一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制备方法.pdf

上传人:1****2 文档编号:20964 上传时间:2018-01-12 格式:PDF 页数:13 大小:1.15MB
返回 下载 相关 举报
摘要
申请专利号:

CN201510174947.9

申请日:

2015.04.14

公开号:

CN104766896A

公开日:

2015.07.08

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):H01L 31/032申请日:20150414|||公开

IPC分类号:

H01L31/032; H01L31/0352

主分类号:

H01L31/032

申请人:

湖南共创光伏科技有限公司

发明人:

李廷凯; 李晴风; 钟真

地址:

421001湖南省衡阳市雁峰区白沙洲工业园区鸿园路1号

优先权:

专利代理机构:

长沙正奇专利事务所有限责任公司43113

代理人:

马强; 刘佳芳

PDF下载: PDF下载
内容摘要

本发明公开了一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制造方法,该电池包括由CIGS吸收层和CdS缓冲层所形成的pn结,所述铜铟镓硒薄膜太阳能电池的pn结构中的CIGS吸收层为具有能隙梯度的Cuy(In1-xGax)Se2多层结构,其中0≤x≤1,0≤y≤1。这种梯度结构有较宽的能谱范围,能够分离和捕捉游离电子,在太阳光的激发下,形成较大电流而提高薄膜太阳能电池的效率。该梯度结构避免了晶粒的异常长大和孔洞和裂缝的形成,制备了致密的、晶粒尺寸大小均匀、能隙匹配的高质量的薄膜,同时,梯度结构有利于对太阳光的充分吸收。因而,进一步提高了铜铟镓硒薄膜太阳能电池的效率。

权利要求书

1.  一种具有梯度结构的铜铟镓硒薄膜太阳能电池,包括由CIGS吸收层和CdS缓冲层所形成的pn结,其特征是,所述铜铟镓硒薄膜太阳能电池的pn结中的CIGS吸收层为Cuy(In1-xGax)Se2梯度结构,其中0≤x≤1,0≤y≤1,所述梯度结构是指具有能隙梯度的多层结构;所述Cuy(In1-xGax)Se2梯度结构的能隙在1.65eV-1eV之间,从首层至末层由高能隙层向低能隙层均匀过渡,且任意相邻两层之间的能隙差在0.01–0.1eV之间。

2.
  根据权利要求1所述具有梯度结构的铜铟镓硒薄膜太阳能电池,其特征是,所述Cuy(In1-xGax)Se2梯度结构选自以下几种中的一种或者几种:
(1)所述Cuy(In1-xGax)Se2梯度结构中y恒定,x从1至0逐渐减小,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构;
(2)所述Cuy(In1-xGax)Se2梯度结构中x恒定,y从1至0逐渐减小,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构;
(3)所述Cuy(In1-xGax)Se2梯度结构中掺杂Na,Na的原子掺杂浓度在0%-5%之间逐渐增加,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构;
(4)所述Cuy(In1-xGax)Se2梯度结构中晶粒尺寸从10nm逐渐增大到2微米,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构。

3.
  根据权利要求1或2所述具有梯度结构的铜铟镓硒薄膜太阳能电池,其特征是,所述Cuy(In1-xGax)Se2梯度结构是能隙在1.65eV-1eV之间,且按照能隙差在0.01–0.05eV之间的形式从高能隙层至低能隙层均匀过渡的梯度结构。

4.
  根据权利要求1或2所述具有梯度结构的铜铟镓硒薄膜太阳能电池,其特征是,所述梯度结构的总厚度在0.1微米到3微米之间。

5.
  根据权利要求1或2所述具有梯度结构的铜铟镓硒薄膜太阳能电池,其特征是,所述梯度结构内每一层的厚度为1nm-100nm。

6.
  根据权利要求5所述具有梯度结构的铜铟镓硒薄膜太阳能电池,其特征是,所述梯度结构内每一层的厚度为1nm-10nm。

7.
  权利要求1-6之一所述具有梯度结构的铜铟镓硒薄膜太阳能电池的制备方法,其特征是,所述具有梯度结构的CIGS吸收层采用共蒸方法制备,具体工艺控制参数包括:将基板装载在沉积室后,在380℃-420℃的温度下,在CO、CO2或H2的气氛下,预处理15-20分钟;冷却到150℃-200℃时,反应室的真空度抽到0.01-0.03乇的压力,然后通入氦气,达到10-20乇的压力和200℃时,开始镀缓冲层薄膜,然后基板温度升到为600℃-650℃,控制Cu、In、Ga、Se的石墨舟蒸发源温度分别为Cu:1200-1700℃,In:900-1200℃,Ga:800-1000℃和Se:300-500℃来制备铜铟镓硒梯度结构,每镀完一层膜,用干燥的氮气去除松散附着的氧化物或或铜铟镓硒微粒。

8.
  根据权利要求7所述具有梯度结构的铜铟镓硒薄膜太阳能电池的制备方法,其特征是,所述具有梯度结构的CIGS吸收层采用共蒸方法来进行钠的摻杂,具体工艺控制参数包括:采用的钠 源为NaF、Na2Se和Na2S中的一种或几种,采用钠源为NaF时控制NaF共蒸温度800-1000℃;采用钠源为Na2Se时控制Na2Se共蒸温度700-1000℃;采用钠源为Na2S时控制Na2S共蒸温度1000-1200℃;控制Na摻杂浓度为0.05%到0.2%原子浓度。

说明书

一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制备方法
技术领域
本发明涉及太阳能电池和具有梯度结构的薄膜太阳能电池及其制造方法,特别是具有梯度结构的铜铟镓硒薄膜太阳能电池结构及其制造方法。
背景技术
自从法国科学家AE.Becquerel在1839年发现光电转换现象以后,1883年第一个以半导体硒为基片的太阳能电池诞生。1946年Russell获得了第一个太阳能电池的专利(US.2,402,662),其光电转换效率仅为1%。直到1954年,贝尔实验室的研究才发现了掺杂的硅基材料具有高的光电转换效率。这个研究为现代太阳能电池工业奠定了基础。在1958年,美国Haffman电力公司为美国的卫星装上了第一块太阳能电池板,其光电转换效率约为6%。从此,单晶硅及多晶硅基片的太阳能电池研究和生产有了快速的发展,2006年太阳能电池的产量已经达到2000兆瓦,单晶硅太阳能电池的光电转换效率达到24.7%,商业产品达到22.7%,多晶硅太阳能电池的光电转换效率达到20.3%,商业产品达到15.3%。
另一方面,1970年苏联的Zhores Alferov研制了第一个GaAs基的高效率Ⅲ-Ⅴ族太阳能电池。由于制备Ⅲ-Ⅴ族薄膜材料的关键技术MOCVD(金属有机化学气相沉积)直到1980年左右才被成功研发,美国的应用太阳能电池公司在1988年成功地应用该技术制备出光电转 换效率为17%的GaAs基的Ⅲ-Ⅴ族太阳能电池。其后,以GaAs为基片的Ⅲ-Ⅴ族材料的掺杂技术,多级串联太阳能电池的制备技术得到了广泛的研究和发展,其光电转换效率在1993年达到19%,2000年达到24%,2002年达到26%,2005年达到28%,2007年达到30%。2007年,美国两大Ⅲ-Ⅴ族太阳能电池公司Emcore和SpectroLab生产了高效率Ⅲ-Ⅴ族太阳能商业产品,其光电转换率达38%,这两家公司占有全球Ⅲ-Ⅴ族太阳能电池市场的95%,最近美国国家能源研究所宣布,他们成功地研发了其光电转换效率高达50%的多级串联的Ⅲ-Ⅴ族太阳能电池。由于这类太阳能电池的基片昂贵,设备及工艺成本高,主要应用于航空、航天、国防和军工等领域。
国外的太阳能电池研究和生产,大致可以分为三个阶段,即有三代太阳能电池。
第一代太阳能电池,基本上是以单晶硅和多晶硅基单一组元的太阳能电池为代表。仅注重于提高光电转换效率和大规模生产,存在着高的能耗、劳动密集、对环境不友善和高成本等问题,其产生电的价格约为煤电的2~3倍;直至2014年,第一代太阳能电池的产量仍占全球太阳能电池总量的80-90%。
第二代太阳能电池为薄膜太阳能电池,是近几年来发展起来的新技术,它注重于降低生产过程中的能耗和工艺成本,专家们称其为绿色光伏产业。与单晶硅和多晶硅太阳能电池相比,其薄膜高纯硅的用量为其的1%,同时,低温(大约200℃左右)等离子增强型化学气相沉积沉积技术,电镀技术,印刷技术被广泛地研究并应用于薄膜太 阳能电池的生产。由于采用低成本的玻璃、不锈钢薄片,高分子基片作为基板材料和低温工艺,大大降低了生产成本,并有利于大规模的生产。目前已成功研发的薄膜太阳能电池的材料为:CdTe,其光电转换效率为16.5%,而商业产品约为12%左右;CulnGaSe(CIGS),其光电转换效率为19.5%,商业产品为12%左右;非晶硅及微晶硅,其光电转换效率为8.3~15%,商业产品为7~12%,近年来,由于液晶电视的薄膜晶体管的研发,非晶硅和微晶硅薄膜技术有了长足的发展,并已应用于硅基薄膜太阳能电池。围绕薄膜太阳能电池研究的热点是,开发高效、低成本、长寿命的光伏太阳能电池。它们应具有如下特征:低成本、高效率、长寿命、材料来源丰富、无毒,科学家们比较看好非晶硅薄膜太阳能电池。目前占最大份额的薄膜太阳能电池是非晶硅太阳能电池,通常为pin结构电池,窗口层为掺硼的P型非晶硅,接着沉积一层未掺杂的i层,再沉积一层掺磷的N型非晶硅,并镀电极。专家们预计,由于薄膜太阳能电池具有低的成本,高的效率,大规模生产的能力,在未来的10~15年,薄膜太阳能电池将成为全球太阳能电池的主流产品。
非晶硅电池一般采用PECVD(Plasma Enhanced Chemical Vapor Deposition—等离子增强型化学气相沉积)方法使高纯硅烷等气体分解沉积而成的。此种制作工艺,可以在生产中连续在多个真空沉积室完成,以实现大批量生产。由于沉积分解温度低,可在玻璃、不锈钢板、陶瓷板、柔性塑料片上沉积薄膜,易于大面积化生产,成本较低。在玻璃衬底上制备的非晶硅基太阳能电池的结构为: Glass/TCO/p-a-SiC/i-a-Si/n-a-Si/TCO,在不锈钢衬底上制备的非晶硅基太阳能电池的结构为:SS/ZnO/n-a-Si/i-a-Si/p-na-Si/ITO。
国际公认非晶硅/微晶硅叠层太阳能电池是硅基薄膜电池的下一代技术,是实现高效低成本薄膜太阳能电池的重要技术途径,是薄膜电池新的产业化方向。微晶硅薄膜自从1968年被Veprek和Maracek采用氢等离子化学气相沉积在600℃首次制备以来,人们开始对其潜在的优良性能有了初步认识,直到1979年,日本的Usui和Kikuchi通过采用极高的氢硅比的工艺方法和低温等离子增强化学气相沉积技术,制备出掺杂微晶硅,人们才逐渐对微晶硅材料及其在太阳能电池中的应用进行研究。1994年,瑞士M.J.Williams和M.Faraji团队首次提出以微晶硅为底电池,非晶硅为顶电池的叠层电池的概念,这种电池结合了非晶硅优良特性和微晶硅的长波响应及稳定性好的优点。2005年日本三菱重工和钟渊化学公司的非晶硅/微晶硅叠层电池组件样品效率分别达到11.1%(40cm×50cm)和13.5%(91cm×45cm)。日本夏普公司2007年9月实现非晶硅/微晶硅叠层太阳能电池产业化生产(25MW,效率8%-8.5%),欧洲Oerlikon(欧瑞康)公司2009年9月宣布其非晶/微晶叠层太阳能电池实验室最高转换效率达11.9%、在2010年6于横滨开幕的太阳能电池展会“PVJapan 2010”上,美国应用材料(AMAT)宣布0.1m×0.1m模块的转换效率达到了10.1%,1.3m×1.1m模块的转换效率达到了9.9%。提高电池效率最有效的途径是尽量提高电池的光吸收效率。对硅基薄膜而言,采用窄带隙材料是必然途径。如Uni-Solar公司采用的窄带隙材料为 a-SiGe(非晶硅锗)合金,他们的a-Si/a-SiGe/a-SiGe三结叠层电池,小面积电池(0.25cm2)效率达到15.2%,稳定效率达13%,900cm2组件效率达11.4%,稳定效率达10.2%,产品效率达7%-8%。
对于薄膜太阳能电池而言,一个单结的,没有聚光的硅电池,理论上最大光电转化效率为31%(Shockley‐Queisser限制)。按照带隙能量减少的的顺序,双结的没有聚光的硅电池,理论上最大光电转化效率可增加到41%,而三结的可达到49%。因此,发展多结薄膜太阳能电池是提升太阳能电池效率的重要途径。对于碲化镉薄膜太阳能电池,与碲化镉相匹配的高或低带隙材料的熔点很低,且不稳定,难以形成多结高效串联太阳能电池。对于CIGS薄膜太阳能电池,与CIGS相匹配的高或低带隙材料难以制备,也不易形成多结高效串联太阳能电池。对于硅基薄膜太阳能电池,晶体硅和非晶硅的带隙为1.1eV和1.7eV的,而纳米硅的带隙依据晶粒尺寸的大小可在1.1eV和1.7eV之间变化。Si系化合物,如晶体Si1-xGex带隙(0≤X≤1)依据Ge的浓度可从1.1eV变到0.7eV,而非晶SiGe可在1.4,非晶SiC约1.95eV,这种组合正好是与太阳的光谱相匹配。
在另一方面,如何充分地吸收光能,提高太阳能电池的光电转化效率,让尽可能多的电子能被光激发而转变为电能,这样,电池材料的能级匹配和少的缺陷是致关重要的。从技术层面来说,薄膜沉积的技术难点在于实现高速沉积的同时保证薄膜的高质量和均匀性,因为薄膜晶粒尺寸,晶粒生长过程及生长的基底材料都对薄膜的质量和均匀性有强烈的影响,从而影响整个电池性能表现。在薄膜晶粒生长过程中,由于晶粒的异常长大,导致晶粒大小不均匀,极易形成孔洞和裂缝。充斥于薄膜中的孔洞和裂缝增加了载流子的复合,并且导致漏电流,严重降低了Voc和FF值。因此,解决这一技术难题,是制备 高效薄膜太阳能电池的重要途径。
我们在专利ZL200910043930-4,ZL200910043931-9和ZL200910226603-2中已经从技术方面,制造了高效率的a-Si/μC-Si,和a-Si/nC-Si/μC-Si双结和三结硅基薄膜太阳能电池,高密度(HD)和超高频(VHF)-PECVD技术已经开发并用于了高质量,大尺度的a-Si,a-SiGe,nC-Si,μC-Si,A-SiC薄膜沉积。以a-SiC作为窗口层,以及p型掺杂富硅氧化硅薄膜用于顶部a-Si和底部μc-Si电池之间中间反射层已经用来增加a-Si/μC-Si双结和a-Si/nC-Si/μC-Si三结硅基薄膜太阳能电池的效率。高质量的B掺杂ZnOx的CVD工艺优化,提高了其雾度和电导率,并研究了其他的光捕获技术。三结硅基薄膜太阳能电池的实验室样品效率可以达到15%,具有稳定效率大于10%及以上的商业化的a-Si/μC-Si(1.1米x1.3米)太阳能电池组件已经制备。
本申请在专利ZL200910043930-4,ZL200910043931-9和ZL200910226603-2的基础上继续研究,旨在提供一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制造方法。
现有铜铟镓硒薄膜(CIGS)太阳能电池的典型结构为多层膜结构,从入光面开始,依次包括:前板玻璃/封装材料/TCO前电极/缓冲层(CdS)/光吸收层(CIGS)/背电极层(Mo)/衬底。
发明内容
本发明要解决的技术问题是,针对现有技术存在的薄膜材料与太阳能光谱能隙匹配、晶粒形成和生长过程中产生的缺陷的问题,以及如何充分吸收太阳光并提高光电转化效率,提出具有梯度结构的铜铟镓硒薄膜太阳能电池及其制造方法。
为实现上述目的,本发明的技术方案是:
一种具有梯度结构的铜铟镓硒薄膜太阳能电池,包括由CIGS吸收层和CdS缓冲层所形成的pn结,所述铜铟镓硒薄膜太阳能电池的pn结中的CIGS吸收层为Cuy(In1-xGax)Se2梯度结构,其中0≤x≤1,0≤y≤1,所述梯度结构是指具有能隙梯度的多层结构;所述Cuy(In1-xGax)Se2梯度结构的能隙在1.65eV-1eV之间,从首层至末层由高能隙层向低能隙层均匀过渡,且任意相邻两层之间的能隙差在0.01–0.1eV之间。
所述Cuy(In1-xGax)Se2梯度结构优选选自以下几种中的一种或者几种:
(1)所述Cuy(In1-xGax)Se2梯度结构中y恒定,x从1至0逐渐减小,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构;
(2)所述Cuy(In1-xGax)Se2梯度结构中x恒定,y从1至0逐渐减小,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构;
(3)所述Cuy(In1-xGax)Se2梯度结构中掺杂Na,Na的原子掺杂浓度在0%-5%之间逐渐增加,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构;
(4)所述Cuy(In1-xGax)Se2梯度结构中晶粒尺寸从10nm逐渐增大到2微米,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构。
以上四种是形成能隙变化的CdxTey梯度结构的四种方式,可以是其中一种形式导致的能隙变化,也可以是其中几种形式同时导致能隙变化。
所述Cuy(In1-xGax)Se2梯度结构是能隙在1.65eV-1eV之间,且优选按照能隙差在0.01–0.05eV之间的形式从高能隙层至低能隙层均匀过渡的梯度结构。
所述梯度结构的总厚度优选在0.1微米到3微米之间。
所述梯度结构内每一个过渡层的厚度优选为1nm-100nm之间,,进一步优选为1nm-10nm。
所述具有梯度结构的铜铟镓硒薄膜太阳能电池的制备方法,所述具有梯度结构的CIGS吸收层采用共蒸方法制备,具体工艺控制参数包括:将基板装载在沉积室后,在380℃-420℃的温度下,在CO、CO2或H2的气氛下,预处理15-20分钟;冷却到150℃-200℃时,反应室的真空度抽到0.01-0.03乇的压力,然后通入氦气,达到10-20乇的压力和200℃时,开始镀缓冲层薄膜,然后基板温度升到为600℃-650℃,控制Cu、In、Ga、Se的石墨舟蒸发源温度分别为Cu:1200-1700℃,In:900-1200℃,Ga:800-1000℃和Se:300-500℃来制备铜铟镓硒梯度结构,每镀完一层膜,用干燥的氮气去除松散附着的氧化物或或铜铟镓硒微粒。
所述具有梯度结构的CIGS吸收层采用共蒸方法来进行钠的摻杂,具体工艺控制参数包括:采用的钠源为NaF、Na2Se和Na2S中的一种或几种,采用钠源为NaF时控制NaF共蒸温度800-1000℃;采用钠源为Na2Se时控制Na2Se共蒸温度700-1000℃;采用钠源为Na2S时控制Na2S共蒸温度1000-1200℃;控制Na摻杂浓度为0.05%到0.2%原子浓度。
下面对本发明做进一步解释和说明:
所述具有梯度结构的铜铟镓硒薄膜太阳能电池包括单结或多结铜铟镓硒薄膜太阳能电池。
本发明的多结具有梯度结构的薄膜太阳能电池中,利用宽隙材料的梯度结构做顶电结,将短波长的光能转化为电能;利用窄带材料的梯度结构做底电结,可将特长波长光能转化为电能。由于更加充分利用了阳光的谱域,多结具有梯度结构的薄膜太阳能电池具有更高的光电转换效率。
对于铜铟镓硒镉薄膜太阳能电池而言,其梯度结构由Cuy(In1-xGax)Se2(1-1.65eV)(1≥x≥0,1≥y≥0)通过改变x,y的大小,钠的掺杂量和/或晶粒尺寸大小来调节铜铟镓硒材料的能隙匹配。实验已经证明,CIGS的组成的改变直接引起它的光学带隙Eg的变化。因此,改变Ga的相对含量或Ga/(Ga+In)的比例和改变Cu的相对含量或Cu/(Ga+In)的比例就可以调整CIGS的光学带隙。依据分子式Cuy(In1-xGax)Se2,当x=0,y=1,时,即CuInSe2的Eg大约为0.94eV到1.04eV,当x=1,y=1时,即CuGaSe2的Eg大约为1.65eV到1.70eV。
CIGS的光学带隙Eg与Cuy(In1-xGax)Se2组成的关系可用下式表示:Eg=(1-x)·1.01eV+x·1.70eV-bx(1-x)。
在这里b为修正系数,0≤b≤0.3,
当CIGS应用于太阳能电池时,分子式Cuy(In1-xGax)Se2(CIGS)组成的典型范例为0.3≤x≤0.4和0.7≤y≤0.9,.即缺铜的组成。同时,通过调整y,即铜的成分和钠的摻杂量0.05-0.5%也可调节CIGS材料的能隙。
梯度结构变化高度由制成材料之间的能隙差决定,通过其相匹配材料的能隙大小来调节。每级梯度结构变化宽度可通过形成同一能隙 材料的厚度来调节。
与现有技术相比,本发明的优势在于:
本发明所述能隙梯度结构有较宽的能谱范围,能够分离和捕捉游离电子,在太阳光的激发下,形成较大电流而提高薄膜太阳能电池的效率。所述梯度结构避免了晶粒的异常长大和孔洞和裂缝的形成,制备了致密的,晶粒尺寸大小均匀,能隙匹配的高质量的薄膜,同时,梯度结构有利于对太阳光的充分吸收。因而,进一步提高了薄膜太阳能电池的效率。
附图说明
图1是具有组成变化梯度结构的铜铟镓硒薄膜太阳能电池结构图;.
图2是具有组成变化,钠掺杂和晶粒大小梯度结构的铜铟镓硒薄膜太阳能电池结构图;.
图3是具有钠掺杂变化梯度结构的铜铟镓硒薄膜太阳能电池结构图;.
图4是具有晶粒大小变化梯度结构的铜铟镓硒薄膜太阳能电池结构图;.
图5是具有组成变化的梯度结构的铜铟镓硒薄膜太阳能电池制备工艺流程图。
图6是具有不同Na掺杂浓度变化的梯度结构的铜铟镓硒薄膜太阳能电池制备工艺流程。
图7是具有晶粒大小变化的梯度结构的铜铟镓硒薄膜太阳能电池制备工艺流程。
具体实施方式
下面结合实施例对本发明做进一步的说明。
如图1-4所示,铜铟镓硒薄膜(CIGS)太阳能电池的典型结构为多层膜结构,从入光面开始,依次包括:前板玻璃/封装材料/TCO前电极/缓冲层(CdS)/光吸收层(CIGS)/背电极层(Mo)/衬底;
所述铜铟镓硒薄膜太阳能电池的pn结中的CIGS吸收层为Cuy(In1-xGax)Se2梯度结构,其中0≤x≤1,0≤y≤1,所述梯度结构是指具有能隙梯度的多层结构;所述Cuy(In1-xGax)Se2梯度结构的能隙在1.65eV-1eV之间,从首层至末层由高能隙层向低能隙层均匀过渡,且任意相邻两层之间的能隙差在0.01–0.1eV之间。
所述Cuy(In1-xGax)Se2梯度结构优选选自以下几种中的一种或者几种:
(1)所述Cuy(In1-xGax)Se2梯度结构中y恒定,x从1至0逐渐减小,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构,控制能隙差为0.05eV;(如图1所示)
(2)所述Cuy(In1-xGax)Se2梯度结构中x恒定,y从1至0逐渐减小,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构,控制能隙差为0.02eV;
(3)所述Cuy(In1-xGax)Se2梯度结构中掺杂Na,Na的原子掺杂浓度在0%-5%之间逐渐增加,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构,控制能隙差为0.01eV(如图3所示);
(4)所述Cuy(In1-xGax)Se2梯度结构中晶粒尺寸从10nm逐渐增大到2微米,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构,控制能隙差为0.1eV(如图4所示)。
几种组合的形式如图2所示,y=1,x从0.4至0.6逐渐增大,且晶粒尺寸逐渐增大,且掺杂有Na,Na的掺杂量从0%-5%逐渐增大,形成能隙从高能隙层至低能隙层均匀过渡的梯度结构,控制能隙差为0.01eV。
所述梯度结构的总厚度在0.1微米到3微米之间。述梯度结构内每一个过渡层的厚度为1nm-10nm之间。
如图5所示,所述具有梯度结构的铜铟镓硒薄膜太阳能电池的制造方法包括:
(1)对玻璃基板或金属,高分子基板进行清洗;
(2)在基板上制备金属Mo电极;
采用采用磁控溅射方法制备金属Mo电极;磁控溅射压力为3–10毫乇,沉积速率为2-5nm/秒。Mo电极厚度为0.5-1微米。
(3)金属Mo层,在550℃-650℃下硒化形成MoSe的过度层,即背接触层。
(4)采用机械和激光技术划刻金属Mo镀膜层,电极分割形成子电池的电极
(5)对划刻后的玻璃基板再次进行清洗;
(6)其铜铟镓硒梯度结构在玻璃基板温度为550-650℃时,采用真空热蒸发法,磁控溅射和CVD方法来制备铜铟镓硒薄膜梯度结构。每层铜铟镓硒的形成过程有三种方式:
1.采用Cu,In,Ga三组元金属真空热蒸发法和磁控溅射法形成Cu:In:Ga的中间合金,然后用H2Se(或Se)进行硒化形成Cu(In,Ga)Se2
2.采用Cu和In,Ga分别真空热蒸发法和磁控溅射法并与H2Se(或Se)硒化相结合形成Cu2Se和(In,Ga)2Se3混合层,再在H2Se(或Se)硒化条件下形成Cu(In,Ga)Se2
3.采用四组元金属Cu+In+Ga+Se真空热蒸发法和磁控溅射法直接形成Cu(In,Ga)Se2
本工艺采用第三种方法制备铜铟镓硒梯度结构,工艺为共蒸方法制备:
在反应室的真空度为0.01-0.03乇的压力,然后通入氦气,达到10-20乇的压力和200℃时,开始镀缓冲层薄膜,大约20-50纳米,然后基板温度升到为550-650℃,Cu,In,Ga,Se的石墨舟蒸发源温度为Cu:1200-1700℃,In:900-1200℃,Ga:800-1000℃和Se:300-500℃来制备铜铟镓硒梯度结构。蒸发源的铜铟镓硒原料依据Cuy(In1-xGax)Se2(1-1.65eV)/Cuy(In1-xGax)Se2(1-1.65eV)(1≥x≥0,1≥y≥0,)通过改变x.y的大小、晶粒尺寸大小和钠的摻杂来调节铜铟镓硒材料的能隙匹配。
为了调整晶粒尺寸大小从10nm到2μm来调节铜铟镓硒材料的能隙匹配,通过调整基板温度从500到650℃,和调整Cu,In,Ga,Se的石墨舟蒸发源温度和沉积速率来控制铜铟镓硒晶粒尺寸大小达到铜铟镓硒能隙的调整。每镀完一层膜,用干燥的氮气去除任何松散附着的氧化物或铜铟镓硒微粒。铜铟镓硒梯度结构的薄膜厚度为1-4μm。
为通过钠的摻杂来调节铜铟镓硒材料的电阻性能和能隙匹配,采用共蒸方法来进行钠的摻杂。通常采用的钠源为NaF(共蒸温度800-1000℃),Na2Se(共蒸温度700-1000℃)和Na2S(共蒸温度1000-1200℃),摻杂浓度为0.05到0.2%原子浓度。
(7)在铜铟镓硒梯度结构层上,用化学溶液法制备CdS薄膜;
镉的原料采用0.02-0.05克分子浓度醋酸镉(CdAc2),0.5-2克分子浓度的醋酸铵(NH4Ac),10-20克分子浓度的氨水(NH4OH)和0.05–0.1克分子浓度的硫脲(CS(NH3)2)作为硫源。化学溶液反应法沉积温度为80-95℃,CdS薄膜沉积厚度为60–200纳米。镀模完成后,基板然后从浴中取出,放入温暖的去离子水,并用超声处理(约2分钟)以除去松散附着的CdS微粒,然后用干燥的N2吹干。
(8)制备TCO即ITO和ZnO薄膜,厚度200–400纳米。
(9)采用激光工艺和机械刻蚀工艺将TCO电极分割形成单个的子电池;
(9)对电池边缘进行激光划线处理;
(10)对电池进行电路连接及封装。

一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制备方法.pdf_第1页
第1页 / 共13页
一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制备方法.pdf_第2页
第2页 / 共13页
一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制备方法.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制备方法.pdf》由会员分享,可在线阅读,更多相关《一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制备方法.pdf(13页珍藏版)》请在专利查询网上搜索。

本发明公开了一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制造方法,该电池包括由CIGS吸收层和CdS缓冲层所形成的pn结,所述铜铟镓硒薄膜太阳能电池的pn结构中的CIGS吸收层为具有能隙梯度的Cuy(In1-xGax)Se2多层结构,其中0x1,0y1。这种梯度结构有较宽的能谱范围,能够分离和捕捉游离电子,在太阳光的激发下,形成较大电流而提高薄膜太阳能电池的效率。该梯度结构避免了晶粒的异常长大和孔。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1