用于直播卫星传输的单平衡降频器和混合环信号组合器 本发明涉及到直播卫星接收器系统,更确切地说是涉及到采用砷化镓(GaAs)单片微波集成电路(MMIC)的单平衡降频器和用于低噪音区(LNB)降频器的混合环信号组合器。
LNB降频器广泛地用于直播卫星(DBS)电视接收器,以便将微波信号转换成适合于室内调谐器处理的中频。LNB降频器通常安装在天线或卫星抛物面天线上,并封装在防水机盒中。其输出连接于装在电视或盒式录象机(VCR)上的室内调谐器。
LNB降频器通常包括一个同支持电路一起安装在印刷电路板上的降频器、额外的放大级和滤波器以提高放大量并降低前端噪音。降频器通常将11-12GHz的微波频率转换成1000-2000MHz的中频(IF)。
随着GaAs MMIC技术的迅速发展,市售的GaAs MMIC降频器已经非常适合于LNB应用。这是由于GaAs MMIC提供了低的成本、改善了的可靠性、重复性、体积小、重量轻、宽带性能、电路设计灵活而且在一个芯片上有多功能性能。现今,几个公司正在提供由GaAs工艺制造的有竞争力的器件以参与直播卫星接收器巨大消费市场的发展。但为了保持竞争力,厂家必须设法降低成本。用省去电路从而减小片子面积的方法可以降低成本。
减少GaAs MMIC降频器的输入电路从而减小片子面积的一个方法是采用栅激励有源场效应晶体管(FET)混频器。栅激励FET混频器相对于其它类型有源FET混频器的主要优点是它能提供更低的噪音和更高的转换增益。基于这种器件的低噪音性能,栅激励FET混频器同IF放大电路一起,无需通常集成在GaAs MMIC降频器上的RF前置放大器和图像抑制滤波器,也能获得可比拟的增益和噪音指标。
尽管栅激励混频器有上述优点,它地一个主要缺点是这种布局在微波和本地振荡器(LO)信号端口二部分之间没有隔离。克服此问题的一个方法是设计一种单平衡栅激励混频器并且用180°环形波导混合耦合器将微波信号同LO信号分隔开来。采用混合耦合器,通常可获得中心频率处30dB的隔离。但此法的缺点是FET平衡混频器要求180°输出混合,就像无源IF平衡-不平衡变换器那样,这就使电路复杂化了并可能增大其尺寸。
因此,当前需要有一种不需要输出混合的GaAs MMIC单平衡降频器。
本发明的一个实施例是一种单片微波集成电路(MMIC)半导体芯片,它包含二个用来将微波信号降频为平衡IF信号的有源混频器。此MMIC芯片供构成降频子系统的混合耦合器使用。此芯片带有一个从耦合器接收包含本地振荡器(LO)信号同微波信号组合的输入信号的第一输入引线。组合信号被加至第一有源混频器并降频为第一IF输出。第二输入引线从耦合器接收加至第二混频器以降频为第二IF输出的第二组合信号,其中的微波信号或LO信号跟加于第一混频器输入的微波信号或LO信号都不同相。结果,此二个IF输出信号相位相差180°并称为平衡。此平衡的IF信号被放大并在代表第一和第二IF信号的输出引线处转换成单一不平衡IF信号。
本发明的一个实施例也是一种供降频器中混合耦合器使用的单片微波集成电路(MMIC)半导体芯片。此芯片有一个从耦合器接收第一组合输入信号的第一输入引线、一个从耦合器接收第二组合输入信号的第二输入引线、以及一个输出引线。各个输入信号都是同下一个频率信号组合的微波信号,而第一组合信号的一个微波和下一频率信号,跟第二组合信号的一个微波和下一频率信号是不同相的。单平衡混频器有一个用来将第一组合信号转换成第一中频信号的第一单端混频器和一个用来将第二组合信号转换成第二中频信号的第二单端混频器。一个放大器被连接到第一和第二混频器,用来在代表第一和第二中频信号的输出引线处形成放大了的不平衡的中频(IF)信号。
在一个实施例中,到第一混频器的第一组合信号中的LO信号跟到第二混频器的第二组合信号中的LO信号基本上具有相同的相位和幅度。
在一个半导体芯片实施例中,还包括一个位于第一混频器输出端和IF放大器之间用来从第一中频信号中清除微波信号和LO信号的第一低通滤波器以及一个位于第二混频器输出端和IF放大器之间用来从第二中频信号中清除微波信号和LO信号的第二低通滤波器。
第一和第二有源混频器的各个IF放大器最好是砷化镓(GaAs)场效应晶体管(FET)。
而且,各个GaAs FET最好大体上偏置于夹断处。
此外,各个GaAs FET最好是一种增强型FET。
IF放大器最好有一个从第一和第二中频信号产生不平衡中频信号的差分变单端的放大器。
无源混合耦合器最好对MMIC芯片提供第一和第二组合信号。
环形波导混合耦合器最好对混频器提供第一和第二组合信号。环形波导最好折叠以便能连接到待制作的芯片,从而减少交叉干扰和电路不稳定性的危险。
本发明实施例的一个有吸引力的特点是,借助于从半导体芯片中省去RF前置放大器和图象抑制滤波器,比起常规GaAs MMIC来,GaAs片子可减小50%以上的面积。由于这类产品成本的主要因素是片子面积,故本发明有显著的优点。
本发明实施例的另一吸引人的特点是,平衡微波和IF信号在片子表面上提供了电学虚地点。这就使器件的性能对通常在低成本表面安装塑料封装中遇到的寄生接地电感相当不灵敏。此外,只是在有源混频器工作于微波频率时,才有可能将此种器件安装于低成本表面安装塑料封装中并获得可接受的性能水平。这一优点也降低了本产品的成本。
而且,由于栅激励有源FET混频器可偏置于夹断点附近只需要最小直流电流,故比起常规GaAs MMIC器件来,可获得更小的功耗。这点再加上省去RF前置放大器,就使本发明工作所需的直流偏置电流不到常规MMIC布局所需直流偏置电流的一半。
此外,借助于省去RF前置放大器和图象抑制滤波器,可获得更大的带宽。只是对有源混频器的输入匹配必须满足带宽要求。用本技术领域熟知的简单匹配电路可实现这一点。此外,若匹配电路位于GaAs MMIC片子的外部,则单平衡降频器可工作于许多不同的频段,例如X波段、C波段、S波段等。实际上可达到常规GaAsMMIC微波信号带宽的两倍。
本发明的一个实施例也是一种混合环信号组合器,它有一个带有凸部和凹部的环形导体。第一和第二输入引线分别连接于凸部和凹部,而第一和第二输出引线连接于环外沿上的凹部。第一和第二输入引线中,一个接收高频信号,一个接收低频信号。第一和第二输入和输出引线在分隔开的位置处连接到环且沿着环,以致第一和第二信号分别形成于第一和第二输出引线处,各个第一和第二信号都具有微波和下一频率信号的组合,但至少第一组合信号的一个微波和下一频率信号跟其它第一和第二组合信号的相同频率信号不同相。凸部免除了将芯片置于环内并将放大了的IF信号从芯片传到环上(其中可能出现不希望有的信号耦合)的必要。这也使芯片可置于环外但紧靠于环,使连接环和芯片的引线可做得尽可能短。
芯片和混合环信号组合器最好安装在印刷电路板之类的衬底上。
根据下列描述、权利要求和附图,可更好地了解本发明的这些和其它的特点、情况及优点,其中:
图1是LNB的功能方框图;
图2示出了带有常规环形波导混合耦合器的单平衡降频器;
图3示出了带有折叠环形波导混合耦合器的单平衡降频器;
图4是GaAs MMIC的详细电路图;以及
图5是表面安装塑料封装中GaAs MMIC切开的俯视图。
图1描述了用于DBS接收系统中的LNB降频器10的功能方框图。LNB降频器10将微波信号转换成适合室内调谐器处理的中频。LNB降频器10通常在输入10a处从天线或卫星抛物形天线(未示出)接收11-12GHz范围的微波信号,并将这些信号降频为输出端或引线10b(及23c)处的1000-2000MHz范围的中频(IF)。
在LNB降频器10的前端处,置有二级高电子迁移率晶体管(HEMT)为基础的低噪音放大器12和13,用来接收微波信号。这二级将进入的信号放大且决定了接收器的信噪灵敏度。低噪音放大器的输出被馈至图象抑制滤波器15来抑制图象噪音。图象抑制滤波器15的输出是一个微波信号,它被加至混合耦合器14的输入端或引线14a,同来自振荡器16的通常所知的作为本地振荡器(LO)信号的下一频率信号组合。LO信号被加于输入端即引线14b并被接收。混合耦合器14在两个耦合器输出端即引线14c和14d之间分离并组合进入的微波和LO信号。输出端即引线14c和14d分别被输入到GaAs单片集成电路(MMIC)23的端口或引线23a和23b。入射于混合耦合器输入端14b处的信号将在二个输出端14c和14d处产生二个相等幅度的同相位分量。入射于另一输入端14a处的信号将在二个输出端14c和14d处产生二个相等幅度的反相(即相位相差180°)分量。本技术领域一般熟练人员都知道,也可以用相反的结构来运行单平衡降频器,亦即,微波信号加至在输出端处产生二个同相位分量的端而LO信号加至在输出端处产生二个不同相分量的输入端。而且,本技术领域一般熟练人员知道,单平衡降频器也可以90°相移混合耦合器代替180°相移混合耦合器的形式工作。
混合耦合器14最好是一种待要分开的环形耦合器,其改进了的特性将加以讨论。但其它无源混合耦合器也可供MMIC23使用。无源微波混合耦合器是采用电阻器、电感器和电容器之类的无源电路元件的微波混合器,是四端器件,具有以下特征:(1)所有端都匹配(意指各端处Snn=0。不一定要共轭匹配于电源),(2)加于任何一端的RF功率被均分到二个其它端,(3)其余端被隔离(亦即从它得不到输出)。在180°混合器中,根据激活端的不同,输出电压的相位相差0度或180度。在90°混合器中,不管哪个端点被激活,在二个输出处的相位都相差90°。在《微波混频器的混合耦合器》(Hybrid Couplers of Microwave Mixers,第二版,Stephen A.Mass,1993,Artech House,Inc.,Norwood,MA)一书7.1.2节pp.238-255中有混合耦合器的讨论和例子。
对于输入频率在约2000MHz以下的应用,变压器或混合耦合器是一种好的选择。这种耦合器相对紧凑,损耗小且不昂贵。但高于这一频率时,性能急剧变坏。
对于大大高于12GHz的输入频率,将混合耦合器包括在GaAsMMIC衬底上是可取的,这是因为体积很小且在连接混合器和有源混频器时没有寄生存在。单片混合电路可用带电感器和电容器的集总元件的形式,或用诸如支线、环形波导或朗日(Lange)之类的其它普通耦合器来实现。由于体积问题,在GaAs衬底上以12GHz实现环形混合电路在仍然是过于昂贵的。
参照图1的MMIC23,阻抗匹配电路24和26被分别连接于输入端即引线23a和23b,使栅激励有源FET混频器28和30的输入匹配于它们各自的混合耦合器14的源阻抗。阻抗匹配电路确保最大功率从混合耦合器的输出传送到FET混频器的输入。FET混频器28和30产生一个包含微波信号输出频率和LO信号输出频率、它们之和与差频率及其谐波的输出频谱。低通滤波器32和34分别连接于FET混频器28和30的输出,用来选择作为差频信号的中频信号并阻止其余的频率信号从IF路径通过MMIC23。低通滤波器32和34对放大器36提供了一个由二个反相的IF信号组成的平衡的中频信号,而放大器36将平衡频率信号转换成输出端即引线23c处的不平衡中频信号。
放大器36可用本领域熟知的方法来实现,以优化增益和噪音指标性能同时又保持小的片子面积和低的复杂性。最好提供一个带有二个向差分变单端变换器42提供信号的差分放大级38和40的级联电路。
差分放大器36(包括放大器38、40和42)的不平衡中频输出被耦合到IF放大器44(包括放大器46和48)作进一步放大。放大器42将来自混频器32和34的二个平衡中频信号转变并由放大器38和40放大成单端放大器46和48的不平衡信号。在输出端23c处的经放大了的来自放大器48的不平衡中频信号被馈至室内调谐器(未示出)作进一步处理。
图2示出了一个本技术领域称为环形波导的180°混合耦合器14′。此环形波导是一个周长为3/2波长的圆环,它带有四个端14′a、14′b、14′c和14′d。对图1中耦合器和图2中环形波导耦合器的对应元件采用了相同的参考号,对图2中的环形波导加撇“′”以示区别。这一结构执行进入的微波和LO信号必要的分离和组合并在二个进入信号之间获得了极好的隔离。为了尽量减小LO信号经由微波信号路径向LNB天线外面的泄漏,隔离是很重要的。这可由下述方式达到:馈入LO输入端14′a的LO信号平均地分入由沿反时针方向的第一路径53和沿顺时针方向的第二路径55所组成的二个路径。信号沿第一路径53到达微波输入端14′b所需走过的距离是LO频率下的一个波长。信号沿第二路径55到达微波输入端14′b所需走过的距离是LO频率下的1/2个波长。因此,二个LO信号到达微波输入端14′b时相位相差180°,从而相互抵消。端点14′c和14′d处的LO信号的幅度和相位相等。端点14′b处的微波信号同样被分离成端点14′c和14′d处的相等幅度的信号而且相位相差180°。GaAs MMIC23将微波信号降频为不平衡的中频,并经由包括端点23c和耦合器62的引线将其输出以便由室内调谐器(未示出)进行处理。如果GaAs MMIC23安装在环形波导环的内侧,则端点23c处的IF输出信号在沿环形波导环的64部位的某点处须跨越环形波导环。这种交叉就在端点23c和环形波导环处的信号之间产生耦合,并且引起GaAs MMIC23输入和输出端之间的反馈。若GaAs MMIC的增益高,就极可能出现不希望有的振荡。另一方面,将GaAs MMIC安装在环形14′的外侧,可以防止反馈问题,但这就增大了布局而且引起了复杂的布局问题。
一种新颖的解决办法要求将环形波导折叠以使芯片相对于环形波导能够重新放置,而且连接引线的重新连接可完成输出端23c对环的隔离,从而消除了反馈回路。
此法示于图3。图2和3中采用相同的参考号来表示相应的元件,但对图3的相应元件用了双撇号加以标识。此外,圆环14″的1/2波长区14″f被折回以形成二个弧形部分,一个1/2波长的凹弧部14″f正对着1个波长的凸弧部14″e。在包含耦合器67和端口14″b的引线75处的LO输入被引过1个波长的弧部14″e并在其对称点处连接于凹弧部14″f。用金带可以实现LO从导体75的跨越67,但最好是用相对于弧部14″e的芯片电容器来提供直流电流阻挡。来自图象抑制滤波器15的微波信号被馈至凸弧部14″e,距离凹弧部14″f中的结68为1/4波长。在结68和70处提供了平衡输出,它们被提供在引向GaAs MMIC23的包含端点14″c和14″d的引线上。环形波导14″制作在电路板80之类的衬底上。芯片23安装在电路板紧靠折叠的凸弧部14″f处以节省空间并尽可能缩短引线14″c和14″d。
折叠过的环形波导不改变常规圆环状环形波导的任何性质,因而可提供在二个输出端之间平均地分配功率的组合的微波和LO信号。此外,折叠的环形波导可在LO和微波信号之间保持极好的隔离。
环形波导的折叠引入了来自结68和70处二个环线突然弯曲而形成的寄生电容。借助于调整连接环形波导与GaAs MMIC23的端点14″c和14″d的引线的长度,可以补偿这一寄生电容。此外,由折叠造成的结减小了耦合器的总的电学长度,因而必须用增加弧14″e和14″f的长度的方法来加以补偿。
参照图4,提供了GaAs MMIC23的详细电路图。阻抗匹配电路24和26被提供在GaAs MMIC23的输入端,用来使栅激励有源FET混频器96和98匹配于它们各自的混合耦合器的源阻抗。阻抗匹配电路可用本技术领域熟知的方法来实现,但在最佳实施例中,在各FET混频器的输入端放置了一个感性T形网络。串联电感器80和84以及旁路电感器82构成了一个FET混频器96的阻抗匹配电路。同样,串联电感器90和94以及旁路电感器92构成了一个FET混频器98的阻抗匹配网络。此法的优点是在微波和LO频率下仅仅用焊线的方法就可以相当简单地实现这些电感器。
参照图5,利用输入引线23b的电感同来自芯片88的焊线84所产生的串联电感以及从输入引线23b到微波接地面的焊线82和引线23e所产生的旁路电感一起,在GaAs MMIC23片子88的外部实现了感性T形网络。由引线23a、92和94,实现了完全相同的一个电路为第二输入匹配。借助于定位片子88外部的感性T形网络,MMIC23可被调谐于宽带应用。
回过来参照图4,利用由有源GaAs FET96和98混频器构成的单端混频器28和30组成栅或栅激励混频器,构成了单平衡混频器。每个混频器由一个偏置在夹断点附近以利用FET非线性特性的共源FET组成。最好用增强型GaAs FET将0V直流偏压加于栅极来提供夹断工作。分别用阻抗匹配电路24和26的旁路电感器82和92可做到这一点,从而减轻对额外的栅偏置电路的需要。采用栅激励有源GaAs FET混频器的主要优点是用相当小的芯片面积就可获得低噪音指标和高转换增益,从而省去GaAs MMIC23中的前端RF前置放大器和图象抑制滤波器。
利用偏置于夹断点附近的栅激励有源GaAs FET混频器,组合的LO和微波信号被加至FET混频器28和30的栅输入。在各个FET混频器的漏处产生一个基于微波信号和LO信号之和与差及其谐波的频谱。
低通滤波器32和34被分别连接于FET混频器96和98的漏极。各个低通滤波器分别用串联电感器100和102以及旁路电容器104和106来实现。低通滤波器用来抑制微波和LO信号分量并使中频亦即差频通过。为得到最好的性能,滤波器元件应设计成对LO和微波频率的信号呈短路状态。
低通滤波器的二个输出提供了一个平衡IF输出,它包含一个IF信号和一个反相IF信号。平衡IF输出驱动放大器36以便将平衡IF输出放大并转换成不平衡IF信号。放大器36最好包括二个差分放大级38和40以及一个差分到单端转换的放大器42。第一级差分放大器38在各输入端包含一个共源耗尽型FET108和110。各FET的栅分别经由电阻器112和114偏置于地电位。各个源连接在一起并经由源电阻116连到地,为二个FET放大器提供一个自偏置网络。自偏置网络在源连接点处引起一个正的直流电压,相对于源端电压足以保持最佳GaAs FET运行所需的FET108和110的栅极负偏压。在这种对称结构中连接差分输入的优点是在二个FET源连接点处产生了一个虚地,使接地寄生的危害大大减轻。分别连接在FET108和110的电源和漏极之间的负载电阻118和124建立了漏偏压。此外,为了提高FET的频率响应并改善输入VSWR(电压驻波比),各个FET都配置有反馈电路。FET108配置有包含串联电容器120和电阻器122的反馈电路。FET110配置有包含串联电容器126和电阻器128的反馈电路。
平衡IF信号分别经由直流阻挡电容器130和132加至FET108和110的栅极。放大了的平衡IF信号从FET的漏极输出,并加至第二级差分放大器40,第二级差分放大器40除了不包含电阻器和电容器反馈电路外,其电路跟上述第一级基本上相同。
第二级差分放大器40的输出被馈至差分变单端放大器42。此放大器由一个共源FET134和一个共漏FET136组成。相似于上述差分放大器38,自偏置电阻器138在源处引起一个直流电压,经由电阻器140将栅偏置于0V,从而相对于源端电压足以保持FET134的栅的负偏压。电容器139在IF频率下提供了对地的短路。包含电阻器142和144的电压分压网络提供了FET136的栅偏压用以在栅极处建立直流偏置电压。
来自第二差分放大级40的IF信号经由直流阻挡电容器146被加至FET136的栅极。共漏FET136的输出在源处引起一个放大了的IF信号。来自第二差分放大级40的反相IF信号经由直流阻挡电容器148被加至FET134的栅极。共源FET134的输出在FET134的漏极引起反相IF信号的180°相移,从而同FET136源极的IF信号同相相加,产生一个不平衡IF信号。
不平衡IF信号可加至含有IF放大级46和48的额外放大级。第一级IF放大器由构成共源FET的FET150组成。FET150配置有一个直流阻挡电容器154。栅极经由栅偏电阻器158被偏置于0V,而源极电压经由自偏置源极电阻器162被适当地确定。电容器163在IF频率下提供了一个对地的短路。连接在FET150的电源和漏之间的负载电阻器164设定了漏极偏置。另一级IF放大器48的结构与第一级46完全相同,因而不再描述,它是可选的,是为得到不平衡IF信号的额外增益而设置的。
参照图5,MMIC23用GaAs制作在片子88上并且安装在单片塑料覆盖的封装中(未示出),除了输入匹配电路24和26外,所有图4所示的电路元件都用常规的GaAs制造工艺制作在芯片23的片子88上。片子88安装在一个提供有端口或引线23e的接地平面上。引线23a和23b接收组合过的平衡微波和LO信号。端口或引线23f接收电源输入VDD,端口或引线23e连接于RF或微波接地点GND。端口或引线23d连接于IF接地点GND。端口或引线23c是IF输出。分立的放大器36和44的IF接地点23d以及电路24、26、28、30、32和34的微波接地点23e都提供在MMIC上以最大限度缩短接地回路。
从前述显见,本发明满足了对用于LNB降频器的低成本GaAsMMIC单平衡降频器的目前要求。本发明提供了低噪音,高增益,无需MMIC输入端处的RF前置放大器和图象抑制滤波器。本发明还提供了一种平衡系统,它可以产生适合于室内调谐器处理的中频信号而无需IF混合耦合器或平衡-不平衡变换器。此单平衡降频器可体现为其它的具体形式供各种通信器件使用而不偏离本发明的构思和主要特性。因此,无论从哪一方面看,本发明实施例都应视为示例而不是限制,表明本发明范围的标准可参见所附权利要求而不在上述描述中。