具有集成移动传感器的微型机电器件 本申请是2002年1月24日提交的申请号为00810824.2、发明名称为“微型机电器件中的故障检测”的发明专利申请的分案申请。
【技术领域】
本发明涉及一种在微型机电(MEM)器件中检测故障并且如果合适的话就排除此故障的方法。本发明可应用在墨水喷嘴类型方面,这些喷嘴通过结合可用于微型机电系统(MEMS)的技术以及辅助金属氧化物半导体(CMOS)集成电路而制造,并且本发明以下按此应用的情况进行描述。然而,应该理解,本发明具有更广泛的应用,可在各种类型的MEM器件中排除故障。
共同未决的申请
涉及本发明的各种方法、系统和装置在由本发明申请人或受让人与本申请同时提交的下列共同未决的申请中公开:
PCT/AU00/00518,PCT/AU00/00519,PCT/AU00/00520,PCT/AU00/00521,
PCT/AU00/00522,PCT/AU00/00523,PCT/AU00/00524,PCT/AU00/00525,
PCT/AU00/00526,PCT/AU00/00527,PCT/AU00/00528,PCT/AU00/00529,
PCT/AU00/00530,PCT/AU00/00531,PCT/AU00/00532,PCT/AU00/00533,
PCT/AU00/00534,PCT/AU00/00535,PCT/AU00/00536,PCT/AU00/00537,
PCT/AU00/00538,PCT/AU00/00539,PCT/AU00/00540,PCT/AU00/00541,
PCT/AU00/00542,PCT/AU00/00543,PCT/AU00/00544,PCT/AU00/00545,
PCT/AU00/00547,PCT/AU00/00546,PCT/AU00/00554,PCT/AU00/00556,
PCT/AU00/00557,PCT/AU00/00558,PCT/AU00/00559,PCT/AU00/00560,
PCT/AU00/00561,PCT/AU00/00562,PCT/AU00/00563,PCT/AU00/00564,
PCT/AU00/00565,PCT/AU00/00566,PCT/AU00/00567,PCT/AU00/00568,
PCT/AU00/00569,PCT/AU00/00570,PCT/AU00/00571,PCT/AU00/00572,
PCT/AU00/00573,PCT/AU00/00574,PCT/AU00/00575,PCT/AU00/00576,
PCT/AU00/00577,PCT/AU00/00578,PCT/AU00/00579,PCT/AU00/00581,
PCT/AU00/00580,PCT/AU00/00582,PCT/AU00/00587,PCT/AU00/00588,
PCT/AU00/00589,PCT/AU00/00583,PCT/AU00/00593,PCT/AU00/00590,
PCT/AU00/00591,PCT/AU00/00592,PCT/AU00/00584,PCT/AU00/00585,
PCT/AU00/00586,PCT/AU00/00594,PCT/AU00/00595,PCT/AU00/00596,
PCT/AU00/00597,PCT/AU00/00598,PCT/AU00/00516,PCT/AU00/00517,
PCT/AU00/00511,PCT/AU00/00501,PCT/AU00/00502,PCT/AU00/00503,
PCT/AU00/00504,PCT/AU00/00505,PCT/AU00/00506,PCT/AU00/00507,
PCT/AU00/00508,PCT/AU00/00509,PCT/AU00/00510,PCT/AU00/00512,
PCT/AU00/00513,PCT/AU00/00514,PCT/AU00/00515。
这些共同未决申请的内容在此作为交叉参考。
背景技术
近来,本申请人已开发高速页宽喷墨打印机。此打印机一般使用大约51200个墨水喷嘴在A4大小的纸上打印,提供1600dpi的照片质量图象打印。为了达到此喷嘴密度,喷嘴通过结合MEMS-CMOS技术来制造。
在此打印机制造中的困难是:没有确保所有遍布打印头地喷嘴或事实上位于给定芯片上的喷嘴进行完全相同操作的简便方式,并且当由不同圆片获得的芯片需要组装成给定打印头时此问题进一步恶化。而且,在从多个芯片制造完整的打印头之后,难以确定驱动单个喷嘴所需的能级,从而难以评估给定喷嘴的持续性能和难以检测单个喷嘴中的任何故障。
【发明内容】
本发明可广泛定义为:提供一种在微型机电器件中检测故障的方法,此种器件具有支撑结构、可相对于支撑结构移动的致动臂以及与致动臂相关联的移动传感器,在此,致动臂的移动是流经致动臂的热感应电流所引起的;其中,此方法包括以下步骤:
(a)在致动臂中通过至少一个具有预定周期tp的电流脉冲;以及
(b)检测致动臂的移动是否达到预定水平。以上定义的方法允许在微型机电(MEM)器件使用中检测故障。如果在预定周期的电流脉冲通过致动臂后没检测到预定的移动水平,就可假定致动臂的移动受阻,原因例如为致动臂中已存在故障或致动臂的移动被阻挡。
如果得出结论:在MEM器件中存在堵塞形式的故障,就可在致动臂中进一步通过至少一个电流脉冲(具有更高的能级)而尝试清除此故障。
因而,本发明还进一步定义为:提供一种在MEM器件中检测并排除故障的方法,此两阶段方法包括以下步骤:
(a)按以上定义的方式检测故障;以及
(b)在致动臂中进一步通过至少一个其能级比故障检测电流脉冲更
高的电流脉冲而排除此故障。如果此排除步骤不能纠正故障,MEM器件就可能过了维修期并且/或者需要返回供货商进行维修。
此故障检测方法可按后述实施:在致动臂中通过一个具有预定周期tp的电流脉冲并检测致动臂的移动是否达到预定水平。可替换地,在时间跨度t内,为了试图使致动臂移动的程度连续增加,可在致动臂中通过一系列其周期tp连续增加的电流脉冲。接着,在预定的时间窗口tw内检测致动臂的移动是否达到预定水平,在此t>tw>tp。
本发明的优选特征
本发明的故障检测方法优选应用于液体喷射器形式的MEM器件中,并最优选地应用于墨水喷嘴形式的MEM器件中,在致动臂被驱动时墨水喷嘴可喷射墨滴。在本发明的后一优选形式中,致动臂的第二端优选耦合到整体形成的闸门,此闸门用于从墨水室中喷出墨水,致动臂延伸进此室中。
致动臂最优选地由两个相似形状的臂部分形成,这两个臂部分以内搭接的关系互连。在本发明的这个实施例中,臂的第一部分与电源连接,并布置得用于被单个电流脉冲或被多个周期为tp的电流脉冲加热。然而,臂的第二部分用于限制致动臂作为一个整体单元而线性膨胀,第一臂部分被热引发的伸长使弯曲沿着致动臂的长度方向发生。因而,随着致动臂的第一部分的加热和冷却,致动臂相对于支撑结构有效地旋转。
从以下对应用于墨水喷嘴的故障检测方法优选实施例的描述中,将更加完全地理解本发明,附图中示出墨水喷嘴。
【附图说明】
在附图中:
图1示出墨水喷嘴一部分被高度放大的横截面视图;
图2示出图1墨水喷嘴的平面视图;
图3示出致动臂和墨水喷射闸门或墨水喷嘴的外部的透视图,致动臂和闸门以独立于喷嘴的其它元件的方式示出;
图4示出与图3相似但与致动臂内部有关的布置;
图5示出与图3和4相似但与整个致动臂有关的布置,完整的致动臂包括图3和4中所示的外部和内部;
图6示出图5圆圈内所示的移动传感器布置的详细部分;
图7示出图1中喷嘴在充墨之前的横截面视图;
图8示出图7喷嘴的横截面视图,但其中致动臂和闸门被驱动到测试位置;
图9示出当喷嘴在故障清除操作下被驱动时喷嘴的墨水喷射;
图10示出当致动臂和闸门被驱动到一般足以从喷嘴喷射墨水的程度时喷嘴被堵塞的状况;
图11示出喷嘴内所包含的一部分电路的示意图;
图12示出可用于喷嘴致动臂正常(喷墨)驱动的激励-时间图;
图13示出可用于喷嘴致动臂测试驱动的激励-时间图;
图14示出可用于图12和13所示激励-时间图的比较性位移-时间曲线;
图15示出可用于故障检测程序的激励-时间图;
图16示出可用于喷嘴致动臂的温度-时间图,此图对应于图15的激励时间图;以及
图17示出可用于喷嘴致动臂的偏移-时间图,此图对应于图15和16的激励/加热-时间图。
【具体实施方式】
如在图1和其它相关附图中以大约3000x放大倍数所例示的,单墨水喷嘴器件为芯片的一部分示出,此芯片通过结合MEMS和CMOS技术而制造。完整的喷嘴器件包括具有硅基片的支撑结构20、金属氧化物半导体层21、钝化层22和非腐蚀性介电涂层/室确定层23。
喷嘴器件包括连接到墨水源(未示出)的墨水室24以及位于所述室上方的喷嘴室25。在室确定层23中设有喷嘴开孔26以允许墨滴喷出到纸上或其它介质上(未示出),墨水将淀积在纸或其它介质上。如图1和7所示,闸门27位于两个室24和25之间,并且当处于静止位置时,闸门27有效地分隔开两个室24和25。
闸门27通过闸门延伸端29和介电涂层23的桥接部分30耦合到致动臂28。
致动臂28形成(即在器件的制造过程中淀积)得相对于支撑结构或基片20是可旋转的。亦即,致动臂具有耦合到支撑结构的第一端和可相对于此支撑结构向外移动的第二端38。致动臂28包括外、内臂部分31和32。在图3所示的透视图中,外臂部分31被详细示出并与喷嘴器件的其它部件是隔离的。在图4中以相似的方式示出内臂部分32。在图5透视图以及图1、7、8、9和10中示出完整的致动臂28。
致动臂28的内部分32在喷嘴器件形成过程中由钛铝氮化物(TiAl)N淀积形成,并且如图11示意性示出的,内部分32电连接到CMOS结构内的电源33。在接线端34和35上进行电连接,施加到接线端上的脉冲激励(驱动)电压导致脉冲电流只流经致动臂28的内部分。电流在致动臂的内部分32内产生迅速的电阻加热,结果导致臂的此部分瞬间伸长。
致动臂28的外臂部分31通过柱36机械耦合到内臂部分32上,但与之是电隔绝的。在外臂部分31内不产生电流引发的热,结果,电压感应的电流流经内臂部分32使整个致动臂28以图8、9和10所示的方式产生瞬间弯曲。致动臂28的此种弯曲等效于此臂相对于基片20的旋转运动,并导致闸门27在室24和25内产生位移。
在器件中设置集成的移动传感器,以便确定致动臂28旋转运动的程度或速度并且允许在器件中进行故障检测。
移动传感器包括移动接触元件37,元件37与致动臂28的内部分32整体形成并且当电流流经致动臂的内部分时是可被电激励的。移动接触元件37与致动臂的第二端38相邻布置,因此,随着电压V施加到接线端34和35上时,移动接触元件的电势大约为V/2。移动传感器还包括固定接触元件39,元件39与CMOS层22整体形成并定位得当致动臂28向上旋转预定程度时与移动接触元件37接触。固定接触元件电连接到放大器元件40和微处理器结构41,这两者都在图11中示出并且其组成元件包括在器件的CMOS层22内。
如图1和7所示,当致动臂28,以及因此当闸门27处于静止位置时,在移动和固定接触元件37和39之间没有接触。在另一极限情况下,如图8和9所示,当致动臂和闸门发生过度的移动时,在移动和固定接触元件37和39之间发生接触。当致动臂28和闸门27被驱动到足以从喷嘴喷出墨水的正常程度时,在移动和固定接触元件之间没有接触。亦即,当从室25正常喷射墨水时,致动臂28和闸门27移动到处于图7和8所示位置之间的途中位置上。此(中间)位置如图10所示,尽管这是喷嘴被堵塞的结果而不是在墨水从喷嘴正常喷出的过程中。
图12示出激励-时间图,此图可用于使致动臂28和闸门27从静止位置驱动到低于正常的墨水喷射位置。从图12激励所产生的闸门27位移在图14中由下曲线42表示,从图中可看出,位移的最大值小于位移线43所示的最佳水平。
图13示出延长的激励-时间图,此图可用于使致动臂28和闸门27被过度驱动,如图8和9所示。从图13激励所产生的闸门27位移在图14中由上曲线44表示,从图中可看出,最大位移水平大于位移线43所示的最佳水平。
图15、16和17示出施加到致动臂28的激励周期连续增加时,激励电压、致动臂温度和闸门偏移相对于时间的曲线图。这些图与喷嘴器件中的故障检测有关联。
当在喷嘴器件中或在喷嘴器件阵列的每个器件中检测故障状况时,在时间跨度t内,一系列其周期tp连续增加的电流脉冲被引导流经致动臂28。控制周期tp使其以图15图形所示的方式增加。
每个电流脉冲在致动臂内引发瞬间加热,结果导致温度上升,随后在脉冲周期终止时温度下降。如图16所示,随着图15所示的脉冲周期增加,温度升高到连续更高的水平。
结果,如图17所示,在正常情况下,致动臂28会在连续增加的程度上发生移动(旋转),有时会低于使移动和固定接触元件37和39之间产生接触所要求的水平而其它时候则会高于使移动和固定接触元件之间产生接触所要求的水平。这由图17中的“测试水平”线表示。然而,如果在喷嘴器件中发生堵塞,如图10所示,闸门27,以及因而致动臂28将被限制而不能移动到从喷嘴喷射墨水所需的正常的完全程度。结果,致动臂正常的完全移动将不会发生并且在移动和固定接触元件37和39之间不会产生接触。
如果当预定周期tp的电流脉冲流经致动臂时不产生此种接触,就可得出结论:在喷嘴器件中已发生堵塞。然后这可通过使进一步的电流脉冲流经致动臂28而得到排除,这进一步的电流脉冲具有比正常流经致动臂的脉冲明显更高的能级。如果这能有效除去堵塞,就会发生图9所示的喷墨。
作为用于故障检测的更简单的替代程序,如图12所示的单个电流脉冲可被引导流经致动臂,并且可简单地检测致动臂的移动是否足以使移动和固定接触元件之间产生接触。
只要不偏离后附权利要求的范围,可对上述作为本发明优选实施例而描述的器件作各种改变和变更。