等离子体处理装置.pdf

上传人:1** 文档编号:225121 上传时间:2018-02-04 格式:PDF 页数:23 大小:1.12MB
返回 下载 相关 举报
摘要
申请专利号:

CN02824694.2

申请日:

2002.11.25

公开号:

CN1602543A

公开日:

2005.03.30

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):H01L 21/31申请日:20021125授权公告日:20070620终止日期:20131125|||授权|||实质审查的生效|||公开

IPC分类号:

H01L21/31; H01L21/302; H05H1/46; H01P5/00; H01J27/16; H01J37/08; C23C16/511; C23F4/00

主分类号:

H01L21/31; H01L21/302; H05H1/46; H01P5/00; H01J27/16; H01J37/08; C23C16/511; C23F4/00

申请人:

东京毅力科创株式会社;

发明人:

河西繁; 山本伸彦; 足立光; 长田勇辉

地址:

日本东京都

优先权:

2001.12.14 JP 381539/2001

专利代理机构:

北京纪凯知识产权代理有限公司

代理人:

龙淳

PDF下载: PDF下载
内容摘要

本发明提供了一种等离子体处理装置,可通过使匹配电路小型化而在密封盖部上一体化装载微波发生源等。等离子体处理装置,其特征在于,包括:可抽为真空的处理容器(42);载放台(44),设置在上述处理容器内,载放被处理体;微波透过板(70),设置在上述处理容器的顶部的开口部;平面天线部件(74),用于经上述微波透过板将微波供给上述处理容器内;密封盖体(78),接地,使其覆盖上述平面天线部件的上方;波导管(82),将来自微波发生源的微波导入到上述平面天线部件;部件升降机构(85),相对改变上述天线部件和上述密封盖体间的上下方向上的距离;调谐棒(104),设置成可插入到上述波导管内;调谐棒驱动机构(102),移动上述调谐棒能够调整其插入量;匹配控制部(114),通过控制上述平面天线部件的升降量和上述调谐棒的插入量来进行匹配调整。

权利要求书

1.  一种等离子体处理装置,其特征在于,包括:
可抽为真空的处理容器;
载放台,设置在所述处理容器内,载放被处理体;
微波透过板,设置在所述处理容器的顶部的开口部;
平面天线部件,用于经所述微波透过板将微波供给所述处理容器内;
密封盖体,接地,使其覆盖所述平面天线部件的上方;
波导管,将来自微波发生源的微波导入到所述平面天线部件;
部件升降机构,相对改变所述天线部件和所述密封盖体间的上下方向上的距离;
调谐棒,设置成可插入到所述波导管内;
调谐棒驱动机构,移动所述调谐棒能够调整其插入量;
匹配控制部,通过控制所述平面天线部件的升降量和所述调谐棒的插入量来进行匹配调整。

2.
  根据权利要求1所述的等离子体处理装置,其特征在于,
在比所述调谐棒还位于上流侧的导波管上设置检测所述微波的反射波的状态的反射波检测部。

3.
  根据权利要求1所述的等离子体处理装置,其特征在于,
所述被检测的反射波的状态是功率和相位。

4.
  根据权利要求1所述的等离子体处理装置,其特征在于,
在所述波导管的中间设置用于转换所述微波的振动模式的模式转换器。

5.
  根据权利要求1所述的等离子体处理装置,其特征在于,
在所述波导管内设置用于升降所述天线部件的可动轴。

6.
  一种等离子体处理装置,其特征在于,包括:
可抽为真空的处理容器;
载放台,设置在所述处理容器内,载放被处理体;
微波透过板,设置在所述处理容器的顶部的开口部;
平面天线部件,设置在所述微波透过板的上方;
密封盖体,接地,使其覆盖所述平面天线部件的上方;
导波装置,用于将来自微波发生源的微波导入到所述平面天线部件中;
匹配电路,在所述微波发生源到所述平面天线部件之间形成,并在印刷布线基板上排列进相部件、滞相部件和开关元件;
匹配控制部,通过切换所述开关元件进行匹配调整。

7.
  根据权利要求6所述的等离子体处理装置,其特征在于,
由微带线构成所述进相部件和所述滞相部件。

8.
  根据权利要求6所述的等离子体处理装置,其特征在于,
所述开关元件是PIN二极管。

说明书

等离子体处理装置
技术领域
本发明涉及对半导体晶片作用由微波产生的等离子体而进行处理的等离子体处理装置。
背景技术
近年来,伴随着半导体制品的高密度化和高细微化,半导体制品的制作工序中,存在为了成膜、蚀刻、灰化(ashing)等处理而使用等离子体处理装置的情况,尤其,在0.1~几10mTorr左右的压力较低的高真空状态下也可稳定产生等离子体,所以倾向于使用用微波产生高密度等离子体来处理晶片的等离子体处理装置。
这种等离子体处理装置在特开平3-191073号公报、特开平5-343334号公报和本申请人的特开平9-181052号公报等中公开。这里,参照图9简要说明使用了微波的通常等离子体处理装置。图9是表示现有的普通等离子体处理装置的结构图。
图9中,该等离子体处理装置2在可抽为真空的处理容器4内设置载放半导体晶片W的载放台6,在相对于该载放台6的顶部上气密地设置透过微波的例如由圆板状的氮化铝等构成的微波透过窗8。具体的,从上述处理容器4的上端设置的例如铝制环状支撑框部件10向半径方向内部突出的支撑棚部12上经O环等的密封部件14气密地安装该微波透过窗8。
并且,在该微波透过窗8的上面设置厚度为几mm左右的圆板状的平面天线部件16和根据需要缩短该平面天线部件16的半径方向的微波波长用的例如由电介质构成的滞波材料18。对于该平面天线部件16和滞波材料18,使用导体设置密封盖体19,使其覆盖这些部件的上方,并堵塞处理容器4的上方。另外,在上述滞波材料18的上方设置形成内部流过冷却水的冷却水流路20的顶部冷却外壳22,使其冷却密封盖体19等。并且,在天线部件16中形成由多个大致圆形的或者槽状贯通孔构成的微波放射孔24。并且,将同轴导波管26的内导体28连接到平面天线部件16的中心部。该同轴波导管26经模式转换器30与矩形导波管32连接,同时,该矩形导波管32依次与匹配电路34和微波产生源36连接。由此,将微波产生源36产生的例如2.45GHz的微波导入天线部件16。而且,微波呈放射状向天线部件16的半径方向传播,同时从设置在天线部件16上的微波放射孔24中发射微波,使其透过微波透过窗8,将微波导入到下方的处理容器4内,通过该微波在处理容器4内产生等离子体,对半导体晶片W进行蚀刻或成膜等的规定等离子体处理。
由于上述微波发生源36通常产生5KW左右大小的输出,所以抑制反射波的上述匹配电路34本身大小相当大,所以,将该匹配电路34本身配置在比等离子体处理装置的框架还外侧的床部等,并使用较长的矩形导波管32从该部位连接到模式转换器30。
但是,该等离子体处理装置2需要定期或不定期地维护,这时,拆下密封盖体19和微波透过窗8等,就可使天线部件16、滞波材料18和容器内的构造物等得到检查。
但是,如上这样,为拆下覆盖处理容器4的上方的密封盖体19,必须通过松开该凸缘部32A的螺栓等(未图示)来拆下与其连成一体的长尺状且较大的矩形导波管32等,因而存在维修作业非常麻烦的问题。
另外,如上所述,还存在由于矩形波导管32本身的长度较长,在其中容易使微波产生多重反射,导致负载增大,由功率损耗引起功率效率降低的问题。
进一步,由于匹配电路34和等离子体间的距离还偏离了几个相位,所以与等离子体阻抗相比,其间的阻抗压倒性地大。因此,等离子体阻抗不体现到匹配电路34,故通过匹配电路34适当控制等离子体发火、稳定等离子体十分困难。
发明内容
本发明着眼于上述问题点,而提出了有效解决这些问题的方案。本发明的目的是提供了一种等离子体处理装置,通过使匹配电路小型化而可使微波发生源等一体装载在密封盖部上。
本发明的等离子体处理装置,其特征在于,包括:可抽为真空的处理容器;载放台,设置在上述处理容器内,载放被处理体;微波透过板,设置在上述处理容器的顶部的开口部;平面天线部件,用于经上述微波透过板将微波供给上述处理容器内;密封盖体,接地,使其覆盖上述平面天线部件的上方;波导管,将来自微波发生源的微波导入到上述平面天线部件;部件升降机构,相对改变上述天线部件和上述密封盖体间地上下方向上的距离;调谐棒,设置成可插入到上述波导管内;调谐棒驱动机构,移动上述调谐棒能够调整其插入量;匹配控制部,通过控制上述平面天线部件的升降量和上述调谐棒的插入量来进行匹配调整。
由此,由于对上下运动的平面天线部件和导波管可相对调整插入量的调谐棒具有抑制微波反射波的匹配功能,所以借此可使微波的传送系统的构造本身大幅度小型化,从而,可在密封盖体上一体装载含有微波发生源的微波的传送系统。
结果,在对等离子体处理装置进行维修时,可仅通过从处理容器侧拆下密封盖体,而不拆下导波管等,将其撤去,因此能够迅速且容易地进行维修作业。
另外,由于可缩短传送微波的波导管的长度,所以借此可抑制反射波的发生和功率损耗,进而,提高根据匹配电路的等离子体控制性。
在这种情况下,例如,在比上述调谐棒还在上流侧的导波管上设置检测上述微波的反射波状态的反射波检测部。
另外,例如上述被检测的反射波的状态为功率和相位。
另外,例如,在上述波导管的中间设置转换上述微波的振动模式用的模式转换器。
另外,例如,在上述波导管内设置用于升降上述天线部件的可动轴。
另外,本发明的等离子体处理装置,其特征在于,包括:可抽为真空的处理容器;载放台,设置在上述处理容器内,载放被处理体;微波透过板,设置在上述处理容器的顶部的开口部;平面天线部件,设置在上述微波透过板的上方;密封盖体,接地,使其覆盖上述平面天线部件的上方;导波装置,用于将来自微波发生源的微波导入到上述平面天线部件中;匹配电路,在上述微波发生源到上述平面天线部件之间形成,并在印刷布线基板上排列进相部件、滞相部件和开关元件;匹配控制部,通过切换上述开关元件进行匹配调整。
这样,由于通过使用印刷布线基板,使匹配电路小型化,所以借此可使微波的传送系统的构造主体大幅度小型化,从而,可在密封盖体上一体装载含有微波发生源的微波的传送系统。
结果,在对等离子体处理装置进行维修时,可仅通过从处理容器侧拆下密封盖体,而不拆下导波管等,将其撤去,因此能够迅速且容易地进行维修作业。
另外,由于可缩短传送微波的波导管的长度,所以借此可抑制反射波的发生和功率损耗。
在这种情况下,例如,由微带线(microstrip line)构成上述进相部件和上述滞相部件。
另外,例如,上述开关元件是PIN二极管。
附图说明
图1是表示本发明的等离子体处理装置的第一实施例的构成图。
图2是图1所示的等离子体处理装置的动作说明图。
图3是表示升降平面天线部件时的反射系数和阻抗间的关系的史密斯图。
图4是表示调谐棒的变形例的部分放大图。
图5是表示本发明的第二实施例的结构图。
图6是表示本发明的等离子体处理装置的第三实施例的结构图。
图7是表示使用了印刷布线基板的匹配电路的结构图。
图8是使用微带线形成进相部件和滞相部件时的图。
图9是表示现有的通常等离子体处理装置的结构图。
具体实施方式
下面,参照附图详细说明本发明的等离子体处理装置的一实施例。
图1是表示本发明的等离子体处理装置的第一实施例的结构图,图2是图1所示的等离子体处理装置的动作说明图。
如图所示,例如该等离子体处理装置40的侧壁和底部由铝等导体构成,整体具有成形为筒状的处理容器42,该处理容器42在接地的同时,内部构成为密封的处理空间S。
在该处理容器42内容纳了上面装载作为被处理体的例如半导体晶片W的载放台44。该载放台44通过例如氧化铝膜处理后的铝等成形为凸状、平坦的大致圆柱状,其下部通过同样由铝等形成为圆柱状的支撑台46支撑,同时,经绝缘材料48在处理容器42内的底部设置该支撑台46。
在上述载放台44的上面设置在其上保持晶片用的静电卡盘或固紧机构(未图示),该载放台44通过馈电线50经匹配盒52连接例如13.56MHz的偏压用高频电源54。另外,还存在不设置该偏压用高频电源54的情况。此外,在不设置偏压用高频电源54的情况下还设置偏压用电极,可通过选择接地或浮置(float)状态来提高等离子体发火性能。
在支撑上述载放台44的支撑台46上设置流过冷却等离子体处理时的晶片用的冷却水等的冷却密封罩(jacket)56,另外,也可根据需要在该载放台44中设置加热用加热器。
在上述处理容器42的侧壁上设置作为气体供给装置的向容器内导入用于等离子体用气体,例如氩气;和处理气体,例如沉淀(deposition)气体的例如石英管制的气体供给喷嘴58,并可从该喷嘴58中供给流量控制后的等离子体气体和处理气体。作为处理气体的沉淀气体,可使用SiH4,O2,N2气体等。
另外,在容器侧壁设置向其内部搬入·搬出晶片时进行开合的阀门60,同时设置冷却该侧壁的冷却密封罩62。另外,在容器底部设置连接图中没有示出的真空泵的排气口64,并根据需要处对理容器42内抽真空直到达到规定的压力。
并且,开口处理容器42的顶部而形成开口部,并沿该开口部的边缘部经O环等的密封部件68设置圆形环状的支撑框部件66,并在该支撑框部件66上经O环等的密封部件72气密地设置作为电介质的例如由AlN等陶瓷材料构成的对微波具有透过性的厚度为20mm左右的微波透过板70。由此,处理容器42内被气密地保持。
并且,在该微波透过板70的上方,圆板状的平面天线部件74以可离开上述支撑部件66的上端的装载状态支撑其周边部。并且,在该天线部件74的上面设置圆板状的介电常数比真空的介电常数还大的具有高介电常数特性的滞波材料76。并且,设置成形为例如盖状的密封盖体78,使其覆盖该天线部件74和滞波材料76的上方,并由上述支撑部件66的上端支撑其下端部。在该密封盖体78上形成内部流过冷却水的冷却水流路79,来冷却该密封盖体78和上述滞波材料76等。另外,接地该密封盖体78。还有,相对所述处理容器42内的上述载放台44设置上述平面天线部件74。
该平面天线部件74在处理8英寸大小的晶片的情况下,例如是直径为300~400mm、厚度为1~几mm、例如5mm的导电性构成的圆板,该圆板是例如由表面镀银的铜板或铝板构成,在该圆板上将例如由长沟的槽状、或由圆形的贯通孔构成的多个微波放射孔80形成为同心圆状、或螺旋状。
另外,在上述密封盖体78的上部中心形成开口部86,在将导波管82连接到该开口部86的同时,将例如2.45GHz的微波发生源84连接到该导波管82的端部。由此,可将通过上述微波发生源84发生的微波经导波管82传送到上述平面天线部件74。另外,作为微波频率,除此之外,还可使用8.35GHz、1.98GHz等。
具体的,将上述导波管82直接连接固定到上述密封盖体78的中央开口部86,上述导波管82由向上方竖立的截面为圆形的同轴导波管82A和在该同轴导波管82A的上端部,经进行微波振动模式转换的模式转换器88连接固定到水平方向的截面为矩形的矩形导波管82B构成。
并且,在上述天线部件74上设置使其与上述密封盖体78间相对改变上下方向距离的部件升降机构85。具体的,在上述同轴导波管82A内设置沿其中心延伸的棒状内导体90,其下端部连接固定在上述平面天线部件74的中心部,并可使其保持。该内导体90为可动轴,并构成了上述部件升降机构85的一部分。另外,在该内导体90的上部形成螺丝92,将该螺丝92螺合到设置在上述模式转换器88的顶壁上的具有螺栓支持器功能的脊(ridge)94上。并且,该螺丝92的上端部贯通上述模式转换器88的顶壁,其上端部通过保持夹具98,连接固定在模式转换器88上的螺丝驱动电机96的轴上,因此,通过由该螺丝驱动电机96使上述螺丝92旋转,而可一体升降上述平面天线部件74和配置在上面的滞波材料76(参照图2)。
另一方面,在上述矩形导波管82B的侧壁上形成针孔100,并在该针孔100中设置可插入(可进出)到矩形导波管82B内的与作为调谐棒驱动机构的调节器102相连的调谐棒104。另外,上述调节器102还经保持夹具106安装固定到上述矩形波导管82B上。上述调谐棒104例如由金属导体、PZT(锆钛酸铅)、氧化铝、陶瓷等构成,由于其插入量具有阻抗的功能,顶端空间部分具有电抗的功能,所以通过改变相对上述矩形波导管82B的该插入量,就可控制阻抗。有必要的情况下,将该调谐棒104接地。
另外,在比该调谐棒104的安装位置还位于上流侧的矩形波导管82B上设置检测微波的反射波状态用的反射波检测部108。该反射波检测部108具有在矩形波导管82B内沿微波的传送方向仅以长度相当于1/4波长(λ)的距离L1间隔配置的一对检测探针110,并通过将该检测信号输入到检测主体112中,在此测量反射波的功率和相位。
并且,该检测主体112的输出输入到例如由微机算计构成的匹配控制部114中,该匹配控制部114将用于匹配调整的驱动信号分别输出到上述螺丝驱动电机96和上述调节器102中。
下面,说明使用如上结构的等离子体处理装置所进行的处理方法。
首先,经阀门60通过搬送臂(未图示)将半导体晶片W放到处理容器42内,并通过上下移动升降杆(未图示)将晶片W载放在载放台44上面的载放面上。
并且,将处理容器42内维持为规定的处理压力,并由气体供给喷嘴58分别流量控制并供给例如氩气、例如SiH4、O2、N2等的沉淀气体。同时,将来自微波发生源84的微波依次经矩形波导管82B、模式转换器88和同轴波导管82A供给平面天线部件74,并通过滞波材料76将波长短的微波导入到处理空间S内,由此,产生等离子体,并进行规定的等离子体处理,例如由等离子体CVD的成膜处理。
这里,对于微波传送来说,在矩形波导管82B内以TE模式传送由微波发生源84产生的微波,并且该TE模式的微波通过模式转换器88转换为TEM模式后,以该状态在同轴波导管82A内向天线部件74进行传送。
这里,虽然因处理空间S的等离子体状态和压力状态等各种原因波导管82内产生了微波的反射波,但是通过反射波检测部108检测出该反射波的功率和相位,为使该反射波抵消,上述匹配控制部114使调谐棒104上下运动而改变其插入量,或升降平面天线部件74,以改变其与密封盖体78间的距离L2的方式动作,从而发挥所谓的匹配的功能。
即,如图2所示,通过改变同轴棒104相对矩形波导管82B的插入量,而改变包含L分量和C分量的阻抗,另外,通过调整平面天线部件74和其上方的密封盖体78间的距离L2,而改变阻抗,结果,可调整该波导管82内的阻抗,而使得反射波彼此抵消。这种使反射波彼此抵消的阻抗调整通过匹配控制部114在等离子体处理过程中会继续进行。
这里,用图3所示的史密斯图说明阻抗调整的状况。首先,可通过调整矩形波导管82B上的调谐棒104,由检测主体112看到的合成阻抗是运动在史密斯图上的曲线b的轨迹上,并最终移动到中心O的位置上,而进行匹配。因此,通过升降平面天线部件74,可决定能成为曲线a轨迹的距离L2。理想的,如曲线a所示,由检测主体112看到的合成阻抗在标准阻抗的实数部一定的圆上移动。
虽然这时平面天线部件74的距离L2的最大冲程量也是由微波的波长决定,但是,是由滞波材料76决定的短波长λ1的1/2左右,例如60mm左右。
这样,由于通过升降的平面天线部件74和上下运动的调谐棒104而具有匹配功能,所以不需要现有装置中必需的大型匹配电路34(参照图9),且可缩短波导管本身,由此使微波的传送系统大大小型化,并可使其重量减轻。
另外,通过这样的微波传送系统的小型化和轻量化,可将波导管82(包含82A和82B)、模式转换器88和微波发生源84一体地安装配置在密封盖体78侧,结果,维修装置时,由于仅需将该密封盖体78从处理容器42侧拆下就可进行维修作业,所以可以实现维修作业的迅速化。
另外,由于缩短了产生多重反射波的波导管整体的长度,所以由此可以抑制微波损耗。
另外,在上述实施例中,仅可调整调谐棒104插入到矩形波导管82B内的插入量,但并不限于此,还可以是能够在矩形波导管82B的长度方向上移动调整的结构。图4是表示这种调谐棒的变形例的部分放大图。具体是,这里,将针孔100做成沿矩形波导管82B的长度方向具有某一长度的长孔,并且,保持直接使该调谐棒104上下运动的调节器102,使其能够通过另一第二调节器120在矩形波导管82B的长度方向上移动。并且,将该第二调节器120通过保持夹具106支撑固定到矩形波导管82B侧。另外,借助防止微波泄漏的护罩121覆盖上述结构部分。
由此,不仅可以调整调谐棒104插入到矩形波导管82B内的插入量,还可以调整相对于矩形波导管82B的长度方向的位置,所以就可借此适宜地进行匹配调整。
另外,在上述实施例中,是通过升降平面天线部件74,改变其与密封盖体78间的距离L2,也可通过升降密封盖体78侧来代替上述方法。图5是表示这种本发明装置的第二实施例的构成图。另外,对于与图1中所说明的部分相同的结构部分赋予同一附图标记,并省略其说明。
如图所示,在该第二实施例中,平面天线部件74固定在处理容器42的上部的支撑部件66侧,另外,借助脊94将同轴波导管82A内的内导体90的上端部固定在模式转换器88侧,并不对其设置螺丝驱动电机96(参照图1)。而且,将内导体90的下端部连接到平面天线部件74的中心。
并且,将密封盖体78的下端部以可在上下方向上滑动的方式嵌入到该支撑部件66的上部,而不是被固定在上述支撑部件66的上部。并且,在上述密封盖体78的侧面设置在其圆周方向上大致等间隔分隔的多个例如三个机架124(图示例子中仅记为两个),在各机架124上通过固定在支撑部件66或处理容器42侧的驱动电机126啮合(正反方向旋转的旋转螺丝128,并可通过正反旋转该旋转螺丝128,一体地升降移动上述密封盖体78和其上部构造物。由此,可任意调整该密封盖体78和平面天线部件74间的距离L2。
该第二实施例首先不仅可发挥与参照图1说明的装置例相同的作用效果,而且对于该实施例,固定天线部件74的结果不改变该天线部件74与处理空间S间的距离,所以具有不改变处理容器42内的等离子体发生空间的位置的优点。
另外,在上述实施例中,设置调谐棒104,通过能够相对地使平面天线部件74对于密封盖体78升降移动,而具有匹配功能,但是也可以使用印刷布线基板构成小型的匹配电路来代替。
图6是表示这种本发明的等离子体处理装置的第三实施例的构成图,图7是表示使用了印刷布线基板的匹配电路的构成图。另外,对于与用图1说明的部分相同的构成部分赋予同一附图标记并省略其说明。
如图6所示,这里仅使用同轴导波管82A来作为波导管82,在竖立于密封盖体78的中央部设置同轴导波管的同时,在其上端设置为第三实施例的特征的小型匹配电路130。进一步,该匹配电路130通过同轴线140连接到微波发生源84。
具体的,如图7所示,该匹配电路130由印刷布线基板132形成基底。在该印刷布线基板132上并联连接多个、图示为六个作为进相部件的电容与开关元件的串联连接,并在上述并联连接中间插入作为滞相部件的一个线圈134。上述电容和开关元件的串联连接由六个电容C1~C6和分别串联连接的开关元件SW1~SW6构成,在电容C3和电容C4的中间插入上述线圈134。并且,将电容C1的一端连接上侧的同轴线140,将电容C6的一端连接下侧的内导体90。
这里,上述各电容C1~C6的电容值彼此不同,并分别进行不同的加权。例如,若将上述各符号作为电容值,则如下所示,根据2的幂加权各电容值。
C2=21×C1
C3=22×C1
C4=23×C1
C5=24×C1
C6=25×C1
并且,可通过适当组合上述开关SW1~SW6进行切换,在很宽的范围内改变作为整体的合成电容值。在印刷布线基板132上通过图案蚀刻等容易形成各个电容C1~C6。
此外,作为上述开关元件SW1~SW6,例如在印刷布线基板132上通过配置PIN二极管可以容易形成。另外,代替该PIN二极管,也可使用机械的超小型继电器(relay)。而且,通过来自匹配控制部114的指令就可对该各个开关元件SW1~SW6进行适当切换。
另外,形成串联连接的电容并不限于六个,若在构成上进一步增加,则可将电抗的分解能力提高。另外,反射波检测部108和匹配控制部114可以使用集成化了这些功能的IC芯片,并将其装载在印刷布线基板132上,或者也可以将执行这些功能的电路组装到印刷布线基板132内。
根据该第三实施例,通过由来自微波控制部114的指令适当选择各开关元件SW1~SW6的开合,可使该匹配电路130的阻抗适当改变,而抵消微波的反射波。
另外,也可在PCB(Printed Circuit Board)上实现上述构成。在上述第三实施例中,若电容、线圈等使用微带线并利用图8(A)所示的开路短截线和图8(B)所示的短路短截线,则可以将其作为进相部件和滞相部件使用。这里,在图8(A)中,短截线150的长度L在L<1/4波长的范围内时,具有电容(进相部件)功能,短截线150的长度L在1/4波长<L<1/2波长的范围内时,具有电感(滞相部件)功能。
另外,在图8(B)中,与图8(A)相反,当短截线152的长度L在L<1/4波长的范围内时,具有电感(滞相部件)功能,短截线152的长度L在1/4波长<L<1/2波长的范围内时,具有电容(进相部件)功能。
通过任意改变这些短截线的长度L,而可在PCB上制作各种进相部件和滞相部件。
因此,在这种情况下,无需现有装置的大型匹配电路,能够实现装置的小型化和轻量化,并可发挥与先前所说明的实施例相同的作用效果。
另外,在本实施例中,虽然以对半导体晶片进行成膜处理的情况为例进行了说明,但是并不限于此,还可适用于等离子体蚀刻处理、等离子体灰化处理等的其他等离子体处理。另外,作为被处理体并不限于半导体晶片,还可适用于玻璃基板、LCD基板等。
根据如上所述的本发明的等离子体处理装置,可发挥如下优良的作用效果。
根据本发明的等离子体处理装置,由于对上下运动的平面天线部件和导波管可相对地调整插入量的调谐棒具有抑制微波反射波的匹配功能,所以可借此使微波的传送系统的构造本身大幅度小型化,从而,在密封盖体上可一体装载含有微波发生源的微波传送系统。
结果,在对等离子体处理装置进行维修时,可仅通过从处理容器侧拆下密封盖体,而不拆下导波管等,将其撤去,因此能够迅速且容易地进行维修作业。
另外,由于可缩短传送微波的波导管的长度,故借此可以抑制反射波的发生和功率损耗。
另外,根据本发明的等离子体处理装置,由于通过使用印刷布线基板,使匹配电路得到小型化,因此能够借此使微波的传送系统的构造主体大幅度小型化。从而在密封盖体上一体装载含有微波发生源的微波传送系统。
结果,在对等离子体处理装置进行维修时,可仅通过从处理容器侧拆下密封盖体,而不拆下导波管等,将其撤去,因此能够迅速且容易地进行维修作业。
另外,由于可缩短传送微波的波导管的长度,故借此可以抑制反射波的发生和功率损耗。

等离子体处理装置.pdf_第1页
第1页 / 共23页
等离子体处理装置.pdf_第2页
第2页 / 共23页
等离子体处理装置.pdf_第3页
第3页 / 共23页
点击查看更多>>
资源描述

《等离子体处理装置.pdf》由会员分享,可在线阅读,更多相关《等离子体处理装置.pdf(23页珍藏版)》请在专利查询网上搜索。

本发明提供了一种等离子体处理装置,可通过使匹配电路小型化而在密封盖部上一体化装载微波发生源等。等离子体处理装置,其特征在于,包括:可抽为真空的处理容器(42);载放台(44),设置在上述处理容器内,载放被处理体;微波透过板(70),设置在上述处理容器的顶部的开口部;平面天线部件(74),用于经上述微波透过板将微波供给上述处理容器内;密封盖体(78),接地,使其覆盖上述平面天线部件的上方;波导管(8。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1