氧化锌与二氧化钛复合薄膜材料及其制备方法.pdf

上传人:Y0****01 文档编号:360797 上传时间:2018-02-11 格式:PDF 页数:13 大小:1.08MB
返回 下载 相关 举报
摘要
申请专利号:

CN200810115147.X

申请日:

2008.06.18

公开号:

CN101607735A

公开日:

2009.12.23

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):C01G 23/047申请日:20080618授权公告日:20110112终止日期:20140618|||授权|||实质审查的生效|||公开

IPC分类号:

C01G23/047; C01G9/02; D01F9/08; D01F11/00; D01D5/00; C30B29/22; C30B29/60; H01L31/0264; H01L31/0352; H01L31/036

主分类号:

C01G23/047

申请人:

中国科学院理化技术研究所

发明人:

周树云; 王暖霞; 孙承华; 陈 萍; 胡秀杰

地址:

100190北京市海淀区中关村北一条2号

优先权:

专利代理机构:

上海智信专利代理有限公司

代理人:

李 柏

PDF下载: PDF下载
内容摘要

本发明属于氧化物半导体薄膜材料领域,特别涉及氧化锌与二氧化钛复合薄膜材料及其制备方法。本发明结合静电纺丝与水热合成制备技术,制备出的复合薄膜材料是由直径为2~8微米的氧化锌与二氧化钛复合材料纤维交织构成的,复合薄膜厚度为20~100微米;所述的氧化锌与二氧化钛复合材料纤维是由以锐钛矿型的二氧化钛线为轴和有序生长在二氧化钛线上的六方纤锌矿型的氧化锌纳米晶粒构成。本发明的氧化锌与二氧化钛复合薄膜材料具有较好的强度和较大的比表面积,在太阳能电池、光催化、自清洁等方面有重要的应用。

权利要求书

1.  一种氧化锌与二氧化钛复合薄膜材料,其特征是,所述的氧化锌与二氧化钛复合薄膜材料是由直径为2~8微米的氧化锌与二氧化钛复合材料纤维交织构成的;
所述的氧化锌与二氧化钛复合材料纤维是由以锐钛矿型的二氧化钛线为轴和有序生长在二氧化钛线上的六方纤锌矿型的氧化锌纳米晶粒构成。

2.
  根据权利要求1所述的复合薄膜材料,其特征是:所述的二氧化钛线的直径在0.2~5微米之间。

3.
  根据权利要求1所述的复合薄膜材料,其特征是:所述的氧化锌纳米晶粒的形状是直径为100~300nm、长度为1~5微米的纳米棒,或是厚度为100~300nm、直径为1~3微米的纳米片。

4.
  根据权利要求1所述的复合薄膜材料,其特征是:氧化锌与二氧化钛复合薄膜的厚度为20~100微米。

5.
  一种根据权利要求1~4任一项所述的复合薄膜材料的制备方法,其特征是,该方法包括以下步骤:
1)配制静电纺丝用二氧化钛前驱体溶胶,所述的静电纺丝用二氧化钛前躯体溶胶由质量浓度为0.2~2%的聚乙烯吡咯烷酮、质量浓度为10~30%的醋酸,质量浓度为10~30%的钛酸酯或钛酸盐及余量乙醇组成;
2)将步骤1)得到的二氧化钛前驱体溶胶加入到静电纺丝设备的给液装置中,使二氧化钛前驱体溶胶从静电纺丝设备的喷射装置中以二氧化钛前驱体线的形式喷出,在接收装置上获得由二氧化钛前驱体线交织构成的薄膜;
3)将步骤2)得到的由二氧化钛前驱体线交织构成的薄膜在马弗炉中煅烧;得到由二氧化钛线交织构成的二氧化钛电纺膜;
4)配制水热合成用的氧化锌前躯体溶胶,所述的水热合成用的氧化锌前躯体溶胶是由质量浓度为0.1%~3%的水溶性锌盐、质量浓度为0.1%~5%的六次甲基四胺、质量浓度为0%~0.2%的柠檬酸盐及余量水组成;
5)将步骤4)得到的氧化锌前躯体溶胶、步骤3)得到的二氧化钛电纺膜加入到容器内,其中氧化锌前躯体溶胶与电纺膜的质量比为200∶1~50∶1,将容器密封后放入烘箱内,在温度为50~200℃下加热进行水热合成,使氧化锌纳米晶粒生长在二氧化钛电纺膜上;取出已生长有氧化锌纳米晶粒的二氧化钛电纺膜,去离子水冲洗干净后,烘干,得到所述的氧化锌与二氧化钛复合薄膜材料。

6.
  根据权利要求5所述的方法,其特征是:所述的钛酸酯是钛酸四丁酯、钛酸四乙酯或钛酸四丙酯;所述的钛酸盐是四氯化钛。

7.
  根据权利要求5所述的方法,其特征是:所述的水溶性锌盐是醋酸锌、硝酸锌或氯化锌;所述的柠檬酸盐是柠檬酸钠、柠檬酸钾或者柠檬酸铵。

8.
  根据权利要求5所述的方法,其特征是:步骤2)静电纺丝设备的纺丝工作距离为3~10cm之间、工作电压为5~25KV之间。

9.
  根据权利要求5所述的方法,其特征是:所述的电纺膜的厚度在10~80微米之间。

10.
  根据权利要求5所述的方法,其特征是:步骤5)所述的在温度为50~200℃下加热的时间是2~24小时。

说明书

氧化锌与二氧化钛复合薄膜材料及其制备方法
技术领域
本发明属于氧化物半导体薄膜材料领域,特别涉及氧化锌与二氧化钛复合薄膜材料及其制备方法。
发明背景
二氧化钛是一种性能优异的粉体材料,具有无毒、环保、价格低廉等优点,广泛用于建筑涂料、光催化、太阳能电池等方面,但是其带隙宽,仅能吸收太阳光谱中的紫外光部分,光能利用效率低。氧化锌是一种带隙较窄的的氧化物半导体,在可见光区有较好的吸收,广泛应用于压敏材料、气敏材料等领域。但是其价带电位低,光稳定性差。因此,制备氧化锌/二氧化钛复合材料,有望兼具两种材料的优点,获得优异的综合性能。
丁士文等(《无机化学学报》,2003,Vol.19(6):631)利用水热法制备出二氧化钛/氧化锌非晶态纳米粉末,平均粒径20nm,其光催化降解有机物的效率明显高于单纯氧化锌纳米材料。王志义等(《硅酸盐学报》,2006,Vol.34(9):1078)利用液相共沉淀法制备二氧化钛/氧化锌纳米复合粉体,复合材料平均粒径12~50nm之间,二氧化钛的组分在30%~70%之间,晶型以金红石型为主,紫外可见吸收光谱表明,复合材料较单一的二氧化钛纳米材料的吸收光谱红移。陈凯等(《激光技术》,2001,Vol.25(3):209)采用溶胶-凝胶法制备出氧化锌/二氧化钛的多层薄膜,每层的厚度在20nm~120nm之间,用于氨气的检测,在选择性和灵敏度等方面较传统简单混合单层膜的方法均有所提高。杨安丽(《无机材料学报》2006,21(5):1092)以硝酸锌和六次甲基四胺为原料,采用水热法在预先制备的二氧化钛薄膜表面生长氧化锌纳米棒。Sun等(Chem.Eur.J.2007,13,9087)利用两步气相-固相法制备了氧化锌/氧化锡复合纳米材料。
静电纺丝是一种便捷的方法,其概念提出于上个世纪60年代(USP1975504),用于制备高分子纤维无纺布。近年来,该方法也被用于制备无机材料纳微米纤维及薄膜。Guan等(Inorganic Chemistry Communications,2003,6:1302)以聚乙烯醇和醋酸镍的混合物为原料,利用溶胶一凝胶过程和静电纺丝技术得到复合先驱体纤维,再进行烧结制成纳米或亚微米的氧化镍纤维,直径为50~150nm;Sung等(J.Mater.Lett.,2003,22:891)在12~16kV的电压下制备硅纤维;Rainer Ostermann等(Nano lett.2006,6,1297.)利用电纺以及煅烧后处理制备了五氧化二钒/二氧化钛复合纤维。Eric Formo等(Nanolett.2008,8,2)首先通过电纺方法制备了二氧化钛纤维,在利用水浴还原的方法沉积了金属铂纳米球以及铂纳米线,具有很好的催化应用。
本发明人在发明专利申请号为200810101213.8中利用静电纺丝法制备出了二氧化钛纤维组成的薄膜,然后利用水热法在纤维表面生长出了二氧化钛纳米棒,得到具有分级结构的自支撑二氧化钛薄膜。但对于类似的氧化锌与二氧化钛复合薄膜材料尚未见报道。
发明内容
本发明的目的是提供一种氧化锌与二氧化钛复合薄膜材料。
本发明的再一目的是提供氧化锌与二氧化钛复合薄膜的制备方法。
本发明的氧化锌与二氧化钛复合薄膜材料是由直径为2~8微米的氧化锌与二氧化钛复合材料纤维交织构成的、复合薄膜的厚度为20~100微米。
所述的氧化锌与二氧化钛复合材料纤维是由以锐钛矿型的二氧化钛线为轴和有序生长在二氧化钛线上的六方纤锌矿型的氧化锌纳米晶粒构成。
所述的二氧化钛线的直径在0.2~5微米之间。
所述的氧化锌纳米晶粒的形状可以是直径约为100~300nm、长度约为1~5微米的纳米棒,也可以是厚度为100~300nm、直径约为1~3微米的纳米片。
所述的二氧化钛线使用静电纺丝法制得,所述的氧化锌纳米晶粒由水热合成法制备。
所述的静电纺丝法是一种新型的制备纤维及无纺薄膜的方法,其原理和工艺可参考“Three-point bending of electrospun TiO2 nanofibers”(Sung-HwanLee,Materials Science and EngineeringA,Volume 398,Issues 1~2,2005,p77)和US2005109385-A1。
所述的静电纺丝法使用的静电纺丝设备一般由高压直流电源、给液装置、喷射装置和接收装置等四部分组成,其中高压直流电源的最大输出电压为30KV,喷射装置可以为单孔型、多孔型等,接收装置为导电的金属盘、金属网或导电玻璃等。该设备的结构可参考“静电纺丝纳米纤维的工艺原理、现状及应用前景”(覃小红,《高科技纤维与应用》2004,29(2):28)。
本发明的氧化锌与二氧化钛复合薄膜材料的制备方法包括以下步骤:
1)配制静电纺丝用二氧化钛前驱体溶胶,所述的静电纺丝用二氧化钛前躯体溶胶由质量浓度为0.2~2%的聚乙烯吡咯烷酮(以下简称PVP)、质量浓度为10~30%的醋酸,质量浓度为10~30%的钛酸酯或钛酸盐及余量乙醇组成;
2)将步骤1)得到的二氧化钛前驱体溶胶加入到现有静电纺丝设备的给液装置中,调整纺丝工作距离为3~10cm之间、工作电压为5~25KV之间;使二氧化钛前驱体溶胶从静电纺丝设备的喷射装置中以二氧化钛前驱体线的形式喷出,在接收装置上获得由二氧化钛前驱体线交织构成的薄膜;
3)将步骤2)得到的由二氧化钛前驱体线交织构成的薄膜在马弗炉中500℃左右下煅烧2小时左右;得到由二氧化钛线交织构成的二氧化钛电纺膜,电纺膜的厚度在10~80微米之间,构成二氧化钛电纺膜的二氧化钛线的直径在0.2~5微米之间;
4)配制水热合成用的氧化锌前躯体溶胶,所述的水热合成用的氧化锌前躯体溶胶是由质量浓度为0.1%~3%的水溶性锌盐、质量浓度为0.1%~5.0%的六次甲基四胺、质量浓度为0%~0.2%的柠檬酸盐及余量为水组成;
5)将步骤4)得到的氧化锌前躯体溶胶、步骤3)得到的二氧化钛电纺膜加入到容器内(如聚四氟乙烯内衬的不锈钢容器),其中氧化锌前躯体溶胶与电纺膜的质量比为200∶1~50∶1,将容器密封后放入烘箱内,在温度为50~200℃下加热2~24小时,进行水热合成,使氧化锌纳米晶粒生长在二氧化钛电纺膜上;从烘箱内取出容器,冷却至室温,开启容器,从溶液中取出已生长有氧化锌纳米晶粒的二氧化钛电纺膜,去离子水冲洗干净后,在温度为50℃左右下烘干,即得到本发明所述的氧化锌与二氧化钛复合薄膜材料。
所述的钛酸酯可以为钛酸四丁酯、钛酸四乙酯或钛酸四丙酯等;所述的钛酸盐是四氯化钛等。
所述的水溶性锌盐可以是醋酸锌、硝酸锌或氯化锌等;所述的柠檬酸盐可以是柠檬酸钠、柠檬酸钾或者柠檬酸铵。
本发明结合静电纺丝与水热合成制备技术,获得了氧化锌与二氧化钛复合薄膜材料,其是本发明的主要特征。本发明的复合薄膜材料兼具二氧化钛和氧化锌半导体材料的优点,具有较好的强度和较大的比表面积,在太阳能电池、光催化、自清洁等方面有重要的应用。
附图说明
图1为本发明实施例1制备的复合薄膜材料的扫描电镜图。
图2为本发明实施例1制备的复合薄膜材料的X射线衍射图。
图3为本发明实施例2制备的复合薄膜材料的扫描电镜图。
图4为本发明实施例2制备的复合薄膜材料的X射线衍射图。
图5为本发明实施例3制备的复合薄膜材料的扫描电镜图。
图6为本发明实施例4制备的复合薄膜材料的扫描电镜图。
具体实施方式
实施例1
1)配制静电纺丝用二氧化钛前驱体溶胶,所述的静电纺丝用二氧化钛前躯体溶胶由质量浓度为0.8%的聚乙烯吡咯烷酮、质量浓度为20%的醋酸,质量浓度为20%的钛酸四丁酯及余量乙醇组成;
2)将步骤1)得到的二氧化钛前驱体溶胶加入到现有静电纺丝设备(单孔喷丝头)的给液装置中,调整纺丝工作距离为8cm、工作电压为15KV;使二氧化钛前驱体溶胶从静电纺丝设备的喷射装置中以二氧化钛前驱体线的形式喷出,在接收装置上获得由二氧化钛前驱体线交织构成的薄膜;
3)将步骤2)得到的由二氧化钛前驱体线交织构成的薄膜在马弗炉中500℃左右下煅烧2小时左右;得到由二氧化钛线交织构成的二氧化钛电纺膜,电纺膜的厚度在30微米,构成二氧化钛电纺膜的二氧化钛线的直径在2微米;
4)配制水热合成用的氧化锌前躯体溶胶,所述的水热合成用的氧化锌前躯体溶胶是由质量浓度为0.8%的醋酸锌、质量浓度为0.6%的六次甲基四胺及余量为水组成;
5)将步骤4)得到的氧化锌前躯体溶胶、步骤3)得到的二氧化钛电纺膜加入到由聚四氟乙烯作为内衬的不锈钢容器中,其中氧化锌前躯体溶胶与电纺膜的质量比为100∶1,将容器密封后放入烘箱内,在温度为105℃下加热12小时,进行水热合成,使氧化锌纳米棒生长在二氧化钛电纺膜上;从烘箱内取出容器,冷却至室温,开启容器,从溶液中取出已生长有氧化锌纳米棒的二氧化钛电纺膜,去离子水冲洗干净后,在温度为50℃左右下烘干,即得到本发明所述的氧化锌与二氧化钛复合薄膜材料,薄膜的厚度为40微米。扫描电镜见图1,可以看出:构成薄膜材料的氧化锌与二氧化钛复合材料纤维是由以锐钛矿型的二氧化钛线为轴和有序生长在二氧化钛线上的六方纤锌矿型的氧化锌纳米棒构成,复合材料纤维的直径为3~5微米,氧化锌纳米棒的直径为100~200nm,长度为2~4微米。X-射线衍射见图2,表明二氧化钛的晶型为锐钛矿型,氧化锌的晶型为六方纤锌矿型。
实施例2
1)配制静电纺丝用二氧化钛前驱体溶胶,所述的静电纺丝用二氧化钛前躯体溶胶由质量浓度为1.0%的聚乙烯吡咯烷酮、质量浓度为15%的醋酸,质量浓度为15%的钛酸四丁酯及余量乙醇组成;
2)将步骤1)得到的二氧化钛前驱体溶胶加入到现有静电纺丝设备(单孔丝喷头)的给液装置中,调整纺丝工作距离为8cm、工作电压为15KV;使二氧化钛前驱体溶胶从静电纺丝设备的喷射装置中以二氧化钛前驱体线的形式喷出,在接收装置上获得由二氧化钛前驱体线交织构成的薄膜;
3)将步骤2)得到的由二氧化钛前驱体线交织构成的薄膜在马弗炉中500℃左右煅烧2小时左右;得到由二氧化钛线交织构成的二氧化钛电纺膜,电纺膜的厚度为40微米,组成二氧化钛电纺膜的二氧化钛线的直径为3微米;
4)配制水热合成用的氧化锌前躯体溶胶,所述的水热合成用的氧化锌前躯体溶胶是由质量浓度为1.2%的醋酸锌、质量浓度为2.0%的六次甲基四胺、质量浓度为0.05%的柠檬酸钠及余量水组成;
5)将步骤4)得到的氧化锌前躯体溶胶、步骤3)得到的二氧化钛电纺膜加入到容器内(如聚四氟乙烯内衬的不锈钢容器),其中氧化锌前躯体溶胶与电纺膜的质量比为150∶1,将容器密封后放入烘箱内,在105℃下加热12小时,进行水热合成,使氧化锌纳米片生长在二氧化钛电纺膜上;从烘箱内取出容器,冷却至室温,开启容器,从溶液中取出已生长有氧化锌纳米片的二氧化钛电纺膜,去离子水冲洗干净后,在50℃左右下烘干,即得到本发明所述的氧化锌与二氧化钛复合薄膜材料,薄膜的厚度为20微米。扫描电镜见图3,可以看出:构成薄膜材料的氧化锌与二氧化钛复合材料纤维是由以锐钛矿型的二氧化钛线为轴和有序生长在二氧化钛线上的六方纤锌矿型的氧化锌纳米片构成,复合材料纤维的直径为3~6微米,氧化锌纳米片的厚度为150~300nm,直径为1~3微米。X-射线衍射见图4,表明二氧化钛的晶型为锐钛矿型,氧化锌的晶型为六方纤锌矿型。
实施例3
1)配制静电纺丝用二氧化钛前驱体溶胶,所述的静电纺丝用二氧化钛前躯体溶胶由质量浓度为0.5%的聚乙烯吡咯烷酮、质量浓度为25%的醋酸、质量浓度为20%的钛酸四乙酯及余量为乙醇组成;
2)将步骤1)得到的二氧化钛前驱体溶胶加入到现有静电纺丝设备(单孔丝喷头)的给液装置中,调整纺丝工作距离为5cm、工作电压为10KV;使二氧化钛前驱体溶胶从静电纺丝设备的喷射装置中以二氧化钛前驱体线的形式喷出,在接收装置上由获得二氧化钛前驱体线交织构成的薄膜;
3)将步骤2)得到的二氧化钛前驱体线组成的薄膜在马弗炉中500℃左右煅烧2小时左右;得到由二氧化钛线交织构成的二氧化钛电纺膜,电纺膜的厚度为60微米,组成二氧化钛电纺膜的二氧化钛线的直径为1.5微米;
4)配制水热合成用的氧化锌前躯体溶胶,所述的水热合成用的氧化锌前躯体溶胶是由质量浓度为2.0%的硝酸锌、质量浓度为2.0%的六次甲基四胺及余量水组成;
5)将步骤4)得到的氧化锌前躯体溶胶、步骤3)得到的二氧化钛电纺膜加入到容器内(如聚四氟乙烯内衬的不锈钢容器),其中氧化锌前躯体溶胶与电纺膜的质量比为50∶1,将容器密封后放入烘箱内,在95℃下加热20小时,进行水热合成,使氧化锌纳米棒生长在二氧化钛电纺膜上;从烘箱内取出容器,冷却至室温,开启容器,从溶液中取出已生长有氧化锌纳米棒的二氧化钛电纺膜,去离子水冲洗干净后,在50℃左右下烘干,即得到本发明所述的氧化锌与二氧化钛复合薄膜材料,薄膜的厚度为100微米。扫描电镜见图5,可以看出:构成薄膜材料的氧化锌与二氧化钛复合材料纤维是由以锐钛矿型的二氧化钛线为轴和有序生长在二氧化钛线上的六方纤锌矿型的氧化锌纳米棒构成,复合材料纤维的直径为5~7微米,氧化锌纳米棒的直径为200~300nm,长度为3~5微米。
实施例4
1)配制静电纺丝用二氧化钛前驱体溶胶,所述的静电纺丝用二氧化钛前躯体溶胶由质量浓度为2.0%的聚乙烯吡咯烷酮、质量浓度为10%的醋酸、质量浓度为12%的四氯化钛及余量乙醇组成;
2)将步骤1)得到的二氧化钛前驱体溶胶加入到现有静电纺丝设备(单孔丝喷头)的给液装置中,调整纺丝工作距离为10cm、工作电压为20KV;使二氧化钛前驱体溶胶从静电纺丝设备的喷射装置中以二氧化钛前驱体线的形式喷出,在接收装置上获得由二氧化钛前驱体线交织构成组成的薄膜;
3)将步骤2)得到的二氧化钛前驱体线组成的薄膜在马弗炉中500℃左右煅烧2小时左右;得到由二氧化钛线交织构成的二氧化钛电纺膜,电纺膜的厚度为70微米,组成二氧化钛电纺膜的二氧化钛线的直径为3微米;
4)配制水热合成用的氧化锌前躯体溶胶,所述的水热合成用的氧化锌前躯体溶胶是由质量浓度为1.5%的氯化锌、质量浓度为0.9%的六次甲基四胺、质量浓度为0.15%的柠檬酸钾及余量水组成;
5)将步骤4)得到的氧化锌前躯体溶胶、步骤3)得到的二氧化钛电纺膜加入到容器内(如聚四氟乙烯内衬的不锈钢容器),其中氧化锌前躯体溶胶与电纺膜的质量比为150∶1,将容器密封后放入烘箱内,在150℃下加热4小时,进行水热合成,使氧化锌纳米片生长在二氧化钛电纺膜上;从烘箱内取出容器,冷却至室温,开启容器,从溶液中取出已生长有氧化锌纳米片的二氧化钛电纺膜,去离子水冲洗干净后,在50℃左右下烘干,即得到本发明所述的氧化锌与二氧化钛复合薄膜材料,薄膜的厚度为40微米。扫描电镜见图6,可以看出:构成薄膜材料的氧化锌与二氧化钛复合材料纤维是由以锐钛矿型的二氧化钛线为轴和有序生长在二氧化钛线上的六方纤锌矿型的氧化锌纳米片构成,复合材料纤维的直径为2~4微米,氧化锌纳米片的厚度为100~200nm,直径为1~3微米。

氧化锌与二氧化钛复合薄膜材料及其制备方法.pdf_第1页
第1页 / 共13页
氧化锌与二氧化钛复合薄膜材料及其制备方法.pdf_第2页
第2页 / 共13页
氧化锌与二氧化钛复合薄膜材料及其制备方法.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《氧化锌与二氧化钛复合薄膜材料及其制备方法.pdf》由会员分享,可在线阅读,更多相关《氧化锌与二氧化钛复合薄膜材料及其制备方法.pdf(13页珍藏版)》请在专利查询网上搜索。

本发明属于氧化物半导体薄膜材料领域,特别涉及氧化锌与二氧化钛复合薄膜材料及其制备方法。本发明结合静电纺丝与水热合成制备技术,制备出的复合薄膜材料是由直径为28微米的氧化锌与二氧化钛复合材料纤维交织构成的,复合薄膜厚度为20100微米;所述的氧化锌与二氧化钛复合材料纤维是由以锐钛矿型的二氧化钛线为轴和有序生长在二氧化钛线上的六方纤锌矿型的氧化锌纳米晶粒构成。本发明的氧化锌与二氧化钛复合薄膜材料具有较。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 无机化学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1