集节点与簇头节点处的分布式融合算法,将较为复杂的恢复算法由汇聚节点完成,在保证数据失真率的前提下,减小网络数据通信负载,进而减小网络总体能耗,并最终达到延长网络生命周期,提高网络传输效率的目的。附图说明0050 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的。

22、附图。0051 图1示出了农田无线传感器感知融合过程示意图;0052 图2示出了采集节点基于环境参数预测的时间关联融合流程图;0053 图3示出了簇头节点基于空间相关度的空间感知融合流程图。具体实施方式0054 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。0055 针对大规模农田监测网络规模大、节点众多、分布不均匀、能量多级异构等特点,从减小网。

23、络间数据传输量以达到节能高效的角度,本实施例公开一种序列预测的农田无线网络簇内数据稀疏基生成方法,所述方法包括:0056 所有节点按采集预设周期时间唤醒,按区域内能量最高的方式选举簇头节点,其余节点选择最近的簇头节点加入成簇,成为簇内普通节点;0057 普通节点对农田环境信息进行周期性采集,并根据数据的时间关联性按预设规则对采集数据进行初步融合,并将初步融合结果上传至簇头节点;0058 簇头节点在接收到普通节点上传的环境数据初步融合结果之后,根据普通节点之间的位置关系,得出所述环境数据初步融合结果之间的空间关联性;说 明 书CN 104469797 A5/9页90059 簇头节点根据所述环境数。

24、据初步融合结果之间的空间关联性,对所述环境数据初步融合结果进行二次融合,得到农田无线传感网络簇内数据的融合结果并上传至汇聚节点;0060 汇聚节点对接收到的融合结果进行解算重构,恢复原始采集数据。0061 该方法针对现有技术融合层次过高,无法有效降低基本采集节点通讯能耗,算法设计增加基本节点开销抵消数据融合效果等问题,以农田监测环境数据时空关联性为基础,依据数据间时间关联性对采集数据进行初步简单融合,簇头处根据节点间位置关系得出节点间数据空间关联程度,并进行二次深度融合,根据网络不同层次的数据特点进行数据融合,达到减少数据传输量、节约能耗、延长网络生命周期的效果。0062 具体地,网络按现有成。

25、簇技术进行网络构建,所有节点按预设时间唤醒,并进行成簇操作,节点选取可达区域内能量权重最高的节点并向其发送投票信息,获得投票最多的节点宣布成为簇头,周边节点选择最近的簇头加入。节点按在网络中层次角色不同决定数据融合的策略方法。0063 簇内节点以轮为单位对环境参数进行采集,由于农田环境参数缓慢连续变化,所以相邻采集间隔监测数据间的关联性强,不仅如此农田环境每天周期性规律变化,且大田气候季节性变化规律明显,可通过环境参数模型对采集值进行预测,并此以对环境参数进行时间关联融合。具体包含以下步骤:0064 1.采集节点按采集周期T对环境参数进行周期采集,并缓存历史数据,在进行当前数据采集前,根据采集。

26、数据间的时间关联特性,以历史采集数据对当前环境参数值进行预测。对于任意簇内节点S,对于某一环境参数,有0065 0066 其中,SHk为第k个环境数据的预测值,ESk(i)为第k个环境数据的缓存值,i为环境数据的缓存值的时间逆序,越大说明时间间隔越长,数据间关联性越弱,ak(i)为环境数据的缓存值的时间关联因子。0067 2.由于天气气候原因,环境参数时刻变化,仅由历史数据的关联性得出的预测值存在较大偏差,利用天气模型对所述环境数据预测值进行修正,得到环境数据修正值,环境数据修正值通过下式得到:0068 SHkW(t)SHk;0069 其中,SHk为第k个环境数据的修正值,W(t)为天气模型,。

27、W(t)kt+d;其中,k、d为天气模型因子,由汇聚节点确定,t为当前采集时间;0070 对于修正函数有:0071 0072 其中a、b、c为天气模型因子,t为当前时间,由汇聚节点根据当前季节、当天天气等因素决定。但指数运算对于普通采集节点仍显复杂,由于修正函数的时间范围t0,24)在此范围内指数函数线性度较高,可改用线性函数进行逼近,所以有0073 W(t)kt+d0074 其中k、d为时间关联天气线性模型因子,t为当前时间,由汇聚节点得出,并于每天第一轮采集周期时进行广播更新。说 明 书CN 104469797 A6/9页100075 3.节点S对当前时间n种环境参数进行采集记录,记为ES。

28、1,ES2, ESiESn;0076 4.并将步骤3中得出的实际采集值与步骤2中得出修正后的预测值进行差分,由0077 EPiSHi-ESi0078 即得出当时差分处理结果EPEP1,EP2, EPiEPn;0079 5.结合监测系统对传感器的精度要求,对差分结果进行滤波修正,例如传感器的精度为1,则差分结果的值小于实测值的1以内,则令差分结果等于0;并将修正后的结果作为时间关联融合结果。0080 对于步骤1中所包含的数据间时间关联因子ai,设其初始值均为0.25,且i取14,当i5时,则认为相隔时间较长,关联性弱。每次完成环境参数实测后,根据实测值ES进行ak(i)值学习:0081 ak(i。

29、)(|ESk(i-1)-ESk(i)|)0.50082 其中,当前实测值为ESk(0),k表示第k个参数的监测值。0083 农田环境总体上一致性较高,且网络覆盖度本身也包含了相当程度的空间冗余信息,但由于采集节点本身只能获取自身覆盖范围内的环境信息,无法在数据融合时考虑不同节点间的空间关联性,所以在采集节点将自身的时间关联融合结果上报至簇头,由簇头根据节点间关系进行空间关联数据融合。对于某特定环境参数k,空间关联数据融合具体包含以下步骤:0084 1.假设第i个采集节点上报的参数k的数据为:xki此处简化为xi,则簇头节点处参数k的本轮上报数据为0085 Xx1,x2,xi,xnT0086 其。

30、中n为簇内节点个数(包括簇头本身)。0087 2.簇头节点保有和维护所有簇内节点相关信息,包括节点位置信息,对于某簇U,簇头根据当前数据差异对历史关联度进行学习。0088 簇头节点根据普通节点上传的环境数据初步融合结果以及普通节点之间的位置关系,得到环境数据初步融合结果之间的空间关联性矩阵C;0089 0090 其中,C中的元素xi、xj为簇内节点i和j的环境数据初步融合结果,n为簇内节点个数,所述簇内节点包括簇头节点和普通节点,为簇内节点i和j的空间关联性的历史均值,簇头节点首次接收普通节点上传的环境数据初步融合结果时,0091 0092 0093 其中,O(i,j)为簇内节点i与j之间的欧氏距离,Rs为簇内节点通信半径。说 明 书CN 104469797 A10。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 电通信技术


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1