1,3,5-三嗪-2,4,6三胺化合物或其药用盐,以及包含上述物质的药物组合物 【技术领域】
本发明涉及一种预防或治疗代谢综合症、糖尿病或P53基因缺失癌症的物质,其进一步涉及一种1,3,5-三嗪-2,4,6三胺化合物或其药用盐、其制备方法以及一种预防或治疗代谢综合症、糖尿病、或P53基因缺失癌症的组合物,其含有前述的物质。
背景技术
糖尿病是一种以持续的高血糖水平为特征的疾病。糖尿病的主要症状是碳水化合物代谢异常和脂类代谢异常,而且由于高血糖水平导致的血液流动障碍和糖利用率的降低会使糖尿病的系统并发症越来越严重。这些糖尿病症状是由于控制碳水化合物和脂类代谢的胰岛素不足或胰岛素抵抗而导致的。
由于无法分泌胰岛素而导致的糖尿病被称为“1型糖尿病”;而由于胰岛素抵抗导致的糖尿病被称为“2型糖尿病”。
据报道大约有10%的韩国人是糖尿病患者,且其中有超过90%是2型糖尿病患者。在美国,有接近20,000,000的糖尿病患者,且其中大约95%是2型糖尿病患者,大多是45岁以上的肥胖者。2型糖尿病的发病率在世界范围内迅速增加,而患有2型糖尿病的人群也变得年轻化。此外,在OECD国家中,韩国由于糖尿病而死亡的人数最多(March,2007,Korean Medical Association)。
胰岛素是由胰腺中的胰岛β细胞分泌的激素。其控制着葡萄糖的代谢并促使葡萄糖从血液中转移到骨骼肌、肝脏、脂肪组织及其它组织,这样葡萄糖可以被用作能量来源或作为糖原或脂肪而被生物合成和贮藏。
2型糖尿病是一种机体会抵抗从胰腺分泌出的胰岛素并削弱其主要功能的症状。这种疾病会由于高胰岛素血症而使血管被直接破坏,并使代谢综合症也变得更加严重。在世界范围内,由于糖尿病并发症导致的死亡率正迅速上升。
胰岛素抵抗是这样一种情形,其中胰岛素未表现出能将葡萄糖转移到细胞中的功能,这是由于胰岛素受体的减少或是由于受体或通过受体的信号转移通道不足造成的。胰岛素抵抗也出现在肥胖者或葡萄糖不耐受者身上,这些人容易成为糖尿病人。即使胰腺能正常分泌胰岛素,这些人也会表现出血糖水平的显著增加,如果胰岛素抵抗不经过治疗,几年之后,他们就会成为糖尿病患者。2型糖尿病发展的第一阶段开始于脂肪组织中的胰岛素抵抗。在该阶段中,糖尿病尚不会发生,但是由于胰岛素抵抗会出现脂肪代谢异常。患有早期糖尿病的肥胖人群或葡萄糖不耐受人群在该阶段的症状是一旦他们摄入葡糖糖,其血液葡萄糖水平就会上升到正常水平或更高。因此,尽管他们还不是糖尿病患者,但是他们可以通过胰岛素抵抗的治疗来预防发展成为糖尿病。本发明的目的就在于发明一种不仅能够用于治疗糖尿病,还能够用于预防向糖尿病发展的组合物。
下一阶段不仅是脂肪组织中产生胰岛素抵抗,其也会在肝脏组织或肌肉组织中产生,这是2型糖尿病的症状。本发明中的化合物是一种能在脂肪组织、肝脏组织和肌肉组织中消除胰岛素抵抗的物质。
已有许多种抗糖尿病的药物被用来治疗2型糖尿病。但是,除了双胍类二甲双胍之外的药物主要能成功地降低血糖水平,但在预防并发症方面未显示出有令人满意的效果,这些并发症包括视力丧失、心力衰竭、中风、肾衰竭、外周神经病、足溃疡等。因此,根据抗糖尿病药物的使用指南(公开于2006年8月的“Diabete Care”),美国糖尿病协会和欧洲糖尿病研究会通常推荐采用二甲双胍作为2型糖尿病的早期治疗药物。同时,韩国糖尿病学会也开始推荐二甲双胍作为主要药物(根据2007年3月韩国医学会卫生保健政策研究所的报告)。
二甲双胍是仅有的与胰岛素有相同效果的药物。但它是不会导致在使用胰岛素时发生低血糖问题的口服药物。二甲双胍能够解决在脂肪组织、肝脏组织和肌肉细胞中的胰岛素抵抗问题。另外,其血糖降低效应和糖基化血色素水平降低效应也是所有口服抗糖尿病药物中最有效的,且其仅有少量或无副作用。
目前经常使用的磺酰脲基的药物是通过强制胰腺分泌胰岛素而降低血糖水平的药物。它们会促进胰岛素分泌已经减少的2型糖尿病患者分泌胰岛素,并因此促使减弱的胰腺胰岛素分泌功能得到促进,如此,药效消失后就需要注射胰岛素。此外,它们还会促使动脉硬化、体重增加以及诱发低血糖水平而使脂类代谢异常,因此导致大脑损伤。
此外,格列酮药似乎可以作为解决胰岛素抵抗问题的药物,但是它们对血糖降低没有明显地作用,因为其主要是在脂肪组织中解决胰岛素抵抗,由于该原因,在多数情况下,其必须与二甲双胍结合使用。由于已经清楚地发现了其副作用的机制,如视网膜导管闭塞,因此使用时一个更加重要的问题是需要密切关注其副作用。其它的口服抗糖尿病药物都是血糖降低剂,仅限于降低餐后血糖。
从一些论文中可以看出在口服抗糖尿病药物中只有二甲双胍是主要选择。具体而言,由于二甲双胍能激活AMPK的作用得到了证明,因此其临床效果的适当性也得以证明。AMPK是生理上调控碳水化合物代谢和脂类代谢的关键酶,据报道二甲双胍能激活该酶,因此具有使血糖水平正常化、改善脂肪状况、使失调的月经、排卵和怀孕正常化、治疗脂肪肝以及预防和治疗P53基因缺失癌症的作用。
根据宾夕法尼亚大学Abramson癌症中心的报告(癌症研究,2007年7月),AMPK激活剂,二甲双胍能够有效预防和治疗P53基因缺失癌症。因此,本发明式1的具有AMPK活性的化合物,能够有效预防和治疗P53基因缺失癌症。
二甲双胍一天服用三次,其剂量超过500mg。所以,需要制备一天服用一次,每片含有1500-2250mg的二甲双胍的缓释片剂。但是这样的药片由于其尺寸较大而难于服用。因此,目前售卖的每24小时内服用一次的缓释片剂中,每片仅含有750mg的二甲双胍。
【发明内容】
技术问题
因此,本发明的一个目的是发明一种新的物质,其表现出降低血糖及降低脂肪的功效(AMPK的主要功效)并具有比二甲双胍更好的优点,同时维持了二甲双胍的骨架分子结构-双胍结构。
此外,本发明的目的是开发一种药物,其表现出降低血糖和降低脂肪的功效,并具有减少的剂量,同时维持了二甲双胍的骨架分子结构-双胍结构。就当前普遍可商购的缓释制剂来说,必须服用超过两片,这是因为它们含有750mg的二甲双胍。但是如果使用本发明中的化合物,其优点在于由于其优良的效果,而使每日需要的剂量减少了,因此就可以减少服用的药片的数量。
技术方案
本发明提供了一种式1所示的1,3,5-三嗪-2,4,6三胺化合物或其药用盐,其制备方法及其药物组合物:
[式1]
其中R1和R2各自独立地是氢或(C1-C5)的烷基;且
R3和R4各自独立地是氢、(C1-C7)烷基、(C3-C7)环烷基、苯基、苯基(C1-C3)烷基、萘基、萘基(C1-C3)烷基、(C3-C7)杂环烷基(C1-C6)烷基、杂芳基或杂芳基(C1-C6)烷基,或
R3和R4与氮结合,形成(C3-C8)杂环烷基,其中的苯基或萘基可被选自下组的取代基所取代,包括卤原子、羟基、硝基、氰基、(C1-C6)烷基、(C1-C6)卤代烷基、(C3-C6)环烷基、(C6-C10)芳基、(C6-C10)芳氧基、(C1-C6)烷氧基、(C1-C6)卤代烷氧基、(C3-C6)环烷氧基、(C1-C7)烷酰基、羧基、氨基甲酰基、烷氨基、(C2-C7)磺酸基、磺酰氨基和(C1-C6)烷硫基。
优选,式1中的化合物是1,3,5-三嗪-2,4,6三胺化合物,其中式1中的R3和R4分别为氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正己基、正庚基、环丙基、环丁基、环戊基、环己基、环庚基、苄基、1-苯乙基、2-苯乙基、1-苯丙基、2-苯丙基、3-苯丙基、1-萘甲基、2-萘甲基、1-萘乙基、2-萘乙基、1-哌啶甲基,1-哌啶乙基、4-哌啶甲基、4-哌啶乙基、1-吗啉甲基、1-吗啉乙基、1-吡咯烷-2-酮-丙基、2-吡啶甲基、3-吡啶甲基、4-吡啶甲基、2-呋喃甲基、2-呋喃乙基、2-噻唑甲基或2-噻唑乙基;其中所述的苯基或萘基可被选自下组的取代基取代:卤原子、羟基、硝基、氰基、(C1-C6)烷基,(C1-C6)卤代烷基,(C3-C6)环烷基、(C6-C10)芳基,(C6-C10)芳氧基,(C1-C6)烷氧基、(C1-C6)卤代烷氧基、(C3-C6)环烷氧基、(C1-C7)烷酰基、羧基、氨基甲酰基、烷胺基、(C2-C7)磺酸基、磺酰氨基和(C1-C6)烷硫基。
有益效果
本发明提供了一种预防或治疗代谢综合症、糖尿病或P53基因缺失癌症的药物组合物,其含有作为活性成分的式1所示的1,3,5-三嗪-2,4,6三胺化合物,或其药用盐。
【具体实施方式】
本发明式1化合物的药用盐包括:有机酸的盐,例如甲酸、乙酸、丙酸、乳酸、丁酸、异丁酸、三氟乙酸、苹果酸、马来酸、丙二酸、富马酸、琥珀酸、琥珀酸单酰胺、谷氨酸、酒石酸、草酸、柠檬酸、乙醇酸、葡糖醛酸、抗坏血酸、苯甲酸、邻苯二甲酸、水杨酸、氨茴酸、苯磺酸、对甲苯磺酸、或甲基磺酸,以及无机酸的盐,例如盐酸、溴酸、硫酸、磷酸、硝酸和硼酸。上述酸加成盐通过常规的盐制备方法制得,包括:a)将式1的化合物直接与酸混合;b)将它们中的一种溶解在溶剂或含水溶剂中,并将溶液与另一种混合;或c)将式1的混合物置于溶剂或酸在含水溶剂的溶液中,并将它们混合。
如果式1的化合物具有酸性基团,例如羧基和磺酸基,则式1的化合物将成为双性盐。这种盐的示例可以包括碱金属盐,例如,钠盐和钾盐,碱土金属盐,例如钙盐和镁盐,无机酸盐,例如铝盐和铵盐,和碱加成盐,例如有机酸盐,如三甲铵、三乙铵、吡啶、甲基吡啶、乙醇胺、二乙醇胺、三乙醇胺、二环己基胺和N,N′-联苄基乙二胺。同样,式1化合物的盐可以是与碱性氨基酸,例如精氨酸、赖氨酸和鸟氨酸,或酸性氨基酸,例如天冬氨酸成的盐。式1化合物的盐优选是药用盐,更优选是酸加成盐,更优选是乙酸盐、盐酸盐、溴酸盐、甲磺酸盐、丙二酸盐或草酸盐。
本发明中式1的化合物或其盐被用作活性成分,可以通过以下方式制备。
一种制备式1化合物的方法(制备方法1)表示在反应路线1中,其中的NR3R4是苯烷基。首先,使氰基碳酰二硫代亚胺酸二甲酯(dimethyl cyanocarbono dithioimidate)(式2的化合物)和NR3R4衍生物在溶剂中反应,例如甲醇、乙醇、丙醇、异丙醇、丁醇、苯、甲苯、二甲苯、乙酸乙酯、四氢呋喃、乙腈或N,N-二甲基甲酰胺,制成氰基碳酰硫代亚胺酸酯(cyanocarbaimidothioate)衍生物(式3中的化合物)。NR3R4的用量基于式2化合物约为1-2摩尔当量,反应温度的范围通常在从室温至溶剂的回流温度之间。
[反应路线1]
然后将式3的化合物与胍衍生物(式4的化合物)在溶剂(例如甲醇、乙醇、丙醇、异丙醇、丁醇、苯、甲苯、二甲苯、乙酸乙酯、四氢呋喃、乙腈、N,N-二甲基甲酰胺、二甲亚砜、水或其中两种或多种的混合溶剂)中碱性条件下发生反应制备所需的式1的化合物。碱(例如哌啶、吡啶、三乙胺、氢氧化钠、氢氧化钾、碳酸钾等)和胍衍生物的用量为每摩尔式3化合物约使用1-2摩尔当量,反应温度在室温至溶剂回流温度之间。
本发明中,除了其中的NR3R4是苯基的化合物之外,式1所示的化合物是通过以氰基碳酰二硫代亚胺酸二甲酯(dimethylcyanocarbono dithioimidate)(式2中的化合物)作为起始原料获得化合物5和6的制备方法制得的,上述方法之一表示在反应式1。具体而言,使氰基碳酰二硫代亚胺酸二甲酯(dimethyl cyanocarbonodithioimidate)(式2的化合物)在溶剂(例如甲醇、乙醇、丙醇、异丙醇、丁醇、苯、甲苯、二甲苯、乙酸乙酯、四氢呋喃、乙腈、N,N-二甲基甲酰胺、二甲亚砜、水或其中两种或多种的混合溶剂)中碱性条件下与胍衍生物(式4的化合物)发生反应制得式5的化合物。碱(例如哌啶、吡啶、三乙胺、氢氧化钠、氢氧化钾、碳酸钾等)和胍衍生物以相对于每摩尔式3化合物约1-2摩尔当量的用量使用,反应温度在室温至溶剂回流温度之间。
使式5的化合物与氧化剂(例如间氯过氧苯甲酸、过氧化氢、过硫酸氢钾制剂等)在溶剂(例如氯乙烯、二氯乙烯、甲醇、乙醇、丙醇、异丙醇、丁醇、苯、甲苯、二甲苯、乙酸乙酯、四氢呋喃、乙腈、N,N-二甲基甲酰胺、二甲亚砜、水或其两种或多种的混合溶剂)中发生反应,制得式6的化合物。氧化剂以相对于式5化合物约1-3摩尔的当量使用,而反应温度在0℃至溶剂回流温度之间。
然后,使式6的化合物与NR3R4胺衍生物在溶剂(例如甲醇、乙醇、丙醇、异丙醇、丁醇、苯、甲苯、二甲苯、乙酸乙酯、四氢呋喃、乙腈、N,N-二甲基甲酰胺、二甲亚砜、水或其两种或多种的混合溶剂)中发生反应,制得所期望的式1的化合物。NR3R4胺衍生物以相对于每摩尔式6化合物约1-3摩尔的当量使用,而反应温度在室温和溶剂回流温度之间。
式1所示的是1,3,5-三嗪-2,4,6三胺衍生物的典型示例,该示例是根据本发明制得的,参见下表1。
[表1]
在下文中,本发明将参照实施例作具体的描述。然而,应当理解的是,这些具体实施例的给出是为了便于理解本发明的结构和实施,而不应被解释为限制本发明的范围。
实施例1:制备N2-((苯并[d][1,3]二氧戊环-5-基甲基)-N4,N4-二甲基-1,3,5三嗪-2,4,6-三胺
(步骤1-1)制备1-((苯并[d][1,3]二氧戊环-5-基甲基)-3-氰基-2-甲基异硫脲
将1.6g(10.94mmol)的氰基碳酰二硫代亚胺酸二甲酯(dimethylcyanocarbonodithioimidate)和2.0g(13.23mmol)的胡椒基胺溶解在甲醇中,然后搅拌30分钟。在反应完成后,将产生的固体过滤,然后用水和甲醇洗涤,从而获得2.4g(95%的产率)的期望的式3的化合物。
1H-NMR(300MHz,CDCl3)δ2.52(s,3H),4.43(m,2H),5.93(s,2H),6.78(s,3H)。
(步骤1-2)制备N2-(苯并[d][1,3]-二氧戊环-5-基甲基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
将300mg(1.20mmol)的1-((苯并[d][1,3]二氧戊环-5-基甲基)-3-氰基-2-甲基异硫脲加入到含328mg(1.20mmol)二甲基硫酸胍的2ml二甲基亚砜和1ml40%的碳酸钾水溶液的溶液中。将反应溶液在120℃下回流5小时,然后冷却。产物用乙酸乙酯萃取,再将浓缩的残留物用硅胶柱层析法纯化(二氯甲烷∶甲醇=95∶5),从而得到95mg(53%的产率)的期望的化合物1。将得到的化合物1溶解于二氯甲烷和甲醇的混合溶液中,再向其中加入1.5摩尔当量的2M的HCl(含水的,二乙醚和二氧六环溶液等)。搅拌混合溶液1小时,然后减压浓缩并干燥,从而获得期望的式1化合物的盐酸盐。
mp 193.7-219.6℃;1H-NMR(300MHz,CDCl3)δ3.06(s,6H,),4.45(d,2H),5.03(m,2H),5.52(m,1H),5.91(s,2H),6.73(m,2H),6.81(s,1H);MS(ESI)288[M+1]+
实施例2:制备N2-(3-溴苯基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
(步骤2-1)制备N4,N4-二甲基-6-甲硫基-1,3,5-三嗪-2,4,6-三胺
将0.51g(1.88mmol)的氰基碳酰二硫代亚胺酸二甲酯(dimethylcyanocarbonodithioimidate)和0.50g(3.42mmol)的1,1-二甲基硫酸胍4加入到3.55mL(10.26mmol)的40%的碳酸钾水溶液和10mL的二甲亚砜的混合溶液中。反应混合物在60-70℃下回流7-8小时。将反应溶液冷却,并向其中加入蒸馏水,从而获得淡黄色的沉淀物。将得到的固体过滤并用甲醇洗涤,从而获得0.34g(54%的产率)的期望的白色固体状的式5的化合物。
mp 207-212℃;IR(cm-1)3364,3305,3141,2931,1640,1499,1391,1297,990,976,803:1H NMR(300MHz,DMSO-d6):δ6.74(s,2H),3.03(s,6H),2.37(s,3H);MS(EI)m/z 184.9(M+,100)
(步骤2-2)制备N4,N4-二甲基-6-甲基亚磺酰基-1,3,5-三嗪-2,4,6-三胺
在0℃、氩气环境下,将0.80g(3.24mmol)的间氯过氧苯甲酸加入到0.50g(2.70mmol)的式5中化合物在20ml的二氯甲烷的溶液中。在反应温度提高至室温之后,将反应溶液搅拌2小时。反应完成后,产生的白色固体过滤并用二氯甲烷和甲醇洗涤,从而得到期望的白色固体状的式6的化合物。
mp 232-235℃;IR(cm-1)3364,3305,3141,2931,1640,1499,1391,1297,990,976,803:1H NMR(300MHz,DMSO-d6):δ6.74(s,2H),3.03(s,6H),2.37(s,3H);MS(EI)m/z 184.9(M+,100)
(步骤2-3)制备N2-(3-溴苯基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
将0.12g(0.60mmol)式6的化合物和0.11g(0.66mmol)的3-溴苯胺溶解到10ml的二氧六环溶液中,然后140℃回流8小时。将反应溶液冷却并浓缩,再用硅胶柱层析法(二氯甲烷∶甲醇=95∶5)将溶液纯化,从而得到130mg(64%产率)的期望的式1的化合物。将获得的式1的化合物溶解到二氯甲烷和甲醇的混合溶液中,然后向其中加入1.5摩尔当量的2M的HCl(水性,二乙醚和二氧六环溶液等)。将混合物搅拌1小时,然后减压浓缩并干燥,得到期望的式1化合物的盐酸盐。
mp 89-92℃;1H NMR(300MHz,CDCl3):δ8.06-7.05(m,4H),7.04(s,1H),4.93(br s,2H,),3.15(s,6H);MS(EI)m/z 309.
下述实施例的所有化合物均是通过实施例1和2的方法合成的。
实施例3
N2,N2-二甲基-N4-(2-吗啉乙基)-1,3,5-三嗪-2,4,6-三胺
mp 138.2-141.6℃;1H NMR(DMSO-d6)δ2.47(m,4H),2.53(t,2H),3.10(s,6H),3.47(m,2H),3.71(m,4H),4.67(m,2H),5.27(m,1H);MS(ESI)m/z 268[M+1]+
实施例4
N2,N2-二甲基-N4-(2-嘧啶-3-基甲基)-1,3,5-三嗪-2,4,6-三胺
1H NMR(DMSO-d6)δ3.05(s,6H),4.60(m,2H),4.99(m,2H),5.61(m,1H),7.24(m,1H),7.66(m,1H),8.47(m,1H),8.55(m,1H);MS(ESI)m/z 246[M+1]+
实施例5
N2-(呋喃-2-基甲基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 151.6-152.0℃;1H NMR(DMSO-d6)δ3.10(s,6H),4.42(d,2H),4.65(m,2H),4.88(m,1H),6.40(s,1H),7.37(m,2H);MS(ESI)m/z 235[M+1]+
实施例6
N2-(苯并[d][1,3]二氧戊环-5-基甲基)-1,3,5-三嗪-2,4,6-三胺
mp 140.8-142.9℃;1H NMR(DMSO-d6)δ4.47(d,2H),4.78(m,3H),5.13(m,1H),5.30(m,1H),5.94(s,2H),6.76(s,2H),6.81(s,1H);MS(ESI)m/z 261[M+1]+
实施例7
N2,N2-二甲基-N4-(2-(哌啶-1-基)乙基)-1,3,5-三嗪-2,4,6-三胺
mp 116.6-117.2℃;1H NMR(DMSO-d6)δ1.44(m,2H),1.58(m,4H),2.42(m,4H),2.50(t,2H),3.09(s,6H),3.47(m,2H)
实施例8
5-((4-氨基-6-(二甲基胺)-1,3,5-三嗪-2-基胺)甲基)-2-甲氧基苯酚
mp 141.4-142.0℃;1H NMR(DMSO-d6)δ3.09(s,6H),3.86(s,3H),4.48(d 2H),4.70(m,2H),5.08(m,1H),6.79(m,2H),6.91(s,1H);MS(ESI)m/z 291[M+1]+
实施例9
1-(3-(4-氨基-6-(二甲基胺)-1,3,5-三嗪-2-基胺)丙基)吡咯烷-2-酮
mp 176.5-177.0℃;1H NMR(DMSO-d6)δ1.77(m,2H),2.02(m,2H),2.40(m,2H),3.08(s,6H),3.37(m,6H),4.67(m,2H),5.18(m,1H);MS(ESI)m/z 280[M+1]+
实施例10
N2,N2,N4,N4-四甲基-1,3,5-三嗪-2,4,6-三胺
mp 227.0-228.0℃;1H NMR(DMSO-d6)δ3.10(s,12H),4.60(m,2H);MS(ESI)m/z 183[M+1]+
实施例11
N2,N2-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 271.8-272.8℃;1H NMR(DMSO-d6)δ3.08(s,6H);MS(ESI)m/z 155[M+1]+
实施例12
N2-(呋喃-3-基甲基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 151.6-152.0℃;1H NMR(DMSO-d6)δ3.10(s,6H),4.42(d,2H),4.65(m,2H),4.88(m,1H),6.40(s,1H),7.37(m,2H);MS(ESI)m/z 235[M+1]+
实施例13
N2-苯乙基-1,3,5-三嗪-2,4,6-三胺
mp 169.9-171.8℃;1H NMR(DMSO-d6)δ2.86(m,2H),3.63(m,2H),4.77-4.90(m,5H),7.26(m,5H);MS(ESI)m/z 231[M+1]+
实施例14
N2-(4-甲基苄基)-1,3,5-三嗪-2,4,6-三胺
mp 139-143℃;IR(cm-1)3501,3349,3254,2950,1597,1510,1407,1391,1340,803;1H NMR(DMSO-d6)δ2.32(s,3H),3.07(s,6H),4.54-4.52(d,2H),4.72(br s,2H),5.14(br s,1H),7.22-7.10(dd,4H);MS(EI)m/z 258.0[M]+
实施例15
N2-(4-甲氧基苯基)-1,3,5-三嗪-2,4,6-三胺
mp 173-176℃;1H NMR(DMSO-d6):δ3.12(s,6H),3.79(s,3H),4.80(br s,2H),6.72(br s,1H),7.49-6.82(dd,4H)
实施例16
N2-(3,5-二甲氧基)-1,3,5-三嗪-2,4,6-三胺
mp 148-150℃;1H NMR(300MHz,DMSO-d6)δ3.15(s,6H),3.77(s,6H),4.88(br s,2H),6.15(br s,1H),7.03-6.86(m,3H)
实施例17
N2-(3,4-二氯)-1,3,5-三嗪-2,4,6-三胺
1H NMR(DMSO-d6)δ3.14(s,6H),4.94(br s,2H),7.07(s,1H),8.02-7.23(m,3H)
实施例18
N2-(4-溴苯)-1,3,5-三嗪-2,4,6-三胺
mp 105-108℃;1H NMR(300MHz,DMSO-d6):δ3.13(s,6H),4.95(br s,2H),7.16(br s,1H),7.49-7.26(dd,4H)
实施例19
N2-(2,5-二甲氧苯基)-1,3,5-三嗪-2,4,6-三胺
mp 213-215℃;1H NMR(300MHz,DMSO-d6)δ3.17(s,6H),3.79(s,3H),3.83(s,3H),4.77(br s,2H),7.37(br s,1H),8.28-6.45(m,3H)
实施例20
N2-(4-氯苯基)-1,3,5-三嗪-2,4,6-三胺
mp 164-167℃;1H NMR(300MHz,DMSOd6)δ3.12(s,6H),4.86(bs,2H),6.95(br s,1H),7.56-7.23(dd,4H)
实施例21
N2-(1-(萘基-1-基)乙基)-1,3,5-三嗪-2,4,6-三胺
mp 73-76℃;1H NMR(300MHz,DMSO-d6)δ1.66-1.63(d 3H),3.00(s,6H),4.70(br s,2H),5.20-5.28(d,1H),6.05-6.0(m,1H),8.21-7.40(m,7H)
实施例22
N2-(4-叔丁苯基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 253-263℃;1H NMR(300MHz,DMSO-d6)δ1.26(s,9H),3.15(s,6H),7.37-7.52(m,4H);MS(ESI)m/z 286.3[M]+
实施例23
N2-(2,3-二氢-1H-茚基-5-基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 245-255℃;1H NMR(300MHz,DMSO-d6)δ1.98-2.02(m,2H),2.80-2.86(m,4H),3.13(s,6H),7.17(d,1H),7.34(br s,1H),7.48(br s,1H);MS(ESI)m/z 270.2[M]+
实施例24
N2-(3,5-二氯苯基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 240-264℃;1H NMR(300MHz,DMSO-d6)δ3.06(s,6H),6.35(s,2H),7.05(s,1H),9.32(s,1H);MS(ESI)m/z 299.1[M]+
实施例25
N2-(9H-芴基-3-基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 282-290℃;1H NMR(300MHz,DMSO-d6)δ3.15(s,6H),3.92(s,2H),7.27-7.37(m,2H),7.55-7.66(m,2H),7.87(m,3H);MS(ESI)m/z 318.2[M]+
实施例26
N2,N2-二甲基-N4-(2-丙苯基)-1,3,5-三嗪-2,4,6-三胺
mp 130-145℃;1H NMR(300MHz,DMSO-d6)δ0.87(t,3H),1.51-1.54(m,2H),2.54-2.57(m,2H),2.98(s,6H),6.20(s,1H),7.02-7.05(m,1H),7.11-7.16(m,2H),7.45(d,1H),7.95(s,1H);MS(ESI)m/z 272.3[M]+
实施例27
N2,N2-二甲基-N4-(4-丙苯基)-1,3,5-三嗪-2,4,6-三胺
mp 155-165℃;1H NMR(300MHz,DMSO-d6)δ0.88(m,3H),1.53-1.57(m,2H),2.45-2.48(m,2H),3.05(s,6H),6.30(s,2H),7.03(d,2H),7.63(d,2H),8.77(s,1H);MS(ESI)m/z 272.3[M]+
实施例28
N2-(4-异丙基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 193-201℃;1H NMR(300MHz,DMSO-d6)δ1.17(d,6H),2.54(m,1H),3.11(s,6H),7.70-7.72(m,2H),7.89-7.90(m,2H),8.77(s,1H);MS(ESI)m/z 283.3[M]+
实施例29
N2-己基-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 142-149℃;1H NMR(300MHz,DMSO-d6)δ0.85(t,3H),1.25-1.27(m,6H),1.44(br s,2H),3.09(s,6H),3.17(br s,2H);MS(ESI)m/z 238.3[M]+
实施例30
N2-(2-氟苯基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
1H NMR(300MHz,DMSO-d6)δ3.02(s,6H),6.36(s,2H),7.05-7.20(m,3H),7.88-7.91(m,1H),8.17(s,1H);MS(ESI)m/z 248.2[M]+
实施例31
N2-(4-氟苯基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 182-199℃;1H NMR(300MHz,DMSO-d6)δ3.05(s,6H),6.35(s,2H),7.03-7.07(m,2H),7.74-7.77(m,2H),8.92(s,1H);MS(ESI)m/z 248.2[M]+
实施例32
N2,N2-二甲基-N4-m-甲苯基-1,3,5-三嗪-2,4,6-三胺
mp 166-168℃;1H NMR(300MHz,DMSO-d6)δ2.09(s,3H),3.07(s,6H),6.32(s,2H),6.72(d,2H),7.56-7.65(m,2H),8.76(s,1H);MS(ESI)m/z 244.2[M]+
实施例33
N2,N2-二甲基-N4-o-甲苯基-1,3,5-三嗪-2,4,6-三胺
mp 122-143℃;1H NMR(300MHz,DMSO-d6)δ2.20(s,3H),2.99(s,6H),6.22(s,2H),6.99-7.00(m,1H),7.10-7.16(m,2H),7.51(d,1H),7.98(s,1H);MS(ESI)m/z 244.3[M]+
实施例34
6-(氮杂环庚烷-1-基)-N2,N2-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 240-249℃;1H NMR(300MHz,DMSO-d6)δ1.44-1.47(m,4H),1.65(m,4H),2.99(s,6H),3.60(br s,4H),6.08(s,2H);MS(EI)m/z 236.0[M]+
实施例35
N2,N2-二甲基-N4-(吡咯烷-1-基)-1,3,5-三嗪-2,4,6-三胺
1H NMR(300MHz,DMSO-d6)δ1.86-1.93(m,4H),3.10(s,6H),3.46-3.50(m,4H);MS(ESI)m/z 208.3[M]+
实施例36
N2-(2-乙苯基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
1H NMR(300MHz,DMSO-d6)δ1.08(t,3H),2.50(q,2H),3.00(s,6H),6.21(s,2H),7.04-7.07(m,1H),7.11-7.14(m,2H),7.43(d,1H),7.99(s,1H);MS(ESI)m/z 258.2[M]+
实施例37
N2-(联二苯-4-基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 190-201℃;1H NMR(300MHz,DMSO-d6)δ3.16(s,6H),4.85(br s,2H),6.90(s,1H),7.68-7.28(m,9H);MS(ESI)m/z 306.2[M]+
实施例38
N2-(联二苯-2-基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 196-216℃;1H NMR(300MHz,DMSO-d6)δ2.99(s,6H),6.32(s,2H),7.15-7.25(m,2H),7.34-7.48(m,7H),8.00(s,1H);MS(ESI)m/z 306.2[M]+
实施例39
N2,N2-二甲基-6-(4-苯基哌嗪-1-基)-1,3,5-三嗪-2,4,6-三胺
mp 132-139℃;1H NMR(300MHz,DMSO-d6)δ3.01(s,6H),3.12(t,4H),3.79(t,4H),6.22(s,2H,NH2),6.80(t,1H),6.97(d,2H),7.21-7.24(m,2H);MS(ESI)m/z 299.3[M]+
实施例40
N2,N2-二甲基-6-(4-(4-硝基苯基)哌嗪-1-基)-1,3,5-三嗪-2,4,6-三胺
mp 173-182℃;1H NMR(300MHz,DMSO-d6)δ3.02(s,6H),3.51(m,4H),3.80(t,4H),6.26(s,2H),7.04(d,2H),8.07(d,2H);MS(ESI)m/z 344.2[M]+
实施例41
N2-环己基-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 119-120℃;1H NMR(300MHz,DMSO-d6)δ1.17-1.25(m,4H),1.57-1.58(m,2H),1.68-1.79(m,5H),3.00(s,6H);MS(ESI)m/z236.2[M]+
实施例42
N2-(4-己基苯基)-N4,N4-二甲基-1,3,5-三嗪-2,4,6-三胺
mp 132-168℃;1H NMR(300MHz,DMSO-d6)δ0.84-0.86(m,3H),1.25-1.28(m,8H),1.51-1.54(m,2H),3.05(s,6H),6.30(s,2H),7.02(d,2H),7.63(d,2H),8.76(s,1H);MS(ESI)m/z 314.3[M]+
实施例43
2-(4-氨基-6-(二甲氨基)-1,3,5-三嗪-2-基胺)苯酚
mp 307-312℃;1H NMR(300MHz,DMSO-d6)δ3.05(s,6H),6.56(s,2H),6.74-6.77(m,1H),6.81-6.88(m,2H),7.74(d,1H),8.04(s,1H);Mass(ESI)m/z 246.3[M]+
AMPK-相关的细胞活性测定
试验背景
二甲双胍被广泛用于2型糖尿病患者中以抑制葡糖糖形成,肝细胞中胆固醇和甘油三酯的合成,并能促进将葡糖糖从血管中吸收到肌肉细胞中。全部这些过程是通过二甲双胍对AMPK的激活实现的,通过测定对糖异生的抑制作用、对胆固醇和甘油脂肪酸合成的抑制作用以及细胞对葡萄糖的吸收能力,这些是AMPK活性的典型指标,阐明了本发明化合物作为糖尿病治疗剂所起的作用。当形成胆固醇、甘油三酯和葡萄糖的能力的数值越低,效果就越好。对照组的数值作为参考值。用胰岛素来测定葡萄糖吸收能力,同时使用对照组,考虑到基于细胞的实验的偏差,测定超过200%的值有葡萄糖吸收能力。
实验例1:胆固醇合成能力的测定
作为肝细胞模型,HepG2细胞被用于测定胆固醇合成抑制能力,该能力是AMPK的重要功能。将肝细胞模型HepG2细胞在1%的含血清的培养基中培养24小时,接着用每种化合物处理24小时。然后,用裂解液(0.1M磷酸钾,pH 7.4,0.05M NaCl,5mM的胆酸,0.1%Triton X-100)使细胞裂解。向裂解的细胞中加入相同体积的反应溶液(2U/ml胆固醇氧化剂,2U/ml的过氧化物酶,0.2U/ml的胆固醇酯酶,以及300μM作为荧光因子的Amplex红),然后在37℃下反应30分钟。反应完成后,用荧光计在560/590nm(ex/em)的波长下测定细胞,确定细胞中形成的甘油三酯的量。测定值降低表示脂类生成抑制能力得到提高。对照组在2mM的浓度下表现出平均83.53%的合成能力。如果本发明的化合物表现出的合成能力低于83.53%,则通过用量对比可以确定他们优于对照组。例如,实施例25的化合物在100μM的浓度下表现出的胆固醇合成量低于对照组,这表明该化合物的作用至少比对照组好20倍。
(实施例1,5,2,8,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42和43中的化合物的效果均比对照组好至少20倍)。
实验例2:甘油三酯的测定
将HepG2细胞作为肝细胞模型在1%含血清的培养基中培养24小时,接着用每种化合物处理24小时。然后,用裂解液(0.1M的磷酸钾,pH 7.4,0.05M NaCl,5mM的胆酸,0.1%Triton X-100)使细胞裂解。向裂解的细胞中加入相同体积的反应溶液(0.76U/ml甘油激酶,151333U/ml的过氧化物酶,22.2U/ml的甘油氧化剂,和300μM作为荧光因子的Amplex红),37℃下反应30分钟。反应完成后,用荧光计在560/590ran(ex/em)的波长下测定细胞,由此确定细胞中形成的甘油三酯的量。测定值降低表示提高了脂类生成抑制能力。对照组在2mM的浓度下表现出的甘油三酯合成能力平均为70.57%。与胆固醇合成能力的情况相同,通过比较在70.57%时的用量确定优胜者。
(实施例2,15,17,18,20,21,22,23,24,25,26,27,28,29,31,32,34,38和42的效果均比对照组好至少20倍)。
实验例3:糖异生的测定
将作为肝细胞模型的HepG2细胞在10%的含有血清的高葡萄糖培养基中培养,并用每种化合物处理24小时。然后,用0.5uCi的14C-乳酸盐和10mM的L-乳酸盐处理细胞,并培养4小时。培养之后,去除细胞的培养基,并用PBS洗涤细胞,用0.1N NaOH处理并在室温下放置1小时。然后,用(1N HCl中和细胞,用液体闪烁计数器测定细胞中形成的葡萄糖的量。对照组在2mM的浓度下表现出的合成能力为约52.73%。与胆固醇合成能力的情况相同,如果本发明的化合物表现的合成能力低于52.73%,则可以通过与用量对比确定它们比对照组更好。更低的测定值意味着更强的血糖降低能力。
(实施例2,17,21,23,24,25,26,27,28,34,36,38和40的效果均比对照组好至少20倍)。
实验例4:葡萄糖吸收的测定
将作为肌肉细胞模型的C2C12细胞在2%的牛胚胎血清中诱导6天使其分化为肌肉细胞。用每种化合物在无血清的低葡萄糖培养基中对分化成肌肉细胞的C2C12细胞进行处理,然后用1μM的胰岛素培养24小时。培养之后,用1μCi的3H-脱氧-葡萄糖和10μM的脱氧-葡萄糖在37℃下处理该细胞15分钟。处理完之后,去除培养基,并用PBS洗涤细胞两次。用0.1N的NaOH处理洗涤过的细胞,并用1N HCl中和。用液体闪烁计数器测定细胞中吸收的葡萄糖的量。通过选择吸收效果表现出至少200%的化合物来确定化合物的效果,将吸收效果除以对照组的平均百分比,再将除得的值乘以20。测定值越高表示减少胰岛素抵抗的能力越强。
(减少胰岛素抵抗的效果,实施例34比对照组好约12倍,实施例35比对照组好约17倍,实施例40比对照组好约14倍且实施例41比对照组好约16倍)。