制备半成品的方法和用于制备复合模塑件、尤其是纤维复合模塑件的半成品以及复合模塑件、尤其是纤维复合模塑件.pdf

上传人:大师****2 文档编号:33139 上传时间:2018-01-17 格式:PDF 页数:15 大小:966.25KB
返回 下载 相关 举报
摘要
申请专利号:

CN201380051968.0

申请日:

2013.10.02

公开号:

CN104853893A

公开日:

2015.08.19

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):B29B 11/16申请日:20131002|||公开

IPC分类号:

B29B11/16; B29B15/10; B29C70/46; B29K21/00; B29K101/12

主分类号:

B29B11/16

申请人:

赖芬豪泽机械工厂有限及两合有限公司

发明人:

C·钦奎曼尼; M·尼奇克; N·奎克; A·托拜

地址:

德国特罗斯多夫

优先权:

12186973.9 2012.10.02 EP

专利代理机构:

中国国际贸易促进委员会专利商标事务所11038

代理人:

宓霞

PDF下载: PDF下载
内容摘要

本发明公开了一种生产用于制备复合模塑件(7)、尤其是纤维复合模塑件的半成品的方法,其中,较高熔点的增强材料(8)、尤其是较高熔点的增强纤维与由热塑性塑料构成的较低熔点纤维(10)结合成层压体(4),其中将所述较低熔点纤维纺丝并且在纺丝后以纤维温度TF与所述较高熔点增强材料、尤其是与较高熔点增强纤维结合成形成所述半成品的层压体。纤维温度TF处在所述较低熔点纤维的热塑性塑料的耐热变形温度TW以下25℃的温度至所述较低熔点纤维的热塑性塑料的耐热变形温度TW以上55℃的温度之间的温度范围内。

权利要求书

1.  生产用于制备复合模塑件、尤其是纤维复合模塑件的半成品的方法,其中较高熔点增强材料、尤其是较高熔点增强纤维与由热塑性塑料构成的较低熔点纤维结合成层压体,其中将所述较低熔点纤维纺丝并且在纺丝后以纤维温度TF与较高熔点增强材料、尤其是较高熔点增强纤维结合成形成所述半成品的层压体,其中纤维温度TF处在所述较低熔点纤维的热塑性塑料的耐热变形温度TW以下25℃的温度至所述较低熔点纤维的热塑性塑料的耐热变形温度TW以上55℃的温度之间的温度范围内。

2.
  根据权利要求1所述的方法,其中将所述较低熔点纤维在纺丝后连续送入所述增强材料或者所述增强纤维内,并且所述较低熔点纤维优选保持由纺丝过程中加热导致的纤维温度TF

3.
  根据权利要求1或2所述的方法,其中所述较低熔点纤维在与所述增强材料或者增强纤维结合时的纤维温度TF处在所述较低熔点纤维的热塑性塑料的耐热变形温度TW以下20℃、优选15℃的温度至所述较低熔点纤维的热塑性塑料的耐热变形温度TW以上50℃、优选45℃的温度之间。

4.
  根据权利要求1至3中任一项所述的方法,其中所述增强材料具有间隙,或者在所述增强纤维之间形成了间隙,其中在所述较低熔点纤维与所述增强材料或者增强纤维结合的过程中,所述纤维或者所述纤维的纤维片段穿入所述间隙内。

5.
  根据权利要求1至4中任一项所述的方法,其中所述半成品没有经过固结、尤其是没有压延和/或没有针刺和/或没有缝纫和/或没有借助热空气的热粘接和/或没有胶粘和/或没有化学固结地进一步加工成为复合模塑件、尤其是纤维复合模塑件。

6.
  生产用于制备复合模塑件、尤其是纤维复合模塑件的半成品的方法,其中较高熔点的增强材料、尤其是较高熔点的增强纤维与由热塑性塑料构成的较低熔点纤维结合成层压体,其中将所述较低熔点纤维纺丝并且在纺丝后与所述较高熔点增强材料、尤其是与较高熔点增强纤维结合成形成所述半成品的层压体,并且其中所述较高熔点增强材料或者较高熔点增强纤维与所述较低熔点纤维是由相同的塑料或者是由相同的塑料类型构成的。

7.
  根据权利要求6所述的方法,其中将所述层压体借助选自“机械针刺、水射流固结、压延、借助热空气的热粘接、胶粘、化学结合”中的至少一种固结方式加以固结。

8.
  根据权利要求6或7中任一项所述的方法,其中所述层压体(4)或者经固结的层压体(4)在第一个步骤中被施加热量和/或压力,并且在此形成具有由热塑性塑料构成的基体以及包埋在其中的增强材料或者包埋在其中的增强纤维的另一种半成品,并且在第二个步骤中将其进一步加工成复合模塑件或者纤维复合模塑件。

9.
  根据权利要求1至8中任一项所述的方法,其中所述较低熔点纤维在以<10旦、优选<3旦以及尤其优选<1.5旦的纤度纺丝后与所述较高熔点增强材料、尤其是与较高熔点增强纤维结合成形成所述半成品的层压体。

10.
  根据权利要求1至9中任一项所述的方法,其中所述较低熔点纤维是以无定向纤维网的形式或者是以无纺织物的形式与所述增强材料或者所述增强纤维相结合。

11.
  根据权利要求1至10中任一项所述的方法,其中所述较低熔点纤维被制备或者被纺丝为连续长丝。

12.
  根据权利要求1至11中任一项所述的方法,其中所述较低熔点纤维被纺丝为熔喷纤维,并且尤其优选被纺丝为双轴-熔喷纤维。

13.
  根据权利要求1至12中任一项所述的方法,其中所述较高熔点增强材料或者较高熔点增强纤维的熔点比所述较低熔点纤维的熔点高至少1℃,优选至少5℃。

14.
  根据权利要求1至13中任一项所述的方法,其中较高熔点增强纤维选自“玻璃纤维、芳族聚酰胺纤维、碳纤维、金属纤维、由热塑性塑料构成的纤维”中的至少一种纤维类型。

15.
  根据权利要求1至14中任一项所述的方法,其中由较高熔点增强材料尤其是由较高熔点增强纤维-构成的层片被布置在两个由较低熔点纤维构成的层片之间,形成所述层压体。

16.
  制备复合模塑件、尤其是纤维复合模塑件的方法,其中对半成品-根据权利要求1至15中任一项所述制备的-施加热量和/或压力,以致所述较低熔点纤维熔融并且所述增强材料-尤其是所述增强纤维-被熔体浸渍或者被包埋入由 热塑性塑料构成的基体内。

17.
  根据权利要求16所述的方法,其中所述半成品通过施加热量和/或压力在热成型工艺和/或注塑工艺的过程中被转变成所述复合模塑件或者纤维复合模塑件(7)。

18.
  用于制备复合模塑件、尤其是纤维复合模塑件的半成品,其中所述半成品是根据权利要求1至15中任一项所述来制备的。

19.
  复合模塑件、尤其是纤维复合模塑件,其按照根据权利要求16或17中任一项所述的方法来制备。

说明书

制备半成品的方法和用于制备复合模塑件、尤其是纤维复合模塑件的半成品以及复合模塑件、尤其是纤维复合模塑件
技术领域
本发明涉及一种生产用于制备复合模塑件、尤其是纤维复合模塑件的半成品的方法。另外,本发明涉及一种用于制备这样一种复合模塑件、尤其是纤维复合模塑件的半成品。此外,本发明还涉及一种复合模塑件,尤其涉及一种纤维复合模塑件。本发明尤其涉及的是轻型结构中的复合模塑件或者纤维复合模塑件。术语“复合模塑件”指的是,将增强材料或者未熔融的增强材料包埋入由热塑性塑料构成的基体内。术语“纤维复合模塑件”指的是,在复合模塑件或者在由热塑性塑料构成的基体内存在有纤维或者末熔融的纤维。根据本发明所制备的复合模塑件或者纤维复合模塑件可一方面具有二维的形状,尤其是板材的形状或类似形状。根据本发明所制备的复合模塑件或者纤维复合模塑件优选具有三维的形状。
背景技术
开头所述类型的方法、半成品和复合模塑件在实践中已经以各种实施方式已知。在这些已知的方法中,首先制备半成品,这些半成品是由热塑性塑料构成的基体和其中包埋的增强纤维构成的。为此,将增强纤维,例如玻璃纤维,首先与由热塑性塑料构成的薄膜、粉末、纤维或熔体结合。通过施加热量和压力,热塑性塑料熔融,并以这种方式使得增强纤维用所述熔体浸渍,由此最终得到由热塑性基体构成的、包含有包埋的增强纤维的半成品。这些半成品也被称作为有机板(Organobleche),通常将其制备成板材的形状。为了制备具有三维形状的纤维复合模塑件,这些板材必须在一个随后的、额外的加工步骤中被重新加热,之后可将其成型为所期望的纤维复合模塑件。这些已知的方法和半成品具有一系列不足。首先,在制备半成品、尤其是在使用由热塑性塑料构成的薄膜时,增强纤维用热塑性塑料浸透或者浸渍的程度不尽如人意。此外,结果经常产生空气夹入,由此在所制备的复合模塑件或者纤维复合模塑件内形成 了薄弱处。另外,所生产的半成品经常显示不充分的悬垂性。因此,三维的或者多维的复合模塑件或者纤维复合模塑件的制备受到限制。另外,如果是用无机的或者很难熔融的增强纤维来增强热塑性基体,那么已知的纤维复合材料的回收再利用变得很难。另外,回收按照已知的措施来制备的复合模塑件或者纤维复合模塑件中的热固性塑料也非常困难和繁琐。
发明内容
与此相对,本发明所基于的技术问题在于,提供一种开头所述类型的方法,其中能够有效地并且功能可靠地避免上述缺点。此外,本发明还基于的技术问题是,提供一种用于制备复合模塑件或者纤维复合模塑件的半成品以及一种相应的复合模塑件或者纤维复合模塑件。
为了解决所述技术问题,本发明教导了一种生产用于制备复合模塑件、尤其是纤维复合模塑件的半成品的方法,其中将较高熔点的增强材料、尤其是较高熔点的增强纤维与由热塑性塑料构成的较低熔点纤维结合成层压体,其中将所述较低熔点的纤维纺丝并且以纤维温度TF与较高熔点的增强材料、尤其是与较高熔点的增强纤维结合成形成所述半成品的层压体,其中纤维温度TF处于较低熔点纤维的热塑性塑料的耐热变形温度TW以下25℃的温度至较低熔点纤维的热塑性塑料的耐热变形温度TW以上55℃的温度之间的温度范围内。因此适用的是:TW-25℃≤TF≤TW+55℃。在本发明的范畴内,纤维温度TF要低于较低熔点纤维的热塑性塑料的熔融温度。-此外,在本发明的范畴内,将较低熔点的纤维纺丝,并且在用<10旦、优选<3旦、尤其优选<1.5旦的纤度来纺丝后以纤维温度TF与较高熔点的增强材料、尤其是与较高熔点的增强纤维结合成形成所述半成品的层压体。
“较高熔点”在本发明中意指,较高熔点的组分具有比较低熔点的组分更高的熔点,其中这两个熔点均是在相同的外部条件下进行测量的。较高熔点的增强材料在本发明中还包括非熔融的增强材料,本发明中的术语“较高熔点增强纤维”相应地也包括了非熔融的增强纤维。这些增强纤维-例如碳纤维-通常在非常高的温度下分解。-合适的是使用作为铺网(Gelege)和/或织物(Gewebe)和/或编织物和/或针织物和/或格栅等等形式的增强材料并且尤其是增强纤维。一种优选的实施方式的特点在于,由增强纤维组成的至少一种铺网和/或至少一种织 物形成至少一个由较高熔点的增强纤维组成的层片。-在本发明中,还可采用较高熔点的泡沫或者蜂窝作为较高熔点的增强材料。在本发明的范畴中,较高熔点增强材料或者较高熔点增强纤维的熔点比较低熔点纤维的熔点高至少1℃,优选至少5℃。根据本发明的一种实施方式,较高熔点的增强材料或者较高熔点的增强纤维的熔点比较低熔点纤维的熔点高至少20℃,优选至少30℃,特别优选至少50℃。
根据权利要求1,较低熔点纤维的纤维温度TF在其与增强材料或者与增强纤维结合时处在其中所说明的低于耐热变形温度TW的范围内或者在其中所说明的高于较低熔点纤维的热塑性塑料的耐热变形温度TW的范围内。其当然也可等于耐热变形温度TW。较低熔点纤维在放置时或者在与增强材料结合时的纤维温度TF可作为较低熔点纤维在持续工艺中放置或者结合时的工艺温度或者空气温度测量。较低熔点纤维的热塑性塑料的耐热变形性或者耐热变形温度TW是这种热塑性塑料的耐热性的量度。可按照DIN EN ISO 75-2:2004的方法B(加热速率50K/h),对未经过热处理的试样测量耐热变形温度。
本发明方法的一种非常优选的实施方式的特征在于,较低熔点纤维在与增强材料结合时的纤维温度TF处在较低熔点纤维的热塑性塑料的耐热变形温度TW以下20℃、优选15℃的温度TF至较低熔点纤维的热塑性塑料的耐热变形温度TW以上50℃、优选45℃之间。如上所述,但在本发明的范畴内,纤维温度TF要在较低熔点纤维的热塑性塑料的熔点以下。
合适的是,在根据本发明的方法中,较低熔点纤维在纺丝后连续送入增强材料或者增强纤维内。优选,较低熔点纤维在此由纺丝过程中加热保持纤维温度TF。因此,合适的是,较低熔点纤维的处理或者冷却仅在如下范围内进行:使得根据本发明的纤维温度TF根据权利要求1处在其中所述的范围内。-在本发明的范畴内,增强材料具有间隙,或者,在增强纤维之间形成了间隙,在较低熔点纤维与增强材料或者与增强纤维结合的过程中,较低熔点纤维的纤维或者纤维片段可穿入所述间隙。就这一点而言,本发明基于的认识是,根据本发明与增强材料、与增强纤维结合的较低熔点纤维可以纤维温度TF足够挠性或者可变形或者软的,使得其能够无问题地至少以纤维片段穿入增强材料的间隙或者增强纤维之间的间隙内。由此好像发生了增强材料或者增强纤维与较低熔点纤维的缠结。另外,本发明基于的认识在于,通过上述方式所制备的层压体足 够稳定和抗变形或者已经足够被强化,使得其没有任何特殊的固结措施就能够直接送入复合模塑件或者纤维复合模塑件的制备。在本发明的范畴内,已经可被用作为半成品的层压体不用经过固结、尤其是不用热固结或者不用压延和/或不用针刺和/或不用缝纫和/或不用胶粘和/或不用化学固结就能送入进一步加工成为复合模塑件或者纤维复合模塑件。这里的“不用固结”尤其是指,所述层压体或者所述半成品原则上能够很容易被压实或者能够用压实辊很容易地压实,但不经过任何特殊的固结方法,尤其是不经过任何热固结或者针刺或者缝纫或者胶粘。本发明在这方面基于的认识是,如果较低熔点纤维以根据本发明的纤维温度TF与增强材料或者与增强纤维结合成层压体或者结合成所述半成品,就不需要特殊的固结。
原则上,在根据权利要求1所述的方法中,可使用不同的材料用于所述较高熔点增强材料,例如玻璃纤维等形式的较高熔点增强纤维。但较高熔点增强材料或者较高熔点增强纤维也可由一种塑料或者由一种热塑性塑料构成。本发明的一种优选的实施方式的特征在于,在根据权利要求1所述的方法中,较高熔点增强材料或者较高熔点增强纤维作为一方面,和较低熔点纤维作为另一方面,由相同的塑料或者相同的塑料类型构成。因此,例如,可使用较高熔点的聚丙烯纤维作为增强纤维并且使用较低熔点的聚丙烯纤维作为较低熔点的纤维来制备根据本发明的半成品。下文对于较高熔点增强材料和对于较低熔点纤维使用相同的塑料或者相同的塑料类型方面公开了另外的实施方式,这些实施方式也可基于根据权利要求1所述的方法。因此,在根据权利要求1所述的本发明方法的范畴内,可例如使用较高熔点聚丙烯纤维作为较高熔点增强纤维以及使用低熔点聚丙烯纤维作为较低熔点纤维。
合适的是,采用无纺织物形式或者无定向纤维网形式的较低熔点纤维或者至少一个由较低熔点纤维构成的层片。-在本发明的范畴内,将较低熔点纤维生产或者纺丝为连续长丝。如下面还将详细阐述的那样,根据本发明特别建议的实施方式,较低熔点纤维被纺丝为熔喷纤维并且尤其优选被纺丝为双轴-熔喷纤维。这样,较低熔点纤维就有利地具有1至10μm的纤维直径。-较低熔点纤维原则上也可借助纺粘法被制备为由连续长丝构成的纺粘型纤维网。这种方法也在下面予以进一步说明。根据另一种实施变型,较低熔点纤维也可在热熔法中借助热熔体喷气头来制备。
本发明的一种推荐的实施方式的特征在于,由较高熔点增强材料构成的层片-尤其是由较高熔点增强纤维构成的层片,在至少两个层片、尤其是两个由热塑性塑料构成的较低熔点纤维所构成的层片之间布置成为所述层压体。因此,根据本发明的一种实施变型,存在一种三层的层压体。原则上,在本发明的范围内所生产的层压体可具有另外的由增强材料/增强纤维和/或由较低熔点纤维构成的层片。
本发明的主题还包括一种生产用于制备复合模塑件、尤其是纤维-复合模塑件的半成品的方法,其中较高熔点增强材料、尤其是较高熔点增强纤维与由热塑性塑料构成的较低熔点纤维结合成层压体,其中将所述较低熔点纤维纺丝并且在纺丝后与所述较高熔点增强材料、尤其是与较高熔点增强纤维结合成形成所述半成品的层压体,并且其中所述较高熔点增强材料或者较高熔点增强纤维与所述较低熔点纤维由相同的塑料或者相同的塑料类型构成。-合适的是,所述较低熔点纤维在纺丝后以<10旦、有利地<3旦以及优选<1.5旦的纤度与较高熔点增强材料、尤其是与较高熔点增强纤维结合成形成所述半成品的层压体。
根据本发明的这种实施方式,不仅较高熔点增强材料或者较高熔点增强纤维,而且较低熔点纤维,都可由相同的聚烯烃或者由相同的聚酯或者由相同的聚酰胺构成。例如,不仅较高熔点增强纤维,而且较低熔点纤维,都可由聚丙烯或者由聚乙烯或者由聚对苯二甲酸乙二酯(PET)或者由聚对苯二甲酸丁二酯(PBT)构成。根据一种实施变型,例如较高熔点增强纤维可由聚对苯二甲酸乙二酯(PET)构成,较低熔点纤维可由聚对苯二甲酸乙二酯的共聚物(CoPET)构成。在这方面,相同的塑料类型还意指相关塑料或者相同塑料的至少一种或者一种共聚物。
在这种包含有相同塑料或者相同塑料类型的实施方式中,较高熔点增强纤维的较高熔点可由如下方式达到:较高熔点增强纤维具有比较低熔点纤维更高的结晶度。较高熔点增强纤维可比较低熔点纤维更强地拉伸。-但较低熔点纤维的较低熔点也可通过添加物-例如通过添加具有更低熔点的共聚物-来实现。
在包含有相同塑料或者相同塑料类型的实施方式中,也优选较高熔点增强材料或者较高熔点增强纤维的熔点有利地比较低熔点纤维的熔点高至少1℃,优选至少5℃。根据一种实施变型,熔点差为至少10℃,或者至少20℃。
有利的是,在较高熔点增强材料作为一方面和较低熔点纤维作为另一方面 包含有相同塑料或者相同塑料类型的实施方式的特征在于无问题的回收再利用。在对由根据本发明的半成品所制备的复合模塑件或者纤维复合模塑件进行再利用时,不需更繁琐地对各个组分加以分离。这首先对于汽车工业领域的复合模塑件是非常有利的,因为这里要求高的回收率。另外,在这种实施方式中,所纺丝的较低熔点纤维可以简单的并且尤其是有效的方式与较高熔点增强材料、或者与较高熔点增强纤维相结合,从而形成相对稳定的层压体,对此原则上不需更进行非常耗能的固结措施。在本发明中,即便是在根据图6的、采用相同的塑料或者相同的塑料类型的实施方式中,半成品也无需固结、尤其是不用压延和/或不用针刺和/或不用缝纫和/或无需用热空气进行热粘接和/或不用胶粘和/或不用化学固结就能送入进一步加工成为复合模塑件、尤其是纤维复合模塑件。
但是,尽管如此,也在本发明的范围内的是,在这种实施方式中,在进一步加工成为复合模塑件或者纤维复合模塑件之前,对由所述至少一个由较高熔点增强材料-尤其是较高熔点增强纤维-所构成的层片以及所述至少一个由较低熔点纤维所构成的层片构成的层压体进行固结。在此,层压体的固结尤其是指较高熔点和较低熔点的组分的接合和/或缠结。优选借助选自“机械式的针刺、水射流固结、压延、借助热空气的热粘接、胶粘、化学结合”中的至少一种固结类型来对所述层压体进行固结。这里的胶粘尤其是指借助热熔体的胶粘,尤其是选自相同物质类、例如增强材料和较低熔点纤维。由于额外的固结,层压体可特别容易地操作并且特征在于具有良好的悬垂性,因此,层压体能够无问题地也被作为卷形产品使用。
下面所阐述的优选的实施方式或者实施变型不仅涉及本发明中根据权利要求1所述的教导,也涉及本发明中根据权利要求6所述的对于较高熔点组分和较低熔点组分采用相同塑料或者采用相同塑料类型的教导。
在本发明中具有特别的重要性的一种实施方式的特征在于,所述至少一个由热塑性塑料所构成的较低熔点纤维构成的层片是一种无纺织物。在本发明中,所述无纺织物是无定向纤维网。合适的是,在根据本发明的层压体中,所有由热塑性塑料所构成的较低熔点纤维构成的层片都是无纺织物。-根据本发明的一种特别推荐的实施方式,所述由较低熔点纤维构成的无纺织物是由连续长丝构成的纺粘型纤维网。
在本发明中,这样的由连续长丝构成的纺粘型纤维网是借助纺粘法制备的。在此,由热塑性塑料构成的连续长丝是由喷丝头纺丝的,然后在冷却室内冷却。合适的是,经冷却的连续长丝接着被送入拉伸单元,优选最后铺置到传送带或者放置丝网带上。根据建议,纺粘型纤维网的连续长丝具有10至35μm的纤维直径,连续长丝的纤维直径优选大于10μm或者明显大于10μm。合适的是,用来制备纺粘型纤维网的聚丙烯的熔体流动指数(MFI)为10至100g/10分钟。在本发明中,根据EN ISO 1133在230℃的测试温度下以及在2.16kg的额定质量下测量熔体流动指数(MFI)。-根据本发明的一种优选的实施方式,由较高熔点增强材料-尤其是较高熔点增强纤维-构成的层片被布置在两个由热塑性塑料所构成的连续长丝构成的纺粘型纤维网之间。
一种在根据本发明的方法中特别优选的实施方式的特征在于,使用熔喷纤维网作为无纺织物并且优选采用一种双轴-熔喷纤维网。熔喷纤维网以及尤其是双轴-熔喷纤维网被证明为在本发明的范围内十分有利。熔喷纤维网是通过熔喷设备制备的,该熔喷设备具有喷嘴头或者熔喷喷气头,其配备有大量的被布置成至少一排的喷嘴孔。从这些喷嘴孔中以很快的喷气流挤出塑料熔体或者熔体液状的塑料长丝。由此,熔体就转变成了细的纤维并且固结,然后,这些纤维被铺置到放置处-尤其是放置丝网带-上成为细纤维的熔喷纤维网。在传统的熔喷方法中,被挤出的塑料长丝的悬挂物从侧面或者相对的侧面被施加一个或多个面状的喷气流。在双轴-熔喷方法中,与此所不同,各个单个喷嘴孔或者各个单个所挤出的塑料长丝被施加单独的喷气流或者呈外套状围绕在该长丝周围的喷气流。用双轴-熔喷方法所制备的双轴熔喷纤维网在本发明中被证明为尤其有利。在根据本发明的方法中所采用的熔喷纤维网或者双轴-熔喷纤维网具有纤维直径合适地为1至10μm的纤维。为了制备熔喷纤维网或者双轴熔喷纤维网,例如采用熔体流动指数(MFI)为75至2500g/10分钟的聚丙烯。100至150g/10分钟的熔体流动指数被证明为非常有利。根据本发明方法的尤其推荐的实施方式,采用由较高熔点增强材料或者较高熔点增强纤维构成的层片,所述层片被布置或者被直接布置在两个熔喷纤维网之间并且优选被布置在两个双轴熔喷纤维网之间。-在原则上,在采用相同的塑料或者相同的塑料类型的这种实施方式中,也可在热熔方法中借助热熔体喷气头来制备较低熔点纤维。
根据本发明方法的一种经过验证为合适的实施方式中,使用由至少一种聚 烯烃、优选聚丙烯和/或聚乙烯构成的较低熔点纤维。但较低熔点纤维原则上也可由其他热塑性塑料构成,尤其是也可以由聚酯、例如由聚对苯二甲酸乙二酯(PET)或者由聚酰胺(PA)构成。
推荐使用选自“玻璃纤维、芳族聚酰胺纤维、碳纤维、金属纤维、由热塑性塑料构成的纤维”中的至少一种纤维类型用于由较高熔点增强纤维构成的层片。原则上,较高熔点增强纤维也可以是天然纤维。这些纤维可被作为短纤维和/或长纤维使用。在本发明的范围下,由较高熔点增强纤维构成的层片是铺网和/或织物和/或编织物和/或针织物。铺网和织物被证明为尤其有利。因此,例如可采用由玻璃纤维构成的铺网作为由较高熔点增强纤维构成的层片。根据本发明的另一种优选的实施方式,所述由较高熔点增强纤维构成的层片是由较高熔点增强纤维构成、优选由较高熔点塑料纤维构成的无纺织物。因此,例如可采用由PET纤维构成的无纺织物作为由较高熔点增强纤维构成的层片,其中这种无纺织物例如被布置在两个由聚丙烯纤维构成的喷熔纤维网之间。-另外还被证明为有效的是,增强纤维掺杂有浸渍剂或者粘附促进剂,以便实现与熔融的热塑性塑料更好的接合或者粘附。
根据一种实施变型,所述至少一个由增强纤维构成的层片作为卷形产品与所述至少一个由较低熔点纤维构成的层片结合,或者,增强纤维例如在气流成网工艺中与所述至少一个由较低熔点纤维构成的层片结合。所述至少两个层片还可连续地被结合成卷形产品或者不连续地作为二维的平面物体彼此上下重叠堆放。在本发明的范围内,根据本发明制备的层压体可被卷绕成卷状物,因此类似地可被作为卷形产品进一步使用。这是由于根据本发明所制备的层压体的挠性的特性以及良好的悬垂性而实现的。
下面阐述根据本发明制备复合模塑件、尤其是纤维复合模塑件。对于复合模塑件或者纤维复合模塑件而言,较高熔点增强材料或较高熔点增强纤维被包埋入由热塑性塑料构成的基体内。为了制备复合模塑件或者纤维复合模塑件,所述层压体或者根据本发明所制备的半成品被施加热量和/或压力,使得由热塑性塑料构成的较低熔点纤维熔融,未熔融的增强材料或者未熔融的增强纤维被热塑性塑料的熔体浸渍或者被包埋入由热塑性塑料构成的基体内。-所述层压体或者半成品的施加热量和/或压力的过程在此可“在线”或“离线”进行。在本发明的范围下,在施加热量和/或压力时,选择或者调节加热温度要使得仅有较低熔 点纤维被熔融或者基本上仅有较低熔点纤维熔融。当然,在施加热量和/或压力之后或者在复合模塑件/纤维复合模塑件成型后,进行含有包埋的增强材料或者含有包埋的增强纤维的由热塑性塑料构成的基体的冷却。优选使用根据本发明的方法来制备轻型结构中的复合模塑件或者纤维复合模塑件。
为了施加热量或者加热和/或压力,所述层压体或者根据本发明所制备的半成品合适地被引入一种压机模具并且在该处优选在热作用和压力作用下成型。在本发明范围中,用热塑性塑料的熔体浸渍增强材料或者增强纤维以及将增强材料或者增强纤维包埋入由热塑性塑料构成的基体中的过程应尽可能完全并且在空气夹带最小化的情况下进行。
本发明方法的一种非常优选的实施方式的特征在于,通过施加热量和/或压力使得根据本发明所制备的层压体/半成品直接在热成型工艺和/或注塑工艺的过程中转变成复合模塑件或者纤维复合模塑件。这样,与开头所述的由实践已知的方法所不同,所述层压体/半成品是直接地并且在没有任何中间的熔融和硬化工艺的条件下被加工成最终产品的。因而就没有制备额外的由增强材料或者由增强纤维和热塑性基体构成的半成品,由此,与已知方法相比,节省了加工步骤。-热成型工艺尤其是指深冲工艺。因此,在上述优选的实施方式中,根据本发明所制备的层压体/半成品可直接进行深冲。由于层压体/半成品良好的可操作性和良好的悬垂性,根据本发明就可没有任何问题地制备三维或多维的模塑件。
根据本发明方法的另一种实施方式,层压体/半成品在第一个步骤中被施加热量和/或加压,在此形成另一种或者第二种具有由热塑性塑料构成的基体和包埋在其中的增强材料或者包埋在其中的增强纤维的半成品。然后,这另一种或者第二种由热塑性基体和包埋的增强材料或者包埋的增强纤维构成的半成品才在稍后或者在第二个步骤中通过施加热量和/或压力在热成型工艺和/或注塑工艺的过程中被转变成一种复合模塑件或者纤维复合模塑件。因此,就像在由实践中所已知的方法中那样,在一个额外的步骤中首先制备另一种半成品,该半成品然后被加工成最终产品,例如通过深冲加工成三维或多维的模塑件。这另一种或者第二种由热塑性基体和包埋的增强材料构成的半成品合适地被制备成板材的形状。
本发明的主题还包括用于制备复合模塑件、尤其是纤维复合模塑件的半成 品,其具有在由热塑性塑料构成的基体内包埋的增强材料或者包埋的增强纤维,其中至少一个由较高熔点增强材料-尤其是由较高熔点增强纤维-构成的层片与至少一个由热塑性塑料构成的较低熔点纤维构成的层片结合成层压体。所述层压体形成了所述半成品,可由该半成品来制备复合模塑件或者纤维-复合模塑件。要在在此所述的第一半成品(层压体)与任选的、如上所述的另一种或者第二种半成品(由具有包埋的增强材料的热塑性基体构成的半成品)之间加以区分。本发明基于的认识是,层压体形式的半成品相对易于操作,尤其是由于其良好的悬垂性而可被卷绕到卷筒上并且可被作为卷形产品使用。尤其是具有至少一个熔喷纤维网作为较低熔点组分的层压体由于良好的附着性而经常无需额外的固结就能够无问题地操作,并且直接被进一步加工成复合模塑件/纤维复合模塑件或者例如被卷绕到卷筒上。
本发明的主题还包括复合模塑件,尤其是纤维复合模塑件,其可按照上述根据本发明的方法和/或由上述根据本发明的半成品制成,其中较高熔点增强材料-尤其是较高熔点增强纤维-被包埋在由较低熔点热塑性塑料构成的基体内,和/或,所述基体是由热塑性塑料所构成的较低熔点纤维制备的。
本发明基于的认识首先在于,按照根据本发明的方法所制备的半成品的特征在于形成其的层之间特别有效或者牢固的接合。这些半成品令人惊奇地是形状稳定的集合体,所述集合体不需要另外的固结或者至少不需要十分耗能的固结措施就能够进行进一步加工或者进一步操作。根据本发明所生产的层压体或者半成品的特征在于优异的可操作性以及尤其是悬垂性。半成品可合适地直接被进一步加工成复合模塑件或者纤维复合模塑件,或者是直接被卷绕到滚筒上。就这点而言,本发明的特征在于低的复杂性和低的成本。所述半成品可无问题地被作为挠性的卷形产品使用,通过简单的方式就能够制备出三维或者多维的模塑件。本发明另外基于的认识是,通过实现根据本发明的描施,可实现用由热塑性塑料构成的熔体最佳地浸渍或者浸润增强纤维。可避免或者至少基本避免热塑性基体内的空气夹带。在根据本发明的方法中,浸渍或者浸润以及模塑件成型可以简单的方式在唯一一个压机模具内进行。根据本发明所生产的复合模塑件或者纤维复合模塑件的特征还在于突出的机械性能。另外要指出,尤其是在进行相应的材料选择时,根据本发明所制备的复合模塑件或者纤维复合模塑件能够以简单且不繁琐的方式被回收再利用。总体来说,根据本发明的方法 的特征在于低的成本和低的复杂性。
附图说明
下面借助仅表示实施例的附图进一步阐述本发明。示意性图示中:
图1示意性地示出了形成根据本发明的半成品的层压体的生产;
图2示出了用于实施根据本发明的方法的设备;
图3示出了根据本发明所制备的纤维复合模塑件的剖面图;以及
图4示出了根据本发明所制备的纤维复合模塑件的透视图。
具体实施方式
图1完全示意性地示出了一种形成根据本发明的半成品的层压体4的生产。层压体4在此由一个以玻璃纤维8所构成的玻璃纤维织物5形式的较高熔点增强纤维的层片构成。较低熔点纤维10优选并且在本实施例中是借助双轴喷熔方法来制备的。这里想要涉及的是较低熔点聚丙烯纤维,其与玻璃纤维8或者玻璃纤维织物5相结合。合适地并且在本实施例中将双轴喷熔纤维网6铺置在玻璃纤维织物5上。根据本发明,较低熔点纤维10或者聚丙烯纤维具有的纤维温度TF处在聚丙烯的耐热变形温度TW的范围内。从图1中可以看出,与玻璃纤维8或者与玻璃纤维织物5相结合的较低熔点纤维10由于其纤维温度TF而是软的或者挠性的并且可变形,使得其以纤维片段11穿入在玻璃纤维织物5的玻璃纤维8之间所形成的间隙12内。通过这种方式,得到较高熔点玻璃纤维8与较低熔点纤维10之间有效的缠结或者接合。所形成的层压体4原则上可以无需任何特殊的固结就可送入进一步加工成为复合模塑件或者纤维复合模塑件7。
图2非常示意性地示出了具有两个压板2、3的压机模具1。在本实施例中,在压板2、3之间布置了一个三层的层压体4。这个层压体4具有玻璃纤维织物5形式的由较高熔点增强纤维构成的中间层。这介玻璃纤维织物5被布置在两个由聚丙烯纤维构成的双轴熔喷纤维网6之间。在压板2、3相互挤压时,层压体被施加热量和压力,以致较低熔点的聚丙烯纤维熔融。选择加热温度要使得仅有聚丙烯纤维熔融并且玻璃纤维织物5的玻璃纤维8反之并未熔融。更多的是玻璃纤维8被热塑性的聚丙烯熔体浸渍或者浸润,通过这种方式,玻璃纤维8被包埋入由热塑性塑料(PP)构成的基体内。通过上述方式,按照本发明的 优选实施方式,可直接制备纤维复合模塑件7。图2仅非常示意性地示出了一种简单的压机模具1。在本发明范围内,原则上用特殊的压机模具可以简单的方式制备出三维或多维的、具有复杂化结构的模塑件。层压体4的柔性的可操作性和良好的悬垂性对比做出贡献。
图3示出了用根据本发明的方法所制备的纤维复合模塑件7在冷却后的剖面图。可以看到,玻璃纤维织物5的玻璃纤维8完全被包埋入热塑性聚丙烯-基体内。未观察到干扰性的空气夹带,并且所述空气夹带在实现根据本发明的措施时能够以简单的方式加以避免。通过这种方式根据本发明所制备的纤维复合模塑件7具有最佳的机械特性。-另外,在图4中示出了另一种根据本发明所制备的具有多维结构的纤维复合模塑件7。在根据本发明的方法的范围内,多维结构可以简单地并且没有任何问题地实现。

制备半成品的方法和用于制备复合模塑件、尤其是纤维复合模塑件的半成品以及复合模塑件、尤其是纤维复合模塑件.pdf_第1页
第1页 / 共15页
制备半成品的方法和用于制备复合模塑件、尤其是纤维复合模塑件的半成品以及复合模塑件、尤其是纤维复合模塑件.pdf_第2页
第2页 / 共15页
制备半成品的方法和用于制备复合模塑件、尤其是纤维复合模塑件的半成品以及复合模塑件、尤其是纤维复合模塑件.pdf_第3页
第3页 / 共15页
点击查看更多>>
资源描述

《制备半成品的方法和用于制备复合模塑件、尤其是纤维复合模塑件的半成品以及复合模塑件、尤其是纤维复合模塑件.pdf》由会员分享,可在线阅读,更多相关《制备半成品的方法和用于制备复合模塑件、尤其是纤维复合模塑件的半成品以及复合模塑件、尤其是纤维复合模塑件.pdf(15页珍藏版)》请在专利查询网上搜索。

本发明公开了一种生产用于制备复合模塑件(7)、尤其是纤维复合模塑件的半成品的方法,其中,较高熔点的增强材料(8)、尤其是较高熔点的增强纤维与由热塑性塑料构成的较低熔点纤维(10)结合成层压体(4),其中将所述较低熔点纤维纺丝并且在纺丝后以纤维温度TF与所述较高熔点增强材料、尤其是与较高熔点增强纤维结合成形成所述半成品的层压体。纤维温度TF处在所述较低熔点纤维的热塑性塑料的耐热变形温度TW以下25的。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 塑料的加工;一般处于塑性状态物质的加工


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1