《超级稻化学增氧灌溉方法.pdf》由会员分享,可在线阅读,更多相关《超级稻化学增氧灌溉方法.pdf(23页珍藏版)》请在专利查询网上搜索。
1、10申请公布号CN104285576A43申请公布日20150121CN104285576A21申请号201410508831X22申请日20140928A01C21/0020060171申请人湖南农业大学地址410128湖南省长沙市芙蓉区农大路1号72发明人姚帮松何利张晨曦莫利加蒋鹏74专利代理机构长沙朕扬知识产权代理事务所普通合伙43213代理人周志中54发明名称超级稻化学增氧灌溉方法57摘要本发明公开了一种超级稻化学增氧灌溉方法,在分蘖期和成熟期分别采用稀释度为03的H2O2进行灌溉一次。这种灌溉方法在根际土壤产生枯草芽孢杆菌菌株,对存在于水体中的有害微生物有显著的抑制作用,并且该灌溉方。
2、法还能显著提高水稻产量。51INTCL权利要求书1页说明书21页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书21页10申请公布号CN104285576ACN104285576A1/1页21一种超级稻化学增氧灌溉方法,其特征在于,在分蘖期和成熟期分别采用稀释度为03的H2O2进行灌溉一次。2根据权利要求1所述的超级稻化学增氧灌溉方法,其特征在于,只在分蘖期和成熟期分别采用稀释度为03的H2O2进行灌溉一次,抽穗期不增氧灌溉。3根据权利要求2所述的超级稻化学增氧灌溉方法,其特征在于,在根际土壤产生的微生物种群有3种。4根据权利要求2所述的超级稻化学增氧灌溉方法,其特征在于,。
3、在根际土壤产生枯草芽孢杆菌、鞘氨醇单胞菌属、紫杆菌属、溶芳烃鞘氨醇单胞菌。5根据权利要求2所述的超级稻化学增氧灌溉方法,其特征在于,所生成的超级稻果实千粒重大于24克。6根据权利要求1所述的超级稻化学增氧灌溉方法,其特征在于,在分蘖期、抽穗期和成熟期分别采用稀释度为03的H2O2进行灌溉一次。7根据权利要求6所述的超级稻化学增氧灌溉方法,其特征在于,在根际土壤产生的微生物种群有2种。8根据权利要求6所述的超级稻化学增氧灌溉方法,其特征在于,在根际土壤产生枯草芽孢杆菌。9根据权利要求6所述的超级稻化学增氧灌溉方法,其特征在于,所生成的超级稻果实千粒重大于23克。权利要求书CN104285576A。
4、1/21页3超级稻化学增氧灌溉方法技术领域0001本发明涉及一种作物灌溉方法,尤其是一种超级稻化学增氧灌溉方法。背景技术0002超级稻,即水稻超高产品种,在国内外粮食安全压力日益增大的背景下,是近几十年来许多国家和研究单位研究的重点项目。在日本,有科学家在20世纪80年代初就开始开展超高产水稻的育种研究,增产目标是力争在10到15年之内将水稻的亩产提高50。国际水稻研究所在20世纪80年代末也同样启动了“超级稻”的育种规划,争取在21世纪初培育的水稻品种亩产比已有最高品种还要增产2025,但目前都尚未有大的突破。我国在20世纪90年代中期才开始启动自己的超级稻的育种规划,经过许多科学家十几年的。
5、科研攻关,2012年9月24日,由我国科学家袁隆平院士主持的超级杂交稻第三期大面积种植的亩产已经突破900公斤,处于世界领先水平。水稻作为我国主要的粮食作物,约占我国总耕地面积的四分之一,水稻的产量约占全国作物产量的38,2013年我国水稻的播种面积超过三千万公顷,提高水稻的品质和产量,对提高我国农民收入和粮食安全具有重要意义,具有广阔的种植前景和社会经济价值。0003目前超级稻的增产提质主要是从选用优质品种、采用科学的栽培方法、配备良好的田间设备和施用专用肥料等方面考虑,已产生显著的效果,但难以进一步提高。发明内容0004本发明提供一种可增加超级稻产量的超级稻化学增氧灌溉方法。0005为实现。
6、上述目的,本发明提供一种超级稻化学增氧灌溉方法,在分蘖期和成熟期分别采用稀释度为03的H2O2进行灌溉一次。0006较佳地,只在分蘖期和成熟期分别采用稀释度为03的H2O2进行灌溉一次,抽穗期不增氧灌溉。0007较佳地,在根际土壤产生枯草芽孢杆菌、鞘氨醇单胞菌属、紫杆菌属、溶芳烃鞘氨醇单胞菌。0008较佳地,所生成的超级稻果实千粒重大于24克。0009较佳地,在分蘖期、抽穗期和成熟期分别采用稀释度为03的H2O2进行灌溉一次。0010较佳地,在根际土壤产生的微生物种群有2种。0011较佳地,在根际土壤产生枯草芽孢杆菌。0012较佳地,所生成的超级稻果实千粒重大于23克。0013本发明的有益效果。
7、是这种灌溉方法在根际土壤产生枯草芽孢杆菌菌株,对存在于水体中的有害微生物有显著的抑制作用,并且该灌溉方法还能显著提高水稻产量。具体实施方式说明书CN104285576A2/21页40014下面通过实施例,对本发明做进一步说明。0015超级稻种植实验的实验土壤为第四纪黄土发育的红黄泥,肥力中等,在种植前对大田试验区统一进行追肥,根据水稻种植每亩施纯氮1215KG,施肥中磷、氮、钾肥的量比例1114的要求进行施肥,本次实验田每块面积为144M2,实验统一施肥量为,氮肥尿素25G/块,磷肥CAH2PO42,25G/块,钾肥KCL35G/块。实验选用水稻的品种为深优9586。0016先在试验大田中并排。
8、挖沟,并排埋设直径为5毫米左右的PVC塑料软管,该PVC塑料软管的一端统一采用铁丝进行扎紧封闭,每隔10CM用铁丝扎2个孔隙,并用纱布包裹,再用网兜包裹,超级稻种植在网兜中方便取根,PVC软管另一端伸出大田外,不封口。稀释双氧水进行化学增氧也通过该管道进行。水稻移苗后就开始对超级稻土壤根际进行不同的输气处理和控制。根据超级稻的生长情况将超级稻的生长期分为分蘖期时间段从6月16日到8月5日;抽穗期时间段从8月6日到9月14日;成熟期时间段从9月15日到10月15日三个阶段。每个阶段分10个处理。0017表21增氧灌溉处理组一览表00180019T1采用每分钟输气量为50L的空气泵通过埋在实验水稻。
9、田土壤中的PVC塑料软管向水稻根际土壤加气4分钟,输气时间采用定时器确定在每天早上800,称作白天一日一次组。0020T2采用每分钟输气量为50L的空气泵通过埋在实验水稻田土壤中的PVC塑料软管向水稻根际土壤加气4分钟,输气时间采用定时器确定在每日早上800和下午530,称作白天一日两次组。0021T3采用每分钟输气量为50L的空气泵通过埋在实验水稻田土壤中的PVC塑料软管向水稻根际土壤加气4分钟,输气时间采用定时器确定为每隔一天通气一次,时间为早上800,称作白日两天一次组。0022T4采用每分钟输气量为50L的空气泵通过埋在实验水稻田土壤中的PVC塑料软管向水稻根际土壤加气4分钟,输气时间。
10、采用定时器确定在每天晚上800,称作夜间一日说明书CN104285576A3/21页5一次组。0023T5采用每分钟输气量为50L的空气泵通过埋在实验水稻田土壤中的PVC塑料软管向水稻根际土壤加气4分钟,输气时间采用定时器确定在每天晚上800和早上530,称作夜间一日两次组。0024T6采用每分钟输气量为50L的空气泵通过埋在实验水稻田土壤中的PVC塑料软管向水稻根际土壤加气4分钟,输气时间采用定时器确定在每隔一天在晚上800进行,称作夜间两日一次组。0025T7采用稀释度为03的H2O2进行灌溉,处理时间为分蘖期抽穗期成熟期,也称作化学A组。0026T8采用稀释度为03的H2O2进行灌溉,处。
11、理时间为分蘖期抽穗期,也称作化学B组。0027T9采用稀释度为03的H2O2进行灌溉,处理时间为分蘖期成熟期分别加一次,也称为化学C组。0028CK对照组,不做任何处理。0029实验田区每块布置三根PVC软管,每块试验区种植15兜超级稻,通气的过程中,空气泵的输气口连接一个六孔分流器,平均将输出的气体分成六份分别输入到两块试验区,因此,T1试验区每天输入气体的总量约为200L,T2约为400L,T3每两天为200L,T4每晚200L,T5每晚为400L,T6每两晚为200L,化学组在不同时期灌溉03的H2O2,对整个实验组的灌溉都用相同的处理。样本总数为300兜,即种植的超级稻分为10个处理组。
12、,每组处理皆为30兜。0030一、增氧灌溉对超级稻根际土壤微生物种群和数量的影响00311材料与试剂003211材料0033湖南农业大学耘园超级稻实验田超级稻根际采集的土壤003412试剂0035革兰氏染色结晶紫,碘液,番红复染溶液,灭菌水,纯度为95的乙醇003613培养基0037PDA培养基土豆200G,蔗糖SUCROSE30G,琼脂AGARPOWDER18G。00382方法003921土壤样品的采集0040从湖南农业大学耘园超级稻实验田超级稻根际采集的土样。采集土样时,离超级稻根区表面土3CM处采集带根土壤100G,分装标记后将样品带回实验室。004122菌种分离鉴别的具体步骤00422。
13、21准备工作0043采集土样;0044准备培养微生物的PDA固体平板,每次倒平板100个左右。本次实验选取三个不同的稀释度,每个稀释度涂三个平行对照的平板,共有十个处理,共90个平板;0045取回来的土壤样品每个都要做十倍稀释到十的六次方有10个处理,就是60支试管,每个管子里装9毫升生理盐水,灭菌处理,待用;说明书CN104285576A4/21页60046每次实验要准备大约12个容量为250ML的三角瓶,每个三角瓶内注入90ML的生理盐水外加约3040颗玻璃珠,用于土壤中的菌类充分释放至生理盐水中;0047准备灭菌的各类枪头;0048222取样0049每次取样的时间固定在早上八点至十点,取。
14、距离土壤表面3CM,靠近根部的土壤约10克;0050223稀释,涂布,培养0051每次称取10克的土样,在酒精灯火焰旁放入装取有99ML灭菌水的锥形瓶内,室温下充分摇匀震荡12H,将菌充分分散。0052用移液管吸取步骤中的菌悬液1ML,放入一支盛有9ML无菌水的试管中,并在电动漩涡振荡器上充分振荡摇匀为均匀的菌悬液后,再去此菌悬液1ML放入另外一支盛有9ML灭菌水的试管中,依次类推进一步稀释成106倍的菌悬液每做1次菌液稀释,都须更换新的枪头。0053分别从稀释了104、105、106倍的菌悬液中吸取100微升菌悬液,分别注入到PDA平板上,同一稀释液重复做3个培养皿,编好号。0054用玻璃涂。
15、布棒将平板上的菌液涂布均匀,以从高稀释度到低稀释度的顺序来涂布可以不用换涂布棒,微生物平板培养皿要用专用封口膜包扎好,并倒置扣放置在温度约为28的恒温培养箱内,每天都需要观察培养基表面判断是否有微生物菌落长成。0055经过一段时间的恒温培养后,平板培养基上陆续长出各种菌落,需要根据各种菌落的特征,进行初步的判断,判断这些菌落属于哪些类型的土壤微生物,并利用电子显微镜进行检查,如果菌体的形态表现一致,则可认定为已经初步分离出纯菌种。0056将步骤中初步分离培养出的纯菌种,从PDA培养基上转移至试管的斜面培养基中再次进行培养作为备用。0057224典型代表菌种的挑选与初步染色处理革兰氏染色0058。
16、平板培养12天就能观察平板上菌落的生长情况,并通过平板计数法来估计某一个类型的菌在土壤中的数量。挑选出具有代表作用的菌种来进一步做革兰氏染色。革兰氏染色法的重要意义就在于进一步分鉴别析细菌的性质,把大多数的细菌分为两种类型革兰氏阴性菌和革兰氏阳性菌。众多的化脓性球菌一般都显示为革兰氏阳性,这些细菌能够产生一些外毒素,而大多数的肠道菌基本上显示革兰氏阴性,这些细菌会产生内毒素。依据实验染色细菌的革兰氏染色的性质,能够进一步缩小细菌鉴定的范围,有助于进一步对细菌的品种进行分离和鉴定。0059革兰氏染色法的具体步骤包括首先进行初次染色,其次进行媒染,再次进行脱色,最后进行复染等四个步骤,具体的操作步。
17、骤与方法是00601涂片固定00612利用草酸铵结晶紫进行染色,时间约为1分钟00623自来水冲洗00634滴加碘液,将涂面覆盖染色,时间约为1分钟00645水洗,用吸水纸吸去水分00656用酒精度为95酒精滴在涂面,并需要轻微地进行摇动以便脱色,大约20秒钟说明书CN104285576A5/21页7后用无菌水洗,再将水分吸走00667用备用的蕃红染色溶液进行稀染约2分钟,再用无菌水进行冲洗00678最后进行自然干燥,放在显微镜下进行检查0068225挑选出4050个菌种提取总DNA克隆保守序列来做分子鉴定0069首先需要做好实验菌种的保存与生长状况的及时拍照,然后再提取菌种的DNA。主要采用。
18、DNA提取试剂盒进行提取,并搭配自己配制的试剂来提取,本次实验的具体步骤如下0070取少许菌体于研钵中,加适量液氮预冷,研磨成匀浆后,加1ML裂解液,再充分研磨后,静置510MIN。0071添加500UL的变性液,研磨混匀后,分别装入备用的离心管中。0072在离心力大小为12000RPM的离心机下进行离心1015分钟后移取离心管中的上清液至新的离心管中。0073用苯酚氯仿异丙醇为25241的等体积加至上清液于离心管中12000RPM离心3分钟,移取上清液后需要再次重复此操作步骤一次。0074加等体积异丙醇于20下静置12H或者过夜。007512000RPM离心10MIN,弃上清。0076用1M。
19、L70的预冷的酒精洗涤沉淀2次。0077用50UL的双蒸水将DNA进行溶解后,放在温度控制为20下进行保存备用。0078226ITS750BP序列或16SRDNA1540BP序列的扩增0079引物均选用ITS通用的引物,均送检华大基因公司进行合成0080ITS1TCCGTAGGTGAACCTGCGG0081ITS4TCCTCCGCTTATTGATATGC0082PCR反应体系的各组成的成分量均按照表31添加。总体积为25L0083PCR反应程序第一阶段为预变性。温度95,时间3MIN;第二阶段为首先进行变性,再次进行退火。最后进行延伸的循环阶段。变性温度94,时间1MIN,退火温度54,时间4。
20、5SEC,延伸温度72,时间45SEC,35CYCLES;第三阶段为终延伸阶段。温度72,时间10MIN。4保存。0084引物选用16S通用引物,由华大基因公司合成。008527FAGAGTTTGATCCTGGCTCAG1492RGGTTACCTTGTTACGACTT。0086PCR反应体系各成分量按照表31添加。总体积为25L0087PCR反应程序第一阶段为预变性。温度95,时间3MIN;第二阶段为变性退火延伸循环阶段。变性温度94,时间1MIN,退火温度50,时间45SEC,延伸温度72,时间1MIN,35CYCLES;第三阶段为终延伸阶段。温度72,时间10MIN。4保存。0088配置琼。
21、脂糖凝胶,浓度为1。电泳检测PCR产物。电压100V,电泳20MIN。在电泳步骤完成之后,再在凝胶成像系统中观测是否取得大小相当的目的片段。0089表31A16SPCR的反应组成0090说明书CN104285576A6/21页80091最后需将得到的片段胶进行回收,最后送专业测序公司进行测序。00923结果与分析009331增氧灌溉对超级稻根际土壤微生物种群的影响0094表32表示在增氧灌溉处理阶段,超级稻根际土壤微生物种群的数量情况,增氧灌溉对超级稻根际土壤微生物种群的影响,主要表现为对微生物细菌、真菌、放线菌三大类种群的影响,从上述表格中的数据可以看出,在分蘖期阶段,增氧灌溉处理T1、T2。
22、、T4、T7、T8、T9组的种群数比CK组要多,T3、T5、T6组与CK组相同,说明增氧处理对超级稻根区的微生物种群多样性具有积极的作用,白天增氧和化学增氧效果要比夜间增氧明显,增氧灌溉处理组整体上对超级稻根际土壤微生物的种群多样性具有促进作用;在抽穗期阶段,增氧灌溉处理组有T2、T4、T5、T6、T7组的种群数超过CK组,其他组与CK组持平,数据表明在此阶段,增氧处理整体上也有利于超级稻根区微生物种群多样性的发展,夜间增氧处理对超级稻根区土壤微生物种群多样性发展影响要更加显著;在成熟期,增氧处理T2、T3、T8组与CK组相同,其他组都要低于CK组,数据表明在此阶段增氧处理能够抑制超级稻根区微。
23、生物种群多样性的发展,白天处理组可以起到减缓作用,从超级稻整个生长周期来看,增氧处理整体上对土壤根际微生物的种群多样性以促进为主。0095表32增氧灌溉对超级稻根际土壤微生物种群的影响0096说明书CN104285576A7/21页9009732增氧灌溉对超级稻根际土壤细菌数量的影响0098在增氧灌溉处理下,超级稻在同一生长期不同的增氧处理根际土壤细菌数量不一样,同一处理不同时期细菌数量不一样。实验室检测计数见表33。0099表33增氧灌溉对超级稻根际土壤细菌数量的影响010001010102从上述数据可以看出,增氧灌溉对超级稻根际土壤微生物的细菌数量的影响,在说明书CN104285576A8。
24、/21页10分蘖期阶段,实验组细菌数量先后顺序为T2、T5、T7、T8、T9、CK、T1、T3、T6、T8,从排序可以看出,在分蘖期增氧灌溉对超级稻根际土壤微生物细菌的数量影响差别不大,以白天组T2组最显著;在抽穗期阶段,实验组细菌数量先后排序为T7、T9、T5、T4、T3、CK、T8、T1、T2、T6,数据表明在此阶段夜间增氧和化学增氧对超级稻根区细菌的数量的生长具有促进作用,化学组和夜间组要显著,夜间组以T5组为最显著;在成熟期阶段,实验组细菌数量先后顺序为T2、T6、T4、T9、T8、T1、T7、CK、T3、T5,增氧处理整体上对细菌数量的增长具有促进作用,以白天增氧处理T2组最为显著。。
25、010333增氧灌溉对超级稻根际土壤真菌的影响0104在增氧灌溉处理下,超级稻在同一生长时期不同的增氧处理根际土壤真菌数量不一样,同一处理不同的生长期真菌数量也存在差异性。从表34的数据可以看出,增氧灌溉对超级稻根际土壤真菌数量的影响,在分蘖期阶段,增氧灌溉普遍对真菌的数量就开始出现促进作用,尤其以白天处理和化学处理组为显著,白天组以T3组为最显著化学组以T7组最为显著,在抽穗期阶段,增氧灌溉对超级稻根际土壤真菌的生成和数量总体具有较大促进作用,其中以T4、T5、T7、T9组较对照组CK超出较多,说明在此阶段以夜间增氧处理为佳,以T4、T5组为代表;在成熟期阶段,增氧处理对超级稻根际土壤真菌的。
26、生成具有明显的抑制作用,大部分增氧处理组未发现真菌,仅在CK组和T8组中分理出真菌。0105表34增氧灌溉对超级稻根际土壤真菌数量的影响01060107010834增氧灌溉对超级稻根际土壤放线菌的影响0109在增氧灌溉处理下,超级稻同时期不同的处理根际土壤放线菌数量不一样,同一处理不同时期放线菌数量不一样。实验室检测计数见表35。0110实验数据表明,增氧对超级稻根际土壤放线菌的数量影响,在分蘖期阶段,增氧灌说明书CN104285576A109/21页11溉处理对其根际土壤放线菌的生成和数量具有促进作用,以化学增氧处理组T7、T8组为代表比较明显,T1、T4组与对照组相同,表明此阶段还是以白天。
27、增氧能够促进放线菌的数量增长;在抽穗期阶段,T5、T6组超过对照组CK,T2、T7组与对照组CK相同,可以看出在此阶段夜间增氧处理对超级稻根区放线菌数量的增长有促进作用,最高组T5是CK组的4倍,T6组是CK组的2倍,说明此阶段促进放线菌的增长以夜间增氧处理为佳,尤其是T5组;在成熟期,增氧处理组中只有T2、T3、T8组有放线菌的存在,表明在此阶段白天增氧处理对超级稻根区放线菌数量的增长有积极的促进作用。0111表35增氧灌溉对超级稻根际土壤放线菌数量的影响011201134革兰氏染色实验结果分析0114通过对实验组根际土壤微生物培养的细菌进行纯化,进行革兰氏染色实验,处理结果汇总如下CK组细。
28、菌染色结果显示主要为革兰氏阳性细菌,T1组中的细菌染色结果显示主要存在革兰氏阴性细菌,T2组细菌染色结果显示主要存在有革兰氏阴性细菌,T3组细菌染色结果显示主要存在革兰氏阴性细菌,T4组细菌染色结果显示主要存在革兰氏阳性细菌,T5组细菌染色结果显示主要存在革兰氏阳性细菌,T6组细菌染色结果显示主要存在革兰氏阳性细菌,T7组细菌染色结果显示主要存在革兰氏阴性、革兰氏阳性细菌,T8组细菌染色结果显示主要存在革兰氏阴性细菌,T9组细菌染色结果显示为革兰氏阴性细菌,见表36。0115表36革兰氏染色实验结果0116说明书CN104285576A1110/21页120117表示阳性表示阴性01185超级。
29、稻根际土壤微生物DNA鉴定的品种情况0119通过将纯化的微生物进行DNA鉴定和送检、对比和统计,从T1组土壤样本中分离出假丝酵母属、节杆菌属、解淀粉芽孢杆菌、短小芽孢杆菌、枯草芽孢杆菌菌株等微生物;从T2组土壤样本分离出枯草芽孢杆菌菌株、同温层芽孢杆菌、小球藻、橘色杆菌属等微生物;从T3组土壤样本分离出土地戈登氏菌;从T4组土壤样本分离出高地芽孢杆菌;从T5组土壤样本中分离出枯草芽孢杆菌菌株;从T6组土壤样本中分离出鞘氨醇单胞菌属;从T7组土壤样本分离出枯草芽孢杆菌菌株;从T8组土壤样本分离出蕈状芽孢杆菌、大肠杆菌;从T9组土壤样本分离出枯草芽孢杆菌、鞘氨醇单胞菌属、紫杆菌属、溶芳烃鞘氨醇单胞。
30、菌等微生物;从CK组土壤样本分理出黄杆菌属。从中可以看出增氧处理组中的一些微生物对植物或者环境具有积极的作用。0120小球藻,本身富含蛋白质、可食用纤维、维生素和微量元素等许多营养成分,提取小球藻的一些成分可以用来治疗消化性溃疡,防治肿瘤,增强机体的免疫力。还具有抗辐射和防治贫血等作用,对植物生长而言,对一些病原微生物具有防治作用。0121橘色杆菌属拉丁学名为SANDARACINOBACTERYURKOV,STACKEBRANDTANDBUSS,是革兰氏阴性细菌,本细菌的细胞内含有类胡萝卜素和细菌叶绿素。0122鞘氨醇单胞菌属,革兰氏阴性菌,是一种专性好氧而且自身能够生成过氧化氢酶物质,此菌株。
31、具有很高的新陈代谢能力,生理特征也有多种功能,被认为是一类新型的微生物资源,对芳香化合物的生物的降解具有较强的作用。在环保和工业生产中有广泛的应用前景。0123高地芽孢杆菌,研究表明对水稻的纹枯病原菌和稻瘟菌等具有较好的拮抗作用,但也对青霉素类和大环内脂类等抗生素比较敏感。通过对高地芽孢杆菌的活性物质进行理化性质探究发现,此类菌的活性物质能够耐受高温和酸性,但对强碱性敏感,强碱条件下说明书CN104285576A1211/21页13此菌容易失去活性。0124紫杆菌属,在微生物的固体培养基上会生成像奶酪状的紫色菌落;对生长的温度会因不同的品种呈现出差异性,如果采用普通培养基培养一般适宜温度为25。
32、,对生长环境的PH值具有选择性,一般认为最适宜生长的PH为78,PH值在45以下会生长。此外也不会生长在在6NACL以上的培养基中,是一类以发酵代谢为主的微生物。0125黄杆菌属,是一种严格好氧的微生物,革兰氏阴性。此类微生物生长在固体培养基时有些菌株会生成比较典型的橙色或黄色的色素,有些不会产生此类色素。菌落一般为半透明偶尔也有不透明状,形态为直径约为12NM的圆形,表面会有微隆起或隆起,观察可以看出光滑且有光泽,全缘,此菌属在低浓度的蛋白胨培养基中会由碳水化合物产生酸但不会产气。01266小结01271增氧灌溉对超级稻根际土壤微生物的种群影响未能发现显著抑制某类微生物的生成现象,三大种群在。
33、整个生长期都有出现,从超级稻整个生长周期来看,增氧处理整体上对土壤根际微生物的种群多样性以促进为主,从处理期种群的多少作为标准,在分蘖期以白天组和化学组为代表,白天组T1、T2组和化学组T8、T9组为佳,抽穗期以夜间处理组T4、T5、T6为佳,成熟期以白天处理组T1、T2、T8为佳。01282增氧处理对根际土壤细菌数量的影响不同阶段呈现出差异性,在分蘖期差别不大;在抽穗期阶段夜间增氧和化学增氧能促进细菌数量的增长,以化学组T7、T9和夜间组T5为佳,分别较对照组超出160、139、69;在成熟期阶段,白天增氧对超级稻根区的细菌数量的增长具有促进作用较显著,以T2组为佳,较对照组超出200。增氧。
34、灌溉对超级稻根际土壤真菌数量的影响在分蘖期阶段以白天增氧组T2、T3、T7、T8、T9较对照组对比明显,其中以T7、T9组最为突出,在抽穗期阶段,增氧灌溉对超级稻根际土壤真菌的生成和数量总体具有较大促进作用,以夜间处理组和化学组表现最为显著,夜间组以T4、T5组为最佳,较对照组超出60,化学组T7和T9组较对照组分别超出300和200;在成熟期阶段,增氧处理对超级稻根际土壤真菌的生成具有明显的抑制作用。增氧对超级稻根际土壤放线菌的数量影响在分蘖期阶段具有促进作用,以化学增氧T7、T8、T9和T1、T4组较为突出,在抽穗期阶段夜间增氧处理对超级稻根区放线菌数量的增长促进作用要更加显著,以T5组为。
35、最佳,较对照组超出300;在成熟期,白天增氧处理对超级稻根区放线菌数量增长的促进作用要更加显著,以T2、T3、T8组表现突出,均超出对照组100。01293通过革兰氏染色和样本的DNA鉴定,从分离出来的微生物来看,增氧灌溉在对超级稻根际土壤微生物种群数量具有积极作用的基础上,能够促进一些有利于植物生长的微生物生长,抑制一些有害微生物的生长,从T1、T2、T5、T7、T9分离出来的枯草芽孢杆菌,为专性好氧微生物,对存在于水体中的有害微生物大肠杆菌、弧菌、杆状病毒等具有显著的抑制作用;从T2组分离出来的微生物同温层芽孢杆菌,用同温层芽孢杆菌制造的新型微生物燃料电池的发电量是其它微生物制造的燃料电池。
36、发电量的两倍,可以被收集利用成为人类社会的新能源。用同温层芽孢杆菌制造的新型微生物燃料电池还能够一方面净化河水另一方面将河流中的一些废物转化成为电力;从T6、T9组分离出来的鞘氨醇单胞菌属微生物,具有很高的新陈代谢能力,生理特征也有多种功能,被认为是一类新型的微生物资源,对芳香化合物的生物的降解具有较强的作用,在环保和工业生产中具有广泛的应用前景,说明书CN104285576A1312/21页14而这些微生物未在对照组中发现和分离出来,从DNA分离出来的对超级稻生长有益的微生物具体种类数量多少来看,以T1和T2组为佳,尤其是T1组。0130综上所述,对于超级稻根际土壤为微生物的种群和数量,在分。
37、蘖期以白天增氧和化学增氧为佳,可选择白天一日一次即T1组或者一日两次即T2组处理,在抽穗期以夜间处理为佳,可选择夜间一日一次即T4组或者两日一次即T5组为佳,在成熟期以白天增氧处理组T2或者T1为佳。化学组可采用T7组或者T9组。0131二、增氧灌溉对超级稻根际土壤微生物纤维分解强度的影响0132大自然界存在各种各样的纤维素,是植物组织的主要组成部分。土壤中植物残体的分解,主要就是由微生物进行的。分解纤维素的微生物有好氧微生物和厌氧微生物,但主要还是由好氧细菌进行,这些微生物对纤维的分解作用应该视为自然界生态系统碳素循环的基础,同时微生物分解纤维的强度对提高土壤肥力,改善植物的营养有着非常重要。
38、的意义。01331实验原理0134本实验采用埋棉布法,通过将已经特殊处理和称取重量的棉布片埋于不同处理的土壤样品中,经过一段时间后一般为10至12天,由于不同的增氧处理土壤样品中不同纤维素分解菌的作用,棉布条的重量会出现不同程度的降低,由棉布失去的质量多少来衡量出土壤样品中微生物分解纤维素作用的强度。01352实验材料0136棉布条;01的H2SO4溶液;碘液;01373操作步骤0138棉布条的处理首先将棉布条剪成尺寸约为6CM4CM大小,再浸泡在溶度为01的H2SO4水溶液中进行煮沸处理,煮至棉布条与碘液反应颜色为蓝色为止说明棉布上的淀粉已经基本被除尽;取出棉布条用灭菌水洗去棉布中多余的酸、。
39、用铅笔标上编码做好记号,在放置在温度为105的烤箱中进行烘干,烘干后及时称重,用干净塑料袋装好备用;将从超级稻根际取来的新鲜土样大约80G分成两份,先将其中一份放于圆形培养皿底部铺平,然后将备用的棉布条平铺于土样之上,再将另一份土壤覆于其上铺平,盖上皿盖用专用带进行密封,放于28恒温箱中培养;10天后取出棉布条,用清水轻轻地洗去棉布条上附着的土粒,再放置在105烤箱中烘干,最后称重。01394结果计算0140纤维分解强度培养前棉布条的原重培养后棉布条重量/棉布条原重10001415结果分析0142在分蘖期,不同的处理微生物纤维分解强度表现不同,在分蘖期,棉布条失重率从大到小的排序为T9、T1、。
40、T2、CK、T7、T3、T6、T4、T8、T5,从中可以看出,在增氧灌溉初期阶段,白天组T1、T2、化学组T9与对照组CK相比,在此阶段微生物纤维分解强度要高,白天组T3,夜间组T6、T4、T5,化学组T7、T8微生物的纤维分解强度表现要比CK组低,只有T9达到显著水平,表明白天增氧处理有利于增强好氧微生物的生命活动,以T1、T2组为佳,见表41。0143表41增氧灌溉对超级稻根际微生物纤维分解强度0144说明书CN104285576A1413/21页150145在超级稻的抽穗期间,通过对棉布条的原始重量、实验结果重量、失重量以及失重率进行统计,不同增氧灌溉处理微生物纤维分解强度表现不同,见表。
41、42。在抽穗期数据,其先后顺序为T9、T4、T7、T5、T1、CK、T6、T8、T2、T3,从中可以看出,在超级稻抽穗期阶段,白天组T1,夜间组T4、T5,化学组T7、T9与对照组相比,此阶段微生物纤维分解强度要高,白天组T2、T3,夜间组T6,化学组T8的微生物的纤维分解强度表现要低,T4、T9组达到显著水平,数据表明在抽穗期阶段夜间增氧能够增强超级稻根区好氧微生物的生命活动,以夜间组T4、T5组为佳。0146表42增氧灌溉对超级稻根际微生物纤维分解强度的影响01470148说明书CN104285576A1514/21页160149在超级稻的成熟期间,通过对棉布条的原始重量、实验结果重量、失。
42、重量以及失重率进行统计,不同增氧灌溉处理微生物纤维分解强度表现不同,见表43。分析成熟期的数据我们可以发现,纤维分解强度的强弱从大到小的排序为T2、T3、T4、T1、T9、T8、T7、T5、CK、T6,从中可以看出,在超级稻成熟期阶段,与对照组CK相比,增氧处理组此阶段微生物纤维分解强度除夜间处理组T6外均比CK组要高,微生物纤维分解强度除T5组外其他组均达到显著水平,可以看出在此阶段增氧处理有利于超级稻根区好氧微生物的生命活动,提高微生物分解纤维的能力,各处理组之间,以白天增氧处理组T2组为最佳。0150表43增氧灌溉对超级稻根际微生物纤维分解强度影响01510152说明书CN1042855。
43、76A1615/21页1701536小结01541纤维分解强度实验与微生物种群数量数量的结果具有一致性,分孽期白天组的分解强度较强,抽穗期夜间处理组的分解强度较强,成熟期白天处理组分解强度较强。01552在增氧灌溉分蘖期,白天组T1、化学组T9与对照组CK相比,分别较对照组高出327、661;微生物的纤维分解强度要高,表明在超级稻的分蘖期进行白天增氧处理有利于增强好氧微生物的生命活动;在超级稻抽穗期阶段,白天组T1,夜间组T4、T5,化学组T7、T9与对照组相比微生物表现出的纤维分解强度要高,分别较对照组超出283、859、425、5、2853;表明在次阶段主要进行夜间增氧处理能够增强超级稻根。
44、区好氧微生物的生命活动,提高好氧微生物的纤维分解强度;在超级稻成熟期阶段与对照组CK相比,增氧处理组此阶段微生物纤维分解强度除夜间处理组T6外均比CK组要高,且微生物纤维分解强度除T5组外其他组均达到显著水平,可以看出在此阶段增氧处理有利于超级稻根区好氧微生物的生命活动,提高微生物分解纤维的能力,在增氧各处理组之间,又以白天增氧处理为最佳。01563微生物的纤维分解强度是从另外一个侧面反映好氧微生物的数量和活性的指标,从本次增氧灌溉对超级稻根区土壤的微生物分解强度的影响变化可以看出在不同的阶段对超级稻进行不同时间的增氧可以促进根区好氧微生物的生命活动。0157三、增氧灌溉对超级稻基本农艺性状的。
45、影响01581增氧灌溉对超级稻分蘖期基本农艺指标的影响0159在超级稻增氧处理初期,我们主要统计观察超级稻的分蘖数和植株高度数据的变化,我们在7月24日、8月2日、8月8日在试验区进行观测统计。0160从表51的分蘖期超级稻的株高情况可以看出,截止7月24日,超级稻株高的先后顺序为T8、T7、T6、T5、T4、T2、T1、CK、T3、T9;截止7月28日,超级稻株高的先后顺序为T8、T6、T4、T7、T1、T9、T5、T3、CK、T2;截止8月2日,超级稻株高的先后顺序为T8、T4、T9、T5、T6、T7、T2、T3、T1、CK;截止8月8日分蘖期基本完成,超级稻株高的先后顺序为T8、T4、T。
46、6、T7、T3、T9、T2、T5、T1、CK;从整个分蘖期来讲,随着增氧处理时间的持续,增氧超级稻的株高较普通对照组CK生长的速度要快,7月24日CK组尚超过两组增氧处理组,但后面的统计发现CK组开始落后于增氧处理组,到分蘖期基本结束CK组株高最低,增氧处理最低组T1超出CK组17,不同增氧处理之间也存在差异,T8组一直领先,整个分蘖期有T1、T4、T5、T6、T7、T8一直比普通对照组的株高要高。0161表51增氧灌溉对分蘖期超级稻株高的影响0162说明书CN104285576A1716/21页180163从表52的超级稻分蘖期的分蘖数可以看出,截止7月24日,超级稻分蘖数的先后顺序为T6、。
47、T8、T5、T4、T2、T1、T7、T3、T9、CK;截止7月28日,超级稻分蘖数的先后顺序也为T6、T8、T5、T4、T2、T1、T7、T3、T9、CK;截止8月2日,超级稻株高的先后顺序为T5、T4、T8、T2、T3、T7、T6、T1、T9、CK;截止8月8日分蘖期基本完成,超级稻株高的先后顺序为T3、T5、T2、T8、T1、T6、T4、T7、T9、CK;从整个分蘖期来讲,增氧处理的超级稻分蘖数都比对照组CK要高,至分蘖期结束最高组T3比对照组要超出25,T9组也比CK组要高出15,增氧处理对超级稻的分蘖具有显著作用,以白天处理组为佳。0164表52增氧灌溉对分蘖期超级稻分蘖数的影响016。
48、50166说明书CN104285576A1817/21页1901672增氧灌溉对超级稻抽穗期基本农艺指标的影响0168在超级稻的抽穗期阶段,对超级稻的农艺指标统计主要是对抽穗期超级稻的总分蘖数、有效分蘖数、无效分蘖数、植株长度、根鲜重、根干重、植株干重进行统计。0169表53增氧灌溉对抽穗期超级稻农艺性状指标的影响0170说明书CN104285576A1918/21页2001710172从表53的抽穗期实验统计的数据可以看出,对于超级稻的分蘖数,总分蘖数从大到小顺序为T2、T1、T9、T7、CK、T8、T6、T5、T4、T3,从中可以看出白天组化学组对超级稻的分蘖作用效果要高于夜间组。超级稻的。
49、有效分蘖数从大到小顺序为T2、T1、T9、T7、T8、T6、CK、T5、T4、T3,白天增氧和化学增氧有助于超级稻有效分蘖的形成,而夜间增氧处理对总分蘖数和有效分蘖也作用不大。超级稻的无效分蘖数从大到小顺序为CK、T9、T2、T7、T5、T1、T8、T6、T4、T3,可以看出增氧灌溉能够减少超级稻的无效分蘖。超级稻的株长排序从高到低的顺序为T5、T3、T9、T8、T6、T1、T4、T2、T7、CK,可以看出在抽穗期期间增氧处理对超级稻的整体植株的生长具有显著的作用,增氧处理的植株高度都大于或等于对照组,从T1组开始就具有显著性统计意义,以夜间组T5最为显著。超级稻的叶宽从宽到窄排序为T8、T4、T1、T2、T6、T7、T5、T3、T9、CK,夜间组T4和化学组T8最为显著。超级稻的最长叶长从大到小排序为T8、T3、T6、T1、T5、T7、CK、T9、T2、T4,可以看出增氧处理对超级稻叶片生长具有积极的作用,以化学组T8和白天组T3最为显著。超级稻根系干重从大到小排序为T2、T6、T1、T7、CK、T9、T3、T8、T5、T4,可以看出,增氧处理对超级稻的根系干物质得到形成具有积极的促进作用,以T。