一种混合不确定性下基于代理模型的结构可靠性分析方法
技术领域
本发明属于可靠性分析评估技术领域,涉及机械产品的可靠性分析方法,具体涉及一种混合不确定性下基于代理模型的结构可靠性分析新方法。
背景技术
随着科学技术的迅速发展,许多产品(如:飞机、航空发动机、可展开天线、汽车、数控机床等)的结构越来越复杂,其分析、设计等涉及众多学科领域及新方法、新工艺、新材料的应用。由于一些产品造价昂贵,并且工作环境恶劣,如果在运行过程中出现故障,会造成巨大的经济损失和人员伤亡。如发动机是飞机的心脏,被誉为“工业之花”,它直接影响到飞机的性能、可靠性及经济型,是一个国家工业和科技实力的重要体现。航空发动机可靠地工作是飞机正常运行和飞行安全的重要保障,其质量和性能直接影响到发动机的性能、寿命和可靠性。因此,结构的高可靠性是装备安全可靠运行的重要保障。
通常情况下,在产品的分析、设计和运行过程中所产生的各种不确定性是影响产品可靠性的关键因素。因此,为保证产品的高可靠性,核心问题在于掌握各种不确定性产生的实质、传输机制及其对产品可靠性的影响。工程中的不确定性通常被分为两大类:随机不确定性和认知不确定性。随机不确定性又称为不可简约不确定性、固有不确定性,它描述了物理系统内部变化的波动性,具有充足的试验数据和完善的信息。而认知不确定性是由于数据不足、试验条件或其它认知能力所限造成的知识缺乏、信息不完善等,故又称为可简约不确定性、主观不确定性等,认知不确定性是主要由于缺乏数据、认知偏差、信息不完备等因素引起的,是一种随着认识的深入和信息的增多而减少的不确定性。在工程实际中,往往随机和认知不确定性同时存在,贯穿于产品的整个全寿命周期。因此,混合不确定性下的产品可靠性分析至关重要。然而,现有的结构可靠性理论和方法主要建立在概率论与数理统计的基础上,相应的模型已较为完善,基于概率论与数理统计的可靠性理论与方法只能处理随机不确定性,而对认知不确定性则不能有效解决。现有复杂结构可靠性分析方法,大致可以分为两个部分:一是基于蒙特卡罗仿真和随机有限元的结构可靠性分析,这种方法的鲁棒性较好,为了保证一定的精度,往往需要大量重复的有限元分析计算,因此计算量较大,在工程中是难以接受的;二是基于代理模型的结构可靠性分析方法,通过相应的试验点设计,构建产品关键失效模式的代理模型,从而进行可靠性分析。需指出的是,现有基于代理模型的结构可靠性分析只考虑随机不确定性,而对认知不确定性不能有 效解决。另外,现有方法受试验点的影响较大,所建立的代理模型只能在局部有一定的精度,而不能有效近似整个不确定性空间。因此,不同试验点往往导致得到不同的结果,误差较大,严重地影响其有效性。鉴于此,构建混合不确定性下的基于高效代理模型的结构可靠性分析方法,对于保障复杂产品的安全性和高可靠性有重要的现实意义及工程价值。
发明内容
为克服上述缺点,本发明提供一种混合不确定性下基于代理模型的结构可靠性分析方法。
本发明采用的技术方案为:一种混合不确定性下基于代理模型的结构可靠性分析方法,具体包括以下步骤:
S1、分析产品的运行环境、系统的组成和系统功能;确定产品的关键失效模式及失效机理;
S2、统计变量的信息和数据,采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模;用最大似然估计法和卡方检验法对变量的分布参数及分布形式进行估计和检验;
S3、建立产品关键结构的有限元分析模型,并计算相关响应值;
S4、根据随机变量的分布产生随机数,根据随机数与随机变量的映射关系,得到随机变量样本集,根据随机变量样本集得到随机变量的近似取值区间,随机变量在近似取值区间和区间变量在区间变量所对应的区间上下界内产生一定数量的均匀分布样本;
S5、根据所有随机变量在各自近似取值区间和所有区间变量在各自区间变量所对应的区间上下界内产生的均匀样本作为构建Kriging代理模型的试验点,根据所有试验点以及步骤S3计算得到的响应值,得到Kriging代理模型的训练样本,根据得到的训练样本和Kriging原理,构建Kriging代理模型;
S6、根据步骤S5得到的Kriging代理模型,采用蒙特卡罗仿真方法,计算得到任一区间变量取值下的可靠性灵敏度和失效概率;并计算失效概率的最小值和最大值。
本发明的有益效果是:本发明的一种混合不确定性下基于代理模型的结构可靠性分析方法,通过采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模;并根据随机变量在近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本作为构建Kriging代理模型的试验点,建立Kriging代理模型,然后根据得到的Kriging代理模型,采用蒙特卡罗仿真方法,计算得到任一区间变量取值下的失效概率和可靠性灵敏度, 解决了混合不确定性下传统代理模型在局部有一定精度及传统可靠性分析计算量较大的难题,更加符合工程实际。本发明能显著的降低产品开发的费用、发现产品故障的实质,因此能显著地提高产品的可靠性。同时,本发明的一种混合不确定性下基于代理模型的结构可靠性分析新方法也适用于其他相关产品的可靠性分析,应用范围广阔。
附图说明
图1是本发明的方案流程图。
图2是本发明任意分布随机数的产生原理示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明内容作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,本实施例中的一种混合不确定性下基于代理模型的结构可靠性分析方法,主要包括以下步骤:
S1、分析产品的运行环境、系统的组成和系统功能;用FMEA或FMECA和加速寿命试验确定产品的关键失效模式及失效机理。
首先分析产品的运行环境、系统的组成和系统功能等;用FMEA(失效模式与影响分析,Failure Mode and Effects Analysis,简称FMEA)或FMECA(故障模式、影响和严重性分析,Failure Mode,Effects and Criticality Analysis,简称FMECA)和加速寿命试验等确定产品的关键失效模式及失效机理,并建立相应的性能函数。由于本步骤的FMEA和FMECA为现有技术,在此不做详细说明。
S2、统计变量的信息和数据,采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模;用最大似然估计法和卡方检验法对变量的分布参数及分布形式进行估计和检验。
所述采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模。例如,结构的某些变量:尺寸、材料弹性模量、密度、泊松比、材料屈服强度等由于信息和数据较多,可用随机变量进行建模(如正态分布);由于认知偏差、经费等因素限制,如某一变量的相关信息及数据较少,则用区间变量进行建模。在对变量进行建模前需要统计变量的信息和数据,用最大似然估计法和卡方检验法对变量的分布参数及分布形式进行估计和检验。所述分布参数包括均值和方差等,这里提到的最大似然估计法和卡方检 验为现有技术,本领域的普通技术人员可以根据现有资料得到,在此不再详细描述其具体过程。
S3、建立产品组成部件的有限元分析模型,并计算相关响应值;通过相关有限元分析软件,如ANSYS,对产品组成部件进行有限元分析计算。建立产品有限元后,可分析计算相关响应值。
所述的相关响应值可以根据具体问题进行确定,研究内容不同,响应值也不同。如响应值可以选择为节点的应力或者是位移量等。
上述产品组成部件包括构成产品的所有零部件,特别是组成产品的关键部件。以航空发动机为例,其组成部件包括涡轮盘、涡轮叶片、电缆等,其中涡轮盘、涡轮叶片等是关键部件。
S4、根据随机变量的分布产生随机数,根据随机数与随机变量的映射关系,得到随机变量样本集,根据随机变量样本集得到随机变量的近似取值区间,随机变量在近似取值区间和区间变量在各自区间上下界内产生设定数量的均匀分布样本。
区间上下界根据统计专家经验以及现有数据得到区间变量的取值样本,然后根据统计得到的样本中的最小值和最大值构成区间的上下界;例如,根据咨询相关专家以及现有信息得到某个区间变量的样本有a个,这区间的上下界可分别初步确定为a个样本中的最大和最小值,例如a可取值为10个,本领域的普通技术人员应注意,此处取10个样本只为说明区间上下界的取值方法,在实际应用中并不限于10个样本。
所述的设定数量的均匀分布样本,通常产生均匀分布的样本量可为500-1000个,如估计系统失效概率较大,产生的样本量定为500个;反之为1000个。
首先采用MATLAB在区间[0,1]上产生N个随机数
记本实施例中随机数的个数为N(N为自然数),如N可以取值为105,任意分布随机数的产生原理如图2所示,
为随机变量,
为随机变量
的累积分布函数,
为区间[0,1]上的任一随机数,
为随机数
的反函数。随机变量
的任意随机数
可以通过式
产生,其可以借助现有软件如MATLAB进行实现。根据产生的样本,随机变量
近似取值区间可以确定为[min(xi1r,r=1,2,...,N),max(xi1r,r=1,2,...,N)],]]>min(·),max(·)分别表示取最小和最大值。
记[a,b]为任一区间,a≤b,则基于MATLAB软件产生的均匀分布随机数可表示为y=a+(b-a)rand(N,1)。
任一随机变量
和任一区间变量
分别在对应近似取值区间和对应区间上下界内产生的N1个均匀分布的样本可表示为:
x‾i1j,j=1,2,...,N1---(1)]]>
y‾i2j,j=1,2,...,N1---(2)]]>
S5、根据所有随机变量在近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本作为构建Kriging代理模型的试验点,根据所有试验点以及步骤S3计算得到的响应值,得到Kriging代理模型的训练样本,根据得到的训练样本和Kriging原理,构建Kriging代理模型;
首先,所有随机变量在近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本作为构建极限状态方程的Kriging代理模型的试验点,表示为:
x‾i1j,i1=1,2,...,n;j=1,2,...,N1---(3)]]>
y‾i2j,i2=1,2,...,m;j=1,2,...,N1---(4)]]>
其中,式(3)和(4)中,i1,i2分别表示随机变量及区间变量的个数。把所有试验点作为输入,通过有限元分析计算所得的响应值记为zj,j=1,2,…,N1。则构建极限状态方程的Kriging代理模型的训练样本表示为:
(x‾i1j,y‾i2j,zj,i1=1,2,...,n;i2=1,2,...,m;j=1,2,...,N1)---(5)]]>
其次,根据式(5)的训练样本和Kriging原理,则构建的Kriging代理模型可表示为:
z^(X,Y)=fT(X,Y)β+rT(X,Y)α^---(6)]]>
式中,β为回归权重系数;fT(X,Y)为矢量X,Y的函数,即X为所有随机变量
i1=1,2,…,n的矢量,Y为所有区间变量
i2=1,2,…,m的矢量,
为误差项。
Kriging是一种半参数化的插值技术,其原理是通过已知点的信息去模拟未知点的信息。在回归分析中,它包含了线性回归部分和非参数部分,其中非参数部分被视作随机过 程的实现。由于本步骤的Kriging为现有技术,因此未对本步骤进行详细说明,但是本领域的普通技术人员可以根据上述的提示建立基于Kriging的代理模型。
S6、根据步骤S5得到的Kriging代理模型,采用蒙特卡罗仿真方法,计算得到任一区间变量取值下的可靠性灵敏度和失效概率;并计算失效概率的最小值和最大值。
根据蒙特卡罗仿真方法计算区间变量任一取值下,如Y=yj的失效概率
可表示为:
Pf|Y=yj=1NmcsΣi=1NmcsI[z^i<0]---(7)]]>
其中,yj表示矢量Y的第j个取值,Nmcs为产生随机数的样本量,
表示代理模型的第i个响应值,i=1,2,…,Nmcs;I[·]称为指示函数;如果
则I[·]=1,否则I[·]=0。
计算任一随机变量
取值下的可靠性灵敏度可表示为:
∂Pf∂θXi1|(Y=yj)=1NmcsΣi=1NmcsI[z^i<0]fXi1∂fXi1(xi1j)∂θXi1|Xi1=xi1j---(8)]]>
其中,
表示
的分布参数,如均值和方差;
为
的概率密度函数。比如
服从均值μ和方差σ的正态分布,其概率密度函数为
计算失效概率的最小值、最大值。根据式(7),则失效概率的最小值
及最大值
为:
Pfmin=min(Pf|Y=yj),Pfmax=max(Pf|Y=yj)---(9)]]>
本发明的方法,通过采用随机变量对随机不确定性进行建模,采用区间变量对认知不确定性进行建模;并根据随机变量在近似取值区间和所有区间变量在各自区间上下界内产生的均匀样本作为构建Kriging代理模型的试验点,建立Kriging代理模型,然后根据得到的Kriging代理模型,采用蒙特卡罗仿真方法,计算得到任一区间变量取值下的失效概率和可靠性灵敏度。本发明的方法能有效覆盖整个不确定性空间。解决了混合不确定性的情况下,传统代理模型仅在局部有一定精度及传统可靠性分析计算量较大等问题。从而可知本发明的方法更加符合工程实际。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的 原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。